medicap / modelling_medicap.py
anicolson's picture
Upload folder using huggingface_hub
4aa737e
import os
from typing import Any, Optional, Tuple, Union
import torch
import transformers
from torch.nn import CrossEntropyLoss
from transformers import PreTrainedTokenizerFast, VisionEncoderDecoderModel
from transformers.configuration_utils import PretrainedConfig
from transformers.modeling_outputs import BaseModelOutput, Seq2SeqLMOutput
from transformers.modeling_utils import PreTrainedModel
from transformers.models.vision_encoder_decoder.configuration_vision_encoder_decoder import \
VisionEncoderDecoderConfig
from transformers.utils import logging
logger = logging.get_logger(__name__)
class CvtWithProjectionHeadConfig(transformers.CvtConfig):
def __init__(self, projection_size: int = None, **kwargs: Any) -> None:
super().__init__(**kwargs)
self.projection_size = projection_size
class ModelOutputWithProjectionEmbedding(transformers.modeling_outputs.ModelOutput):
last_hidden_state: torch.FloatTensor
class CvtProjectionHead(torch.nn.Module):
def __init__(self, config) -> None:
super().__init__()
# https://github.com/huggingface/transformers/blob/68287689f2f0d8b7063c400230b3766987abf18d/src/transformers/models/cvt/modeling_cvt.py#L657
self.layer_norm = torch.nn.LayerNorm(config.embed_dim[-1], eps=config.layer_norm_eps)
# No bias as following layer normalisation with bias:
self.projection = torch.nn.Linear(config.embed_dim[-1], config.projection_size, bias=False)
def forward(self, x: torch.Tensor) -> torch.Tensor:
x = self.layer_norm(x)
x = self.projection(x)
return x
class CvtWithProjectionHead(transformers.CvtPreTrainedModel):
def __init__(self, config):
super().__init__(config)
self.cvt = transformers.CvtModel(config, add_pooling_layer=False)
self.projection_head = CvtProjectionHead(config)
# Initialize weights and apply final processing:
self.post_init()
def forward(
self,
pixel_values: Optional[torch.Tensor] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, ModelOutputWithProjectionEmbedding]:
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
outputs = self.cvt(
pixel_values,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
projection = self.projection_head(
torch.permute(torch.flatten(outputs.last_hidden_state, 2), [0, 2, 1]),
)
if not return_dict:
return projection
return ModelOutputWithProjectionEmbedding(
last_hidden_state=projection,
)
class MedICapEncoderDecoderModel(VisionEncoderDecoderModel):
config_class = VisionEncoderDecoderConfig
base_model_prefix = "vision_encoder_decoder"
main_input_name = "pixel_values"
supports_gradient_checkpointing = True
def __init__(
self,
config: Optional[PretrainedConfig] = None,
encoder: Optional[PreTrainedModel] = None,
decoder: Optional[PreTrainedModel] = None,
):
if decoder:
assert not decoder.config.add_cross_attention, '"add_cross_attention" must be False for the given decoder'
assert decoder.config.is_decoder, '"is_decoder" must be True for the given decoder'
if config is None and (encoder is None or decoder is None):
raise ValueError("Either a configuration or an encoder and a decoder has to be provided.")
if config is None:
config = VisionEncoderDecoderConfig.from_encoder_decoder_configs(encoder.config, decoder.config)
else:
if not isinstance(config, self.config_class):
raise ValueError(f"Config: {config} has to be of type {self.config_class}")
config.tie_word_embeddings = False
# initialize with config
PreTrainedModel.__init__(self, config)
# Encoder:
if encoder is None:
encoder = CvtWithProjectionHead(config=config.encoder)
# Decoder:
if decoder is None:
decoder = transformers.GPT2LMHeadModel(config=config.decoder)
self.encoder = encoder
self.decoder = decoder
if self.encoder.config.to_dict() != self.config.encoder.to_dict():
logger.warning(
f"Config of the encoder: {self.encoder.__class__} is overwritten by shared encoder config:"
f" {self.config.encoder}"
)
if self.decoder.config.to_dict() != self.config.decoder.to_dict():
logger.warning(
f"Config of the decoder: {self.decoder.__class__} is overwritten by shared decoder config:"
f" {self.config.decoder}"
)
self.encoder.config = self.config.encoder
self.decoder.config = self.config.decoder
def forward(
self,
pixel_values: Optional[torch.FloatTensor] = None,
decoder_input_ids: Optional[torch.LongTensor] = None,
decoder_attention_mask: Optional[torch.BoolTensor] = None,
encoder_outputs: Optional[Tuple[torch.FloatTensor]] = None,
past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
decoder_inputs_embeds: Optional[torch.FloatTensor] = None,
labels: Optional[torch.LongTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
**kwargs,
) -> Union[Tuple[torch.FloatTensor], Seq2SeqLMOutput]:
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
kwargs_encoder = {argument: value for argument, value in kwargs.items() if not argument.startswith("decoder_")}
kwargs_decoder = {
argument[len("decoder_") :]: value for argument, value in kwargs.items() if argument.startswith("decoder_")
}
if decoder_inputs_embeds is None:
decoder_inputs_embeds = self.decoder.transformer.wte(decoder_input_ids)
if encoder_outputs is None:
if pixel_values is None:
raise ValueError("You have to specify pixel_values")
encoder_outputs = self.encoder(
pixel_values,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
**kwargs_encoder,
) # CvT does not support output_attentions.
decoder_inputs_embeds = torch.cat([encoder_outputs[0], decoder_inputs_embeds], dim=1)
if decoder_attention_mask is not None:
decoder_attention_mask = torch.cat(
[
torch.ones(encoder_outputs[0].shape[:-1], dtype=decoder_attention_mask.dtype, device=self.device),
decoder_attention_mask
],
dim=1,
)
decoder_outputs = self.decoder(
attention_mask=decoder_attention_mask,
inputs_embeds=decoder_inputs_embeds,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
use_cache=use_cache,
past_key_values=past_key_values,
return_dict=return_dict,
**kwargs_decoder,
)
# Loss:
loss = None
if labels is not None:
logits = decoder_outputs.logits if return_dict else decoder_outputs[0]
loss_fct = CrossEntropyLoss()
loss = loss_fct(logits.reshape(-1, self.decoder.config.vocab_size), labels.reshape(-1))
if not return_dict:
if loss is not None:
return (loss,) + decoder_outputs + encoder_outputs
else:
return decoder_outputs + encoder_outputs
return Seq2SeqLMOutput(
loss=loss,
logits=decoder_outputs.logits,
past_key_values=decoder_outputs.past_key_values,
decoder_hidden_states=decoder_outputs.hidden_states,
decoder_attentions=decoder_outputs.attentions,
cross_attentions=decoder_outputs.cross_attentions,
encoder_last_hidden_state=encoder_outputs.last_hidden_state,
)
def prepare_inputs_for_generation(
self,
input_ids,
past_key_values=None,
attention_mask=None,
use_cache=None,
encoder_outputs=None,
**kwargs,
):
"""
Modification of:
https://github.com/huggingface/transformers/blob/main/src/transformers/models/encoder_decoder/modeling_encoder_decoder.py#L660
This can help with managing input_embeds and input_ids:
https://github.com/huggingface/transformers/issues/6535
"""
input_dict = {'use_cache': use_cache, 'encoder_outputs': encoder_outputs, 'attention_mask': attention_mask}
if past_key_values is None:
decoder_inputs = self.decoder.prepare_inputs_for_generation(
input_ids, inputs_embeds=encoder_outputs[0], past_key_values=past_key_values,
)
input_dict['decoder_inputs_embeds'] = decoder_inputs['inputs_embeds']
else:
decoder_inputs = self.decoder.prepare_inputs_for_generation(
input_ids, past_key_values=past_key_values,
)
input_dict['decoder_input_ids'] = decoder_inputs['input_ids']
input_dict['past_key_values'] = decoder_inputs['past_key_values']
input_dict['decoder_attention_mask'] = decoder_inputs['attention_mask'] if 'attention_mask' in decoder_inputs else None
return input_dict
def tokenize_captions_teacher_forcing(
self,
captions: str,
tokenizer: PreTrainedTokenizerFast,
max_len: int,
):
"""
Tokenizes the captions and creates the inputs and targets for teacher forcing.
Argument/s:
captions - the captions.
tokenizer - Hugging Face tokenizer.
max_len - maximum number of tokens.
Returns:
batch_dict = {
decoder_input_ids - the token identifiers for the input of the decoder.
decoder_attention_mask - the attention mask for the decoder_input_ids.
decoder_token_type_ids - the token type identifiers for the decoder_input_ids.
label_ids - the label token identifiers for the decoder.
}
"""
# Prepare the caption for the tokenizer by placing the special tokens:
caption = [f'{tokenizer.bos_token}{i}{tokenizer.eos_token}' for i in captions]
# Tokenize the caption:
tokenized = tokenizer(
caption,
padding='longest',
truncation=True,
max_length=max_len + 1, # +1 to account for the shift between input and target.
return_tensors='pt',
return_token_type_ids=False,
add_special_tokens=False, # Done in prepare_sections_for_tokenizer()
).to(self.device)
# Modify for language modelling:
batch_dict = {
# Labels for the decoder (shifted right by one for autoregression):
'label_ids': tokenized['input_ids'][:, 1:].detach().clone(),
# Remove last token identifier to match the sequence length of the labels:
'decoder_input_ids': tokenized['input_ids'][:, :-1],
# Attention mask for the decoder_input_ids (remove first token so that the eos_token_id is not considered):
'decoder_attention_mask': tokenized['attention_mask'][:, 1:],
}
return batch_dict