Whisper small Ps - ZFA
This model is a fine-tuned version of openai/whisper-small on the Common Voice 20.0 dataset. It achieves the following results on the evaluation set:
- Loss: 0.8066
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 1
- eval_batch_size: 1
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 3.0
Training results
| Training Loss | Epoch | Step | Validation Loss |
|---|---|---|---|
| 1.7874 | 0.1856 | 500 | 1.3995 |
| 1.3066 | 0.3712 | 1000 | 1.2622 |
| 1.1437 | 0.5568 | 1500 | 1.1273 |
| 1.0676 | 0.7424 | 2000 | 1.0547 |
| 1.0014 | 0.9280 | 2500 | 0.9770 |
| 0.7683 | 1.1136 | 3000 | 0.9779 |
| 0.6386 | 1.2992 | 3500 | 0.9486 |
| 0.6103 | 1.4848 | 4000 | 0.9071 |
| 0.599 | 1.6704 | 4500 | 0.8748 |
| 0.5665 | 1.8560 | 5000 | 0.8525 |
| 0.5032 | 2.0416 | 5500 | 0.8532 |
| 0.2884 | 2.2272 | 6000 | 0.8503 |
| 0.269 | 2.4128 | 6500 | 0.8316 |
| 0.2784 | 2.5984 | 7000 | 0.8137 |
| 0.236 | 2.7840 | 7500 | 0.8227 |
| 0.2543 | 2.9696 | 8000 | 0.8066 |
Framework versions
- Transformers 4.56.2
- Pytorch 2.7.0+cu126
- Datasets 4.1.1
- Tokenizers 0.22.0
- Downloads last month
- 13
Model tree for afaaaak/whisper-tiny-ps
Base model
openai/whisper-small