Remove formatting code (moved to talk_move_handler)
Browse files- handler.py +0 -119
handler.py
CHANGED
@@ -6,22 +6,6 @@ from datetime import datetime
|
|
6 |
import torch
|
7 |
import spacy
|
8 |
|
9 |
-
nlp = spacy.load("en_core_web_sm")
|
10 |
-
tokenizer = nlp.tokenizer
|
11 |
-
token_limit = 200
|
12 |
-
|
13 |
-
class Utterance(object):
|
14 |
-
|
15 |
-
def __init__(self, starttime, endtime, speaker, text,
|
16 |
-
idx, prev_utterance, prev_prev_utterance):
|
17 |
-
self.starttime = starttime
|
18 |
-
self.endtime = endtime
|
19 |
-
self.speaker = speaker
|
20 |
-
self.text = text
|
21 |
-
self.idx = idx
|
22 |
-
self.prev = prev_utterance
|
23 |
-
self.prev_prev = prev_prev_utterance
|
24 |
-
|
25 |
class EndpointHandler():
|
26 |
def __init__(self, path="."):
|
27 |
print("Loading models...")
|
@@ -30,109 +14,6 @@ class EndpointHandler():
|
|
30 |
"roberta", path, use_cuda=cuda_available
|
31 |
)
|
32 |
|
33 |
-
def utterance_to_str(self, utterance: Utterance) -> str:
|
34 |
-
# eliciting only uses text
|
35 |
-
doc = nlp(utterance.text)
|
36 |
-
if len(doc) > token_limit:
|
37 |
-
return self.handle_long_utterances(doc)
|
38 |
-
return utterance.text
|
39 |
-
|
40 |
-
def handle_long_utterances(self, doc: str) -> List[str]:
|
41 |
-
split_count = 1
|
42 |
-
total_sent = len([x for x in doc.sents])
|
43 |
-
sent_count = 0
|
44 |
-
token_count = 0
|
45 |
-
split_utterance = ''
|
46 |
-
utterances = []
|
47 |
-
for sent in doc.sents:
|
48 |
-
# add a sentence to split
|
49 |
-
split_utterance = split_utterance + ' ' + sent.text
|
50 |
-
token_count += len(sent)
|
51 |
-
sent_count +=1
|
52 |
-
if token_count >= token_limit or sent_count == total_sent:
|
53 |
-
# save utterance segment
|
54 |
-
utterances.append(split_utterance)
|
55 |
-
|
56 |
-
# restart count
|
57 |
-
split_utterance = ''
|
58 |
-
token_count = 0
|
59 |
-
split_count += 1
|
60 |
-
|
61 |
-
return utterances
|
62 |
-
|
63 |
-
|
64 |
-
def convert_time(self, time_str):
|
65 |
-
time = datetime.strptime(time_str, "%H:%M:%S.%f")
|
66 |
-
return 1000 * (3600 * time.hour + 60 * time.minute + time.second) + time.microsecond / 1000
|
67 |
-
|
68 |
-
def process_vtt_transcript(self, vttfile) -> List[Utterance]:
|
69 |
-
"""Process raw vtt file."""
|
70 |
-
|
71 |
-
utterances_list = []
|
72 |
-
text = ""
|
73 |
-
prev_speaker = None
|
74 |
-
prev_start = "00:00:00.000"
|
75 |
-
prev_end = "00:00:00.000"
|
76 |
-
idx = 0
|
77 |
-
prev_utterance = None
|
78 |
-
prev_prev_utterance = None
|
79 |
-
for caption in webvtt.read(vttfile):
|
80 |
-
|
81 |
-
# Get speaker
|
82 |
-
check_for_speaker = caption.text.split(":")
|
83 |
-
if len(check_for_speaker) > 1: # the speaker was changed or restated
|
84 |
-
speaker = check_for_speaker[0]
|
85 |
-
else:
|
86 |
-
speaker = prev_speaker
|
87 |
-
|
88 |
-
# Get utterance
|
89 |
-
new_text = check_for_speaker[1] if len(check_for_speaker) > 1 else check_for_speaker[0]
|
90 |
-
|
91 |
-
# If speaker was changed, start new batch
|
92 |
-
if (prev_speaker is not None) and (speaker != prev_speaker):
|
93 |
-
utterance = Utterance(starttime=self.convert_time(prev_start),
|
94 |
-
endtime=self.convert_time(prev_end),
|
95 |
-
speaker=prev_speaker,
|
96 |
-
text=text.strip(),
|
97 |
-
idx=idx,
|
98 |
-
prev_utterance=prev_utterance,
|
99 |
-
prev_prev_utterance=prev_prev_utterance)
|
100 |
-
|
101 |
-
utterances_list.append(utterance)
|
102 |
-
|
103 |
-
# Start new batch
|
104 |
-
prev_start = caption.start
|
105 |
-
text = ""
|
106 |
-
prev_prev_utterance = prev_utterance
|
107 |
-
prev_utterance = utterance
|
108 |
-
idx+=1
|
109 |
-
text += new_text + " "
|
110 |
-
prev_end = caption.end
|
111 |
-
prev_speaker = speaker
|
112 |
-
|
113 |
-
# Append last one
|
114 |
-
if prev_speaker is not None:
|
115 |
-
utterance = Utterance(starttime=self.convert_time(prev_start),
|
116 |
-
endtime=self.convert_time(prev_end),
|
117 |
-
speaker=prev_speaker,
|
118 |
-
text=text.strip(),
|
119 |
-
idx=idx,
|
120 |
-
prev_utterance=prev_utterance,
|
121 |
-
prev_prev_utterance=prev_prev_utterance)
|
122 |
-
utterances_list.append(utterance)
|
123 |
-
|
124 |
-
return utterances_list
|
125 |
-
|
126 |
-
|
127 |
def __call__(self, data_file: str) -> List[Dict[str, Any]]:
|
128 |
''' data_file is a str pointing to filename of type .vtt '''
|
129 |
return []
|
130 |
-
# utterances_list = []
|
131 |
-
# for utterance in self.process_vtt_transcript(data_file):
|
132 |
-
#TODO: filter out to only have SL utterances
|
133 |
-
# utterances_list.append(self.utterance_to_str(utterance))
|
134 |
-
|
135 |
-
# predictions, raw_outputs = self.model.predict(utterances_list)
|
136 |
-
|
137 |
-
# return predictions
|
138 |
-
|
|
|
6 |
import torch
|
7 |
import spacy
|
8 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
9 |
class EndpointHandler():
|
10 |
def __init__(self, path="."):
|
11 |
print("Loading models...")
|
|
|
14 |
"roberta", path, use_cuda=cuda_available
|
15 |
)
|
16 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
17 |
def __call__(self, data_file: str) -> List[Dict[str, Any]]:
|
18 |
''' data_file is a str pointing to filename of type .vtt '''
|
19 |
return []
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|