Initial commit
Browse files- README.md +37 -0
- a2c-PandaReachDense-v2.zip +3 -0
- a2c-PandaReachDense-v2/_stable_baselines3_version +1 -0
- a2c-PandaReachDense-v2/data +95 -0
- a2c-PandaReachDense-v2/policy.optimizer.pth +3 -0
- a2c-PandaReachDense-v2/policy.pth +3 -0
- a2c-PandaReachDense-v2/pytorch_variables.pth +3 -0
- a2c-PandaReachDense-v2/system_info.txt +7 -0
- config.json +1 -0
- replay.mp4 +0 -0
- results.json +1 -0
- vec_normalize.pkl +3 -0
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- PandaReachDense-v2
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: A2C
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: PandaReachDense-v2
|
16 |
+
type: PandaReachDense-v2
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: -1.83 +/- 0.40
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **A2C** Agent playing **PandaReachDense-v2**
|
25 |
+
This is a trained model of a **A2C** agent playing **PandaReachDense-v2**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
a2c-PandaReachDense-v2.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:894357af3757986e26c3ca56e23d1a6a0d5f5e5651b51fcf37b9a39820e4382b
|
3 |
+
size 108159
|
a2c-PandaReachDense-v2/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.8.0
|
a2c-PandaReachDense-v2/data
ADDED
@@ -0,0 +1,95 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7f798ba2c160>",
|
8 |
+
"__abstractmethods__": "frozenset()",
|
9 |
+
"_abc_impl": "<_abc._abc_data object at 0x7f798ba230c0>"
|
10 |
+
},
|
11 |
+
"verbose": 1,
|
12 |
+
"policy_kwargs": {
|
13 |
+
":type:": "<class 'dict'>",
|
14 |
+
":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=",
|
15 |
+
"optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
|
16 |
+
"optimizer_kwargs": {
|
17 |
+
"alpha": 0.99,
|
18 |
+
"eps": 1e-05,
|
19 |
+
"weight_decay": 0
|
20 |
+
}
|
21 |
+
},
|
22 |
+
"num_timesteps": 1000000,
|
23 |
+
"_total_timesteps": 1000000,
|
24 |
+
"_num_timesteps_at_start": 0,
|
25 |
+
"seed": null,
|
26 |
+
"action_noise": null,
|
27 |
+
"start_time": 1686735154871187065,
|
28 |
+
"learning_rate": 0.0007,
|
29 |
+
"tensorboard_log": null,
|
30 |
+
"lr_schedule": {
|
31 |
+
":type:": "<class 'function'>",
|
32 |
+
":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuCQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9G8AaNuLrHhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
33 |
+
},
|
34 |
+
"_last_obs": {
|
35 |
+
":type:": "<class 'collections.OrderedDict'>",
|
36 |
+
":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAqeHRPirsUL0NdAY/qeHRPirsUL0NdAY/qeHRPirsUL0NdAY/qeHRPirsUL0NdAY/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAGNd6P/L+ZT8bh3y+AlrgPYYCvz1kHYC/dj+av1ZRlT4aB7g/MzlwPv3fZT8c8d++lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAACp4dE+KuxQvQ10Bj+MqOW7/23JOVAcoLyp4dE+KuxQvQ10Bj+MqOW7/23JOVAcoLyp4dE+KuxQvQ10Bj+MqOW7/23JOVAcoLyp4dE+KuxQvQ10Bj+MqOW7/23JOVAcoLyUaA5LBEsGhpRoEnSUUpR1Lg==",
|
37 |
+
"achieved_goal": "[[ 0.40992478 -0.05100647 0.5252083 ]\n [ 0.40992478 -0.05100647 0.5252083 ]\n [ 0.40992478 -0.05100647 0.5252083 ]\n [ 0.40992478 -0.05100647 0.5252083 ]]",
|
38 |
+
"desired_goal": "[[ 0.97984457 0.8984214 -0.24660914]\n [ 0.10954668 0.09326653 -1.0008969 ]\n [-1.2050617 0.29163617 1.4377167 ]\n [ 0.2345932 0.89794904 -0.4373864 ]]",
|
39 |
+
"observation": "[[ 4.0992478e-01 -5.1006474e-02 5.2520829e-01 -7.0086177e-03\n 3.8419661e-04 -1.9544750e-02]\n [ 4.0992478e-01 -5.1006474e-02 5.2520829e-01 -7.0086177e-03\n 3.8419661e-04 -1.9544750e-02]\n [ 4.0992478e-01 -5.1006474e-02 5.2520829e-01 -7.0086177e-03\n 3.8419661e-04 -1.9544750e-02]\n [ 4.0992478e-01 -5.1006474e-02 5.2520829e-01 -7.0086177e-03\n 3.8419661e-04 -1.9544750e-02]]"
|
40 |
+
},
|
41 |
+
"_last_episode_starts": {
|
42 |
+
":type:": "<class 'numpy.ndarray'>",
|
43 |
+
":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
|
44 |
+
},
|
45 |
+
"_last_original_obs": {
|
46 |
+
":type:": "<class 'collections.OrderedDict'>",
|
47 |
+
":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAzxDXPT2Xez1qLkE+hMy7PS60qTzwV6c7al8JPjz5yL2BpFs9wnkZvvgj0j2pHMU9lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==",
|
48 |
+
"achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]",
|
49 |
+
"desired_goal": "[[ 0.10501253 0.06142353 0.18865362]\n [ 0.09169868 0.0207158 0.00510692]\n [ 0.13415304 -0.09813163 0.05362368]\n [-0.14987853 0.10260767 0.09624607]]",
|
50 |
+
"observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"
|
51 |
+
},
|
52 |
+
"_episode_num": 0,
|
53 |
+
"use_sde": false,
|
54 |
+
"sde_sample_freq": -1,
|
55 |
+
"_current_progress_remaining": 0.0,
|
56 |
+
"_stats_window_size": 100,
|
57 |
+
"ep_info_buffer": {
|
58 |
+
":type:": "<class 'collections.deque'>",
|
59 |
+
":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI9YQlHlDWB8CUhpRSlIwBbJRLMowBdJRHQKTktDG96C11fZQoaAZoCWgPQwhJLv8h/fYBwJSGlFKUaBVLMmgWR0Ck5HuW0JF9dX2UKGgGaAloD0MIElDhCFJp+r+UhpRSlGgVSzJoFkdApORBqubI93V9lChoBmgJaA9DCOlJmdTQBvS/lIaUUpRoFUsyaBZHQKTkBrqMWGh1fZQoaAZoCWgPQwgurYbEPVb6v5SGlFKUaBVLMmgWR0Ck5iRrrPdEdX2UKGgGaAloD0MICme3lslwAMCUhpRSlGgVSzJoFkdApOXsSM98qnV9lChoBmgJaA9DCCfdlsgFZ/i/lIaUUpRoFUsyaBZHQKTlsj9n9Nx1fZQoaAZoCWgPQwgkJT0Mrc4DwJSGlFKUaBVLMmgWR0Ck5Xc8TzundX2UKGgGaAloD0MIe0563/ga+7+UhpRSlGgVSzJoFkdApOejmp2lmHV9lChoBmgJaA9DCMx/SL99Hfu/lIaUUpRoFUsyaBZHQKTna2VE/jd1fZQoaAZoCWgPQwgqAwe0dMX0v5SGlFKUaBVLMmgWR0Ck5zFTm4iHdX2UKGgGaAloD0MIL28O12rP/b+UhpRSlGgVSzJoFkdApOb2Sr5qM3V9lChoBmgJaA9DCEVmLnB5rPa/lIaUUpRoFUsyaBZHQKTpGMxXXAd1fZQoaAZoCWgPQwhSms3jMBj3v5SGlFKUaBVLMmgWR0Ck6OBPbfxddX2UKGgGaAloD0MItAOuK2YkAMCUhpRSlGgVSzJoFkdApOimdXko4XV9lChoBmgJaA9DCN9uSQ7YFfi/lIaUUpRoFUsyaBZHQKToa4/eLvV1fZQoaAZoCWgPQwi31awzvg8CwJSGlFKUaBVLMmgWR0Ck6pMmfGuLdX2UKGgGaAloD0MIw2UVNgPc87+UhpRSlGgVSzJoFkdApOpbT8YQ8XV9lChoBmgJaA9DCKLSiJl9nv+/lIaUUpRoFUsyaBZHQKTqIT7EYO51fZQoaAZoCWgPQwih2XVvRaL6v5SGlFKUaBVLMmgWR0Ck6ebONYKZdX2UKGgGaAloD0MIv3yyYri6+r+UhpRSlGgVSzJoFkdApOwONxVAA3V9lChoBmgJaA9DCLoSgeofxADAlIaUUpRoFUsyaBZHQKTr1ezlcQl1fZQoaAZoCWgPQwiFKF/QQgL6v5SGlFKUaBVLMmgWR0Ck65uTRplCdX2UKGgGaAloD0MIdvpBXaRQAsCUhpRSlGgVSzJoFkdApOtgPGyX2XV9lChoBmgJaA9DCFRTknU4GgDAlIaUUpRoFUsyaBZHQKTs8eRPoFF1fZQoaAZoCWgPQwg6H54lyMgEwJSGlFKUaBVLMmgWR0Ck7LiuuA7QdX2UKGgGaAloD0MIyZOkayYfAMCUhpRSlGgVSzJoFkdApOx93bEgn3V9lChoBmgJaA9DCPVMLzGWiQjAlIaUUpRoFUsyaBZHQKTsQi5d4V11fZQoaAZoCWgPQwholZnS+hvzv5SGlFKUaBVLMmgWR0Ck7dErwvxpdX2UKGgGaAloD0MICDvFqkGY/r+UhpRSlGgVSzJoFkdApO2YBeXzDnV9lChoBmgJaA9DCEAVN24xP/2/lIaUUpRoFUsyaBZHQKTtXaFmFrV1fZQoaAZoCWgPQwgAjj17LpP/v5SGlFKUaBVLMmgWR0Ck7SIx59mZdX2UKGgGaAloD0MIETenkgEg+b+UhpRSlGgVSzJoFkdApO6rV2A5JnV9lChoBmgJaA9DCLVOXI5XoAPAlIaUUpRoFUsyaBZHQKTuciKR+0B1fZQoaAZoCWgPQwj3V4/7VmsDwJSGlFKUaBVLMmgWR0Ck7jdGiHqNdX2UKGgGaAloD0MIH5+Qnbfx9L+UhpRSlGgVSzJoFkdApO37f+CK8HV9lChoBmgJaA9DCFIQPL69a/K/lIaUUpRoFUsyaBZHQKTvhksBhhJ1fZQoaAZoCWgPQwgRct7/xwn8v5SGlFKUaBVLMmgWR0Ck700fxMFmdX2UKGgGaAloD0MIW88Qjln29r+UhpRSlGgVSzJoFkdApO8SZKFqSHV9lChoBmgJaA9DCMFUM2sp4Pe/lIaUUpRoFUsyaBZHQKTu1sVLzwt1fZQoaAZoCWgPQwhP6svSTk3zv5SGlFKUaBVLMmgWR0Ck8F1Ed/8VdX2UKGgGaAloD0MI6gWf5uRlAsCUhpRSlGgVSzJoFkdApPAkE3bVSXV9lChoBmgJaA9DCIC6gQLvpPW/lIaUUpRoFUsyaBZHQKTv6TpPhyd1fZQoaAZoCWgPQwht4Xmp2Fj0v5SGlFKUaBVLMmgWR0Ck762BBiTddX2UKGgGaAloD0MIgXfy6bEt97+UhpRSlGgVSzJoFkdApPE0rkKeCnV9lChoBmgJaA9DCAMK9fQRuPK/lIaUUpRoFUsyaBZHQKTw+2Yv38J1fZQoaAZoCWgPQwgNNJ9zt6v+v5SGlFKUaBVLMmgWR0Ck8MDM3ZPEdX2UKGgGaAloD0MIqKePwB++9L+UhpRSlGgVSzJoFkdApPCFQQ+UyHV9lChoBmgJaA9DCOP+I9OhE/y/lIaUUpRoFUsyaBZHQKTyHKvFFUh1fZQoaAZoCWgPQwhIGXEBaNQBwJSGlFKUaBVLMmgWR0Ck8eOX/o7ndX2UKGgGaAloD0MImnyzzY2p97+UhpRSlGgVSzJoFkdApPGovUSZjXV9lChoBmgJaA9DCOvJ/KNvUvS/lIaUUpRoFUsyaBZHQKTxbSBshxJ1fZQoaAZoCWgPQwiWy0bn/BTtv5SGlFKUaBVLMmgWR0Ck8vRQ79ycdX2UKGgGaAloD0MIsoUgByVMAMCUhpRSlGgVSzJoFkdApPK7HbRF7XV9lChoBmgJaA9DCFH1K50Pj/a/lIaUUpRoFUsyaBZHQKTygETxoZh1fZQoaAZoCWgPQwgxXvOqzqrxv5SGlFKUaBVLMmgWR0Ck8kSeRPoFdX2UKGgGaAloD0MICRhd3hwu/r+UhpRSlGgVSzJoFkdApPPOb3Gn43V9lChoBmgJaA9DCCFWf4RhAPm/lIaUUpRoFUsyaBZHQKTzlSjQAuJ1fZQoaAZoCWgPQwiCcXDpmLP3v5SGlFKUaBVLMmgWR0Ck81pHy3CsdX2UKGgGaAloD0MIvvp46Lub/r+UhpRSlGgVSzJoFkdApPMeozeoDXV9lChoBmgJaA9DCClC6nb2lf6/lIaUUpRoFUsyaBZHQKT0qyGi5/d1fZQoaAZoCWgPQwhDIJc48oD2v5SGlFKUaBVLMmgWR0Ck9HISL61tdX2UKGgGaAloD0MIIo51cRtN/L+UhpRSlGgVSzJoFkdApPQ3VI7NjnV9lChoBmgJaA9DCAlRvqCFRPa/lIaUUpRoFUsyaBZHQKTz+5q/M4d1fZQoaAZoCWgPQwgracU3FJ4EwJSGlFKUaBVLMmgWR0Ck9YnDaXa8dX2UKGgGaAloD0MIM1AZ/z5j+b+UhpRSlGgVSzJoFkdApPVRV+7UX3V9lChoBmgJaA9DCIif/x68tgDAlIaUUpRoFUsyaBZHQKT1F3bEgnt1fZQoaAZoCWgPQwiSy39Ivx0AwJSGlFKUaBVLMmgWR0Ck9NyydFvydX2UKGgGaAloD0MIm1q21hfJ9r+UhpRSlGgVSzJoFkdApPZk3VCoj3V9lChoBmgJaA9DCOpCrP4IQ/6/lIaUUpRoFUsyaBZHQKT2K8scyWR1fZQoaAZoCWgPQwgXRQ98DFb7v5SGlFKUaBVLMmgWR0Ck9fDnvDxcdX2UKGgGaAloD0MI7Ggc6ncBAsCUhpRSlGgVSzJoFkdApPW1L6DXe3V9lChoBmgJaA9DCJW7z/HR4vy/lIaUUpRoFUsyaBZHQKT3NeEZiux1fZQoaAZoCWgPQwh5rBkZ5K7+v5SGlFKUaBVLMmgWR0Ck9vy6+WWydX2UKGgGaAloD0MIn6pCA7EsA8CUhpRSlGgVSzJoFkdApPbB5s0pE3V9lChoBmgJaA9DCHCZ02Uxcfa/lIaUUpRoFUsyaBZHQKT2hid8Rcx1fZQoaAZoCWgPQwi+h0uOO2UBwJSGlFKUaBVLMmgWR0Ck+AzIV/MGdX2UKGgGaAloD0MIiiE5mbhV9r+UhpRSlGgVSzJoFkdApPfTiIcin3V9lChoBmgJaA9DCFn5ZTBG5AHAlIaUUpRoFUsyaBZHQKT3mJsO5J91fZQoaAZoCWgPQwhuGXCWkuX3v5SGlFKUaBVLMmgWR0Ck91z5oGpudX2UKGgGaAloD0MIICqNmNkn/L+UhpRSlGgVSzJoFkdApPjnB+F10XV9lChoBmgJaA9DCLOZQ1ILBQDAlIaUUpRoFUsyaBZHQKT4reO4oZ11fZQoaAZoCWgPQwil942vPXP1v5SGlFKUaBVLMmgWR0Ck+HMJpnHvdX2UKGgGaAloD0MIqinJOhyd87+UhpRSlGgVSzJoFkdApPg3dsSCe3V9lChoBmgJaA9DCBIVqpuLP/+/lIaUUpRoFUsyaBZHQKT5wx5cC5p1fZQoaAZoCWgPQwhw0jQomsf8v5SGlFKUaBVLMmgWR0Ck+Ynt4RmLdX2UKGgGaAloD0MIsW68OzL2A8CUhpRSlGgVSzJoFkdApPlPJPqLTHV9lChoBmgJaA9DCKzGEtbGWALAlIaUUpRoFUsyaBZHQKT5E3Kji4t1fZQoaAZoCWgPQwhRhNTt7Ov7v5SGlFKUaBVLMmgWR0Ck+pvhIe5ndX2UKGgGaAloD0MIdhcoKbBAAcCUhpRSlGgVSzJoFkdApPpi/RE4N3V9lChoBmgJaA9DCPZAKzBk9f6/lIaUUpRoFUsyaBZHQKT6KBI4EOl1fZQoaAZoCWgPQwga+FEN+/3/v5SGlFKUaBVLMmgWR0Ck+exbSqlxdX2UKGgGaAloD0MILQYP07459b+UhpRSlGgVSzJoFkdApPtydFvyb3V9lChoBmgJaA9DCInt7gG67/2/lIaUUpRoFUsyaBZHQKT7OWHk92Z1fZQoaAZoCWgPQwgoucMmMrP/v5SGlFKUaBVLMmgWR0Ck+v6DGtITdX2UKGgGaAloD0MIjswjfzBw/r+UhpRSlGgVSzJoFkdApPrCyD7Ik3V9lChoBmgJaA9DCLZoAdpWswbAlIaUUpRoFUsyaBZHQKT8SggX/HZ1fZQoaAZoCWgPQwgaFqOutTcAwJSGlFKUaBVLMmgWR0Ck/BDriVB2dX2UKGgGaAloD0MIBCDu6lXk/b+UhpRSlGgVSzJoFkdApPvWEsasIXV9lChoBmgJaA9DCImV0cjnlf6/lIaUUpRoFUsyaBZHQKT7mrn1WbR1ZS4="
|
60 |
+
},
|
61 |
+
"ep_success_buffer": {
|
62 |
+
":type:": "<class 'collections.deque'>",
|
63 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
64 |
+
},
|
65 |
+
"_n_updates": 50000,
|
66 |
+
"n_steps": 5,
|
67 |
+
"gamma": 0.99,
|
68 |
+
"gae_lambda": 1.0,
|
69 |
+
"ent_coef": 0.0,
|
70 |
+
"vf_coef": 0.5,
|
71 |
+
"max_grad_norm": 0.5,
|
72 |
+
"normalize_advantage": false,
|
73 |
+
"observation_space": {
|
74 |
+
":type:": "<class 'gym.spaces.dict.Dict'>",
|
75 |
+
":serialized:": "gAWVWAMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZSMAUOUdJRSlIwEaGlnaJRoHiiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBZLA4WUaCF0lFKUjA1ib3VuZGVkX2JlbG93lGgeKJYDAAAAAAAAAAEBAZRoE4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIXSUUpSMDWJvdW5kZWRfYWJvdmWUaB4olgMAAAAAAAAAAQEBlGgtSwOFlGghdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBZoGUsDhZRoG2geKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZRoIXSUUpRoJGgeKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFksDhZRoIXSUUpRoKWgeKJYDAAAAAAAAAAEBAZRoLUsDhZRoIXSUUpRoM2geKJYDAAAAAAAAAAEBAZRoLUsDhZRoIXSUUpRoOE51YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgWaBlLBoWUaBtoHiiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBZLBoWUaCF0lFKUaCRoHiiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBZLBoWUaCF0lFKUaCloHiiWBgAAAAAAAAABAQEBAQGUaC1LBoWUaCF0lFKUaDNoHiiWBgAAAAAAAAABAQEBAQGUaC1LBoWUaCF0lFKUaDhOdWJ1aBlOaBBOaDhOdWIu",
|
76 |
+
"spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])",
|
77 |
+
"_shape": null,
|
78 |
+
"dtype": null,
|
79 |
+
"_np_random": null
|
80 |
+
},
|
81 |
+
"action_space": {
|
82 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
83 |
+
":serialized:": "gAWVcwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaAtLA4WUjAFDlHSUUpSMBGhpZ2iUaBMolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgLSwOFlGgWdJRSlIwNYm91bmRlZF9iZWxvd5RoEyiWAwAAAAAAAAABAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYDAAAAAAAAAAEBAZRoIksDhZRoFnSUUpSMCl9ucF9yYW5kb22UTnViLg==",
|
84 |
+
"dtype": "float32",
|
85 |
+
"_shape": [
|
86 |
+
3
|
87 |
+
],
|
88 |
+
"low": "[-1. -1. -1.]",
|
89 |
+
"high": "[1. 1. 1.]",
|
90 |
+
"bounded_below": "[ True True True]",
|
91 |
+
"bounded_above": "[ True True True]",
|
92 |
+
"_np_random": null
|
93 |
+
},
|
94 |
+
"n_envs": 4
|
95 |
+
}
|
a2c-PandaReachDense-v2/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:060454a7bc127959e485be2fd9e32321493194b7037be7fe412ac98d0bf5a404
|
3 |
+
size 44734
|
a2c-PandaReachDense-v2/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:8ea982697dc32b0638dd9ef4e3b7180869c7506e603676cee43741c1f87801b0
|
3 |
+
size 46014
|
a2c-PandaReachDense-v2/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
a2c-PandaReachDense-v2/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
- OS: Linux-5.15.107+-x86_64-with-glibc2.31 # 1 SMP Sat Apr 29 09:15:28 UTC 2023
|
2 |
+
- Python: 3.10.12
|
3 |
+
- Stable-Baselines3: 1.8.0
|
4 |
+
- PyTorch: 2.0.1+cu118
|
5 |
+
- GPU Enabled: True
|
6 |
+
- Numpy: 1.22.4
|
7 |
+
- Gym: 0.21.0
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7f798ba2c160>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f798ba230c0>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "num_timesteps": 1000000, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1686735154871187065, "learning_rate": 0.0007, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuCQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9G8AaNuLrHhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAqeHRPirsUL0NdAY/qeHRPirsUL0NdAY/qeHRPirsUL0NdAY/qeHRPirsUL0NdAY/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAGNd6P/L+ZT8bh3y+AlrgPYYCvz1kHYC/dj+av1ZRlT4aB7g/MzlwPv3fZT8c8d++lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAACp4dE+KuxQvQ10Bj+MqOW7/23JOVAcoLyp4dE+KuxQvQ10Bj+MqOW7/23JOVAcoLyp4dE+KuxQvQ10Bj+MqOW7/23JOVAcoLyp4dE+KuxQvQ10Bj+MqOW7/23JOVAcoLyUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 0.40992478 -0.05100647 0.5252083 ]\n [ 0.40992478 -0.05100647 0.5252083 ]\n [ 0.40992478 -0.05100647 0.5252083 ]\n [ 0.40992478 -0.05100647 0.5252083 ]]", "desired_goal": "[[ 0.97984457 0.8984214 -0.24660914]\n [ 0.10954668 0.09326653 -1.0008969 ]\n [-1.2050617 0.29163617 1.4377167 ]\n [ 0.2345932 0.89794904 -0.4373864 ]]", "observation": "[[ 4.0992478e-01 -5.1006474e-02 5.2520829e-01 -7.0086177e-03\n 3.8419661e-04 -1.9544750e-02]\n [ 4.0992478e-01 -5.1006474e-02 5.2520829e-01 -7.0086177e-03\n 3.8419661e-04 -1.9544750e-02]\n [ 4.0992478e-01 -5.1006474e-02 5.2520829e-01 -7.0086177e-03\n 3.8419661e-04 -1.9544750e-02]\n [ 4.0992478e-01 -5.1006474e-02 5.2520829e-01 -7.0086177e-03\n 3.8419661e-04 -1.9544750e-02]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAzxDXPT2Xez1qLkE+hMy7PS60qTzwV6c7al8JPjz5yL2BpFs9wnkZvvgj0j2pHMU9lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]", "desired_goal": "[[ 0.10501253 0.06142353 0.18865362]\n [ 0.09169868 0.0207158 0.00510692]\n [ 0.13415304 -0.09813163 0.05362368]\n [-0.14987853 0.10260767 0.09624607]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI9YQlHlDWB8CUhpRSlIwBbJRLMowBdJRHQKTktDG96C11fZQoaAZoCWgPQwhJLv8h/fYBwJSGlFKUaBVLMmgWR0Ck5HuW0JF9dX2UKGgGaAloD0MIElDhCFJp+r+UhpRSlGgVSzJoFkdApORBqubI93V9lChoBmgJaA9DCOlJmdTQBvS/lIaUUpRoFUsyaBZHQKTkBrqMWGh1fZQoaAZoCWgPQwgurYbEPVb6v5SGlFKUaBVLMmgWR0Ck5iRrrPdEdX2UKGgGaAloD0MICme3lslwAMCUhpRSlGgVSzJoFkdApOXsSM98qnV9lChoBmgJaA9DCCfdlsgFZ/i/lIaUUpRoFUsyaBZHQKTlsj9n9Nx1fZQoaAZoCWgPQwgkJT0Mrc4DwJSGlFKUaBVLMmgWR0Ck5Xc8TzundX2UKGgGaAloD0MIe0563/ga+7+UhpRSlGgVSzJoFkdApOejmp2lmHV9lChoBmgJaA9DCMx/SL99Hfu/lIaUUpRoFUsyaBZHQKTna2VE/jd1fZQoaAZoCWgPQwgqAwe0dMX0v5SGlFKUaBVLMmgWR0Ck5zFTm4iHdX2UKGgGaAloD0MIL28O12rP/b+UhpRSlGgVSzJoFkdApOb2Sr5qM3V9lChoBmgJaA9DCEVmLnB5rPa/lIaUUpRoFUsyaBZHQKTpGMxXXAd1fZQoaAZoCWgPQwhSms3jMBj3v5SGlFKUaBVLMmgWR0Ck6OBPbfxddX2UKGgGaAloD0MItAOuK2YkAMCUhpRSlGgVSzJoFkdApOimdXko4XV9lChoBmgJaA9DCN9uSQ7YFfi/lIaUUpRoFUsyaBZHQKToa4/eLvV1fZQoaAZoCWgPQwi31awzvg8CwJSGlFKUaBVLMmgWR0Ck6pMmfGuLdX2UKGgGaAloD0MIw2UVNgPc87+UhpRSlGgVSzJoFkdApOpbT8YQ8XV9lChoBmgJaA9DCKLSiJl9nv+/lIaUUpRoFUsyaBZHQKTqIT7EYO51fZQoaAZoCWgPQwih2XVvRaL6v5SGlFKUaBVLMmgWR0Ck6ebONYKZdX2UKGgGaAloD0MIv3yyYri6+r+UhpRSlGgVSzJoFkdApOwONxVAA3V9lChoBmgJaA9DCLoSgeofxADAlIaUUpRoFUsyaBZHQKTr1ezlcQl1fZQoaAZoCWgPQwiFKF/QQgL6v5SGlFKUaBVLMmgWR0Ck65uTRplCdX2UKGgGaAloD0MIdvpBXaRQAsCUhpRSlGgVSzJoFkdApOtgPGyX2XV9lChoBmgJaA9DCFRTknU4GgDAlIaUUpRoFUsyaBZHQKTs8eRPoFF1fZQoaAZoCWgPQwg6H54lyMgEwJSGlFKUaBVLMmgWR0Ck7LiuuA7QdX2UKGgGaAloD0MIyZOkayYfAMCUhpRSlGgVSzJoFkdApOx93bEgn3V9lChoBmgJaA9DCPVMLzGWiQjAlIaUUpRoFUsyaBZHQKTsQi5d4V11fZQoaAZoCWgPQwholZnS+hvzv5SGlFKUaBVLMmgWR0Ck7dErwvxpdX2UKGgGaAloD0MICDvFqkGY/r+UhpRSlGgVSzJoFkdApO2YBeXzDnV9lChoBmgJaA9DCEAVN24xP/2/lIaUUpRoFUsyaBZHQKTtXaFmFrV1fZQoaAZoCWgPQwgAjj17LpP/v5SGlFKUaBVLMmgWR0Ck7SIx59mZdX2UKGgGaAloD0MIETenkgEg+b+UhpRSlGgVSzJoFkdApO6rV2A5JnV9lChoBmgJaA9DCLVOXI5XoAPAlIaUUpRoFUsyaBZHQKTuciKR+0B1fZQoaAZoCWgPQwj3V4/7VmsDwJSGlFKUaBVLMmgWR0Ck7jdGiHqNdX2UKGgGaAloD0MIH5+Qnbfx9L+UhpRSlGgVSzJoFkdApO37f+CK8HV9lChoBmgJaA9DCFIQPL69a/K/lIaUUpRoFUsyaBZHQKTvhksBhhJ1fZQoaAZoCWgPQwgRct7/xwn8v5SGlFKUaBVLMmgWR0Ck700fxMFmdX2UKGgGaAloD0MIW88Qjln29r+UhpRSlGgVSzJoFkdApO8SZKFqSHV9lChoBmgJaA9DCMFUM2sp4Pe/lIaUUpRoFUsyaBZHQKTu1sVLzwt1fZQoaAZoCWgPQwhP6svSTk3zv5SGlFKUaBVLMmgWR0Ck8F1Ed/8VdX2UKGgGaAloD0MI6gWf5uRlAsCUhpRSlGgVSzJoFkdApPAkE3bVSXV9lChoBmgJaA9DCIC6gQLvpPW/lIaUUpRoFUsyaBZHQKTv6TpPhyd1fZQoaAZoCWgPQwht4Xmp2Fj0v5SGlFKUaBVLMmgWR0Ck762BBiTddX2UKGgGaAloD0MIgXfy6bEt97+UhpRSlGgVSzJoFkdApPE0rkKeCnV9lChoBmgJaA9DCAMK9fQRuPK/lIaUUpRoFUsyaBZHQKTw+2Yv38J1fZQoaAZoCWgPQwgNNJ9zt6v+v5SGlFKUaBVLMmgWR0Ck8MDM3ZPEdX2UKGgGaAloD0MIqKePwB++9L+UhpRSlGgVSzJoFkdApPCFQQ+UyHV9lChoBmgJaA9DCOP+I9OhE/y/lIaUUpRoFUsyaBZHQKTyHKvFFUh1fZQoaAZoCWgPQwhIGXEBaNQBwJSGlFKUaBVLMmgWR0Ck8eOX/o7ndX2UKGgGaAloD0MImnyzzY2p97+UhpRSlGgVSzJoFkdApPGovUSZjXV9lChoBmgJaA9DCOvJ/KNvUvS/lIaUUpRoFUsyaBZHQKTxbSBshxJ1fZQoaAZoCWgPQwiWy0bn/BTtv5SGlFKUaBVLMmgWR0Ck8vRQ79ycdX2UKGgGaAloD0MIsoUgByVMAMCUhpRSlGgVSzJoFkdApPK7HbRF7XV9lChoBmgJaA9DCFH1K50Pj/a/lIaUUpRoFUsyaBZHQKTygETxoZh1fZQoaAZoCWgPQwgxXvOqzqrxv5SGlFKUaBVLMmgWR0Ck8kSeRPoFdX2UKGgGaAloD0MICRhd3hwu/r+UhpRSlGgVSzJoFkdApPPOb3Gn43V9lChoBmgJaA9DCCFWf4RhAPm/lIaUUpRoFUsyaBZHQKTzlSjQAuJ1fZQoaAZoCWgPQwiCcXDpmLP3v5SGlFKUaBVLMmgWR0Ck81pHy3CsdX2UKGgGaAloD0MIvvp46Lub/r+UhpRSlGgVSzJoFkdApPMeozeoDXV9lChoBmgJaA9DCClC6nb2lf6/lIaUUpRoFUsyaBZHQKT0qyGi5/d1fZQoaAZoCWgPQwhDIJc48oD2v5SGlFKUaBVLMmgWR0Ck9HISL61tdX2UKGgGaAloD0MIIo51cRtN/L+UhpRSlGgVSzJoFkdApPQ3VI7NjnV9lChoBmgJaA9DCAlRvqCFRPa/lIaUUpRoFUsyaBZHQKTz+5q/M4d1fZQoaAZoCWgPQwgracU3FJ4EwJSGlFKUaBVLMmgWR0Ck9YnDaXa8dX2UKGgGaAloD0MIM1AZ/z5j+b+UhpRSlGgVSzJoFkdApPVRV+7UX3V9lChoBmgJaA9DCIif/x68tgDAlIaUUpRoFUsyaBZHQKT1F3bEgnt1fZQoaAZoCWgPQwiSy39Ivx0AwJSGlFKUaBVLMmgWR0Ck9NyydFvydX2UKGgGaAloD0MIm1q21hfJ9r+UhpRSlGgVSzJoFkdApPZk3VCoj3V9lChoBmgJaA9DCOpCrP4IQ/6/lIaUUpRoFUsyaBZHQKT2K8scyWR1fZQoaAZoCWgPQwgXRQ98DFb7v5SGlFKUaBVLMmgWR0Ck9fDnvDxcdX2UKGgGaAloD0MI7Ggc6ncBAsCUhpRSlGgVSzJoFkdApPW1L6DXe3V9lChoBmgJaA9DCJW7z/HR4vy/lIaUUpRoFUsyaBZHQKT3NeEZiux1fZQoaAZoCWgPQwh5rBkZ5K7+v5SGlFKUaBVLMmgWR0Ck9vy6+WWydX2UKGgGaAloD0MIn6pCA7EsA8CUhpRSlGgVSzJoFkdApPbB5s0pE3V9lChoBmgJaA9DCHCZ02Uxcfa/lIaUUpRoFUsyaBZHQKT2hid8Rcx1fZQoaAZoCWgPQwi+h0uOO2UBwJSGlFKUaBVLMmgWR0Ck+AzIV/MGdX2UKGgGaAloD0MIiiE5mbhV9r+UhpRSlGgVSzJoFkdApPfTiIcin3V9lChoBmgJaA9DCFn5ZTBG5AHAlIaUUpRoFUsyaBZHQKT3mJsO5J91fZQoaAZoCWgPQwhuGXCWkuX3v5SGlFKUaBVLMmgWR0Ck91z5oGpudX2UKGgGaAloD0MIICqNmNkn/L+UhpRSlGgVSzJoFkdApPjnB+F10XV9lChoBmgJaA9DCLOZQ1ILBQDAlIaUUpRoFUsyaBZHQKT4reO4oZ11fZQoaAZoCWgPQwil942vPXP1v5SGlFKUaBVLMmgWR0Ck+HMJpnHvdX2UKGgGaAloD0MIqinJOhyd87+UhpRSlGgVSzJoFkdApPg3dsSCe3V9lChoBmgJaA9DCBIVqpuLP/+/lIaUUpRoFUsyaBZHQKT5wx5cC5p1fZQoaAZoCWgPQwhw0jQomsf8v5SGlFKUaBVLMmgWR0Ck+Ynt4RmLdX2UKGgGaAloD0MIsW68OzL2A8CUhpRSlGgVSzJoFkdApPlPJPqLTHV9lChoBmgJaA9DCKzGEtbGWALAlIaUUpRoFUsyaBZHQKT5E3Kji4t1fZQoaAZoCWgPQwhRhNTt7Ov7v5SGlFKUaBVLMmgWR0Ck+pvhIe5ndX2UKGgGaAloD0MIdhcoKbBAAcCUhpRSlGgVSzJoFkdApPpi/RE4N3V9lChoBmgJaA9DCPZAKzBk9f6/lIaUUpRoFUsyaBZHQKT6KBI4EOl1fZQoaAZoCWgPQwga+FEN+/3/v5SGlFKUaBVLMmgWR0Ck+exbSqlxdX2UKGgGaAloD0MILQYP07459b+UhpRSlGgVSzJoFkdApPtydFvyb3V9lChoBmgJaA9DCInt7gG67/2/lIaUUpRoFUsyaBZHQKT7OWHk92Z1fZQoaAZoCWgPQwgoucMmMrP/v5SGlFKUaBVLMmgWR0Ck+v6DGtITdX2UKGgGaAloD0MIjswjfzBw/r+UhpRSlGgVSzJoFkdApPrCyD7Ik3V9lChoBmgJaA9DCLZoAdpWswbAlIaUUpRoFUsyaBZHQKT8SggX/HZ1fZQoaAZoCWgPQwgaFqOutTcAwJSGlFKUaBVLMmgWR0Ck/BDriVB2dX2UKGgGaAloD0MIBCDu6lXk/b+UhpRSlGgVSzJoFkdApPvWEsasIXV9lChoBmgJaA9DCImV0cjnlf6/lIaUUpRoFUsyaBZHQKT7mrn1WbR1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 50000, "n_steps": 5, "gamma": 0.99, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "observation_space": {":type:": "<class 'gym.spaces.dict.Dict'>", ":serialized:": "gAWVWAMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZSMAUOUdJRSlIwEaGlnaJRoHiiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBZLA4WUaCF0lFKUjA1ib3VuZGVkX2JlbG93lGgeKJYDAAAAAAAAAAEBAZRoE4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIXSUUpSMDWJvdW5kZWRfYWJvdmWUaB4olgMAAAAAAAAAAQEBlGgtSwOFlGghdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBZoGUsDhZRoG2geKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZRoIXSUUpRoJGgeKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFksDhZRoIXSUUpRoKWgeKJYDAAAAAAAAAAEBAZRoLUsDhZRoIXSUUpRoM2geKJYDAAAAAAAAAAEBAZRoLUsDhZRoIXSUUpRoOE51YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgWaBlLBoWUaBtoHiiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBZLBoWUaCF0lFKUaCRoHiiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBZLBoWUaCF0lFKUaCloHiiWBgAAAAAAAAABAQEBAQGUaC1LBoWUaCF0lFKUaDNoHiiWBgAAAAAAAAABAQEBAQGUaC1LBoWUaCF0lFKUaDhOdWJ1aBlOaBBOaDhOdWIu", "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVcwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaAtLA4WUjAFDlHSUUpSMBGhpZ2iUaBMolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgLSwOFlGgWdJRSlIwNYm91bmRlZF9iZWxvd5RoEyiWAwAAAAAAAAABAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYDAAAAAAAAAAEBAZRoIksDhZRoFnSUUpSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_np_random": null}, "n_envs": 4, "system_info": {"OS": "Linux-5.15.107+-x86_64-with-glibc2.31 # 1 SMP Sat Apr 29 09:15:28 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "1.8.0", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}
|
replay.mp4
ADDED
Binary file (759 kB). View file
|
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": -1.8331210297066718, "std_reward": 0.39758192556990796, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-06-14T10:23:41.023302"}
|
vec_normalize.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:9bf8b166582723b79f03b343df5029dd279d4dbd3ab28887984eb2034f484169
|
3 |
+
size 2387
|