Revert "astroBERT model ner model all_labeled_data_run01 checkpoint-169600"
Browse filesThis reverts commit e0c9e48487cc3c13021c03807116d83a86e44e35.
- .ipynb_checkpoints/README-checkpoint.md +0 -3
- Tutorials/.ipynb_checkpoints/0_Embeddings-checkpoint.html +0 -0
- Tutorials/.ipynb_checkpoints/0_Embeddings-checkpoint.ipynb +0 -295
- Tutorials/.ipynb_checkpoints/1_Fill-Mask-checkpoint.ipynb +0 -425
- Tutorials/0_Embeddings.ipynb +2 -2
- config.json +2 -133
- pytorch_model.bin +2 -2
.ipynb_checkpoints/README-checkpoint.md
DELETED
@@ -1,3 +0,0 @@
|
|
1 |
-
---
|
2 |
-
license: mit
|
3 |
-
---
|
|
|
|
|
|
|
|
Tutorials/.ipynb_checkpoints/0_Embeddings-checkpoint.html
DELETED
The diff for this file is too large to render.
See raw diff
|
|
Tutorials/.ipynb_checkpoints/0_Embeddings-checkpoint.ipynb
DELETED
@@ -1,295 +0,0 @@
|
|
1 |
-
{
|
2 |
-
"cells": [
|
3 |
-
{
|
4 |
-
"cell_type": "code",
|
5 |
-
"execution_count": 1,
|
6 |
-
"id": "274e6135-2d97-4244-9183-65bcb1d24c80",
|
7 |
-
"metadata": {},
|
8 |
-
"outputs": [],
|
9 |
-
"source": [
|
10 |
-
"# Use the trained astroBERT model to generate embedings of text\n",
|
11 |
-
"# to be used for downstream tasks"
|
12 |
-
]
|
13 |
-
},
|
14 |
-
{
|
15 |
-
"cell_type": "markdown",
|
16 |
-
"id": "2cc88ed3-6f52-49a2-99c0-344387758ab5",
|
17 |
-
"metadata": {},
|
18 |
-
"source": [
|
19 |
-
"# Tutorial 0: Loading astroBERT to produce text embeddings\n",
|
20 |
-
"This tutorial will show you how to load astroBERT and produce text embeddings that can be used on downstream tasks."
|
21 |
-
]
|
22 |
-
},
|
23 |
-
{
|
24 |
-
"cell_type": "code",
|
25 |
-
"execution_count": 2,
|
26 |
-
"id": "9e65c041-9d66-4fb1-96b9-4937000da02e",
|
27 |
-
"metadata": {},
|
28 |
-
"outputs": [],
|
29 |
-
"source": [
|
30 |
-
"# 1 - load models and tokenizer"
|
31 |
-
]
|
32 |
-
},
|
33 |
-
{
|
34 |
-
"cell_type": "code",
|
35 |
-
"execution_count": 3,
|
36 |
-
"id": "67d99e96-c532-49ef-8542-a48eef818956",
|
37 |
-
"metadata": {},
|
38 |
-
"outputs": [
|
39 |
-
{
|
40 |
-
"name": "stderr",
|
41 |
-
"output_type": "stream",
|
42 |
-
"text": [
|
43 |
-
"2022-10-20 16:07:24.705905: I tensorflow/stream_executor/platform/default/dso_loader.cc:53] Successfully opened dynamic library libcudart.so.11.0\n"
|
44 |
-
]
|
45 |
-
}
|
46 |
-
],
|
47 |
-
"source": [
|
48 |
-
"from transformers import AutoTokenizer, AutoModel"
|
49 |
-
]
|
50 |
-
},
|
51 |
-
{
|
52 |
-
"cell_type": "code",
|
53 |
-
"execution_count": 4,
|
54 |
-
"id": "00e1d48e-9898-44ef-b00e-43e3ab7fed7d",
|
55 |
-
"metadata": {},
|
56 |
-
"outputs": [],
|
57 |
-
"source": [
|
58 |
-
"# the model path can either be the name of the Huggingface repository\n",
|
59 |
-
"remote_model_path = 'adsabs/astroBERT'\n",
|
60 |
-
"# or the local path to the directory containing model weight and tokenizer vocab\n",
|
61 |
-
"local_model_path = '../'"
|
62 |
-
]
|
63 |
-
},
|
64 |
-
{
|
65 |
-
"cell_type": "code",
|
66 |
-
"execution_count": 5,
|
67 |
-
"id": "9bcc6009-6009-463f-a7da-f010c5fae27e",
|
68 |
-
"metadata": {},
|
69 |
-
"outputs": [],
|
70 |
-
"source": [
|
71 |
-
"# make sure you load the tokenier with do_lower_case=False\n",
|
72 |
-
"astroBERT_tokenizer = AutoTokenizer.from_pretrained(pretrained_model_name_or_path=remote_model_path,\n",
|
73 |
-
" use_auth_token=True,\n",
|
74 |
-
" add_special_tokens=True,\n",
|
75 |
-
" do_lower_case=False,\n",
|
76 |
-
" )"
|
77 |
-
]
|
78 |
-
},
|
79 |
-
{
|
80 |
-
"cell_type": "code",
|
81 |
-
"execution_count": 6,
|
82 |
-
"id": "dbd144f0-6038-4917-94b0-aea9da72cac5",
|
83 |
-
"metadata": {},
|
84 |
-
"outputs": [
|
85 |
-
{
|
86 |
-
"data": {
|
87 |
-
"text/plain": [
|
88 |
-
"PreTrainedTokenizerFast(name_or_path='adsabs/astroBERT', vocab_size=30000, model_max_len=1000000000000000019884624838656, is_fast=True, padding_side='right', truncation_side='right', special_tokens={'unk_token': '[UNK]', 'sep_token': '[SEP]', 'pad_token': '[PAD]', 'cls_token': '[CLS]', 'mask_token': '[MASK]'})"
|
89 |
-
]
|
90 |
-
},
|
91 |
-
"execution_count": 6,
|
92 |
-
"metadata": {},
|
93 |
-
"output_type": "execute_result"
|
94 |
-
}
|
95 |
-
],
|
96 |
-
"source": [
|
97 |
-
"astroBERT_tokenizer"
|
98 |
-
]
|
99 |
-
},
|
100 |
-
{
|
101 |
-
"cell_type": "code",
|
102 |
-
"execution_count": 7,
|
103 |
-
"id": "dd9a9257-cbe4-4908-a9f4-8e1431dc375a",
|
104 |
-
"metadata": {},
|
105 |
-
"outputs": [
|
106 |
-
{
|
107 |
-
"name": "stderr",
|
108 |
-
"output_type": "stream",
|
109 |
-
"text": [
|
110 |
-
"Some weights of the model checkpoint at adsabs/astroBERT were not used when initializing BertModel: ['cls.predictions.transform.dense.weight', 'cls.predictions.transform.dense.bias', 'cls.seq_relationship.weight', 'cls.predictions.decoder.weight', 'cls.seq_relationship.bias', 'cls.predictions.bias', 'cls.predictions.transform.LayerNorm.bias', 'cls.predictions.decoder.bias', 'cls.predictions.transform.LayerNorm.weight']\n",
|
111 |
-
"- This IS expected if you are initializing BertModel from the checkpoint of a model trained on another task or with another architecture (e.g. initializing a BertForSequenceClassification model from a BertForPreTraining model).\n",
|
112 |
-
"- This IS NOT expected if you are initializing BertModel from the checkpoint of a model that you expect to be exactly identical (initializing a BertForSequenceClassification model from a BertForSequenceClassification model).\n"
|
113 |
-
]
|
114 |
-
}
|
115 |
-
],
|
116 |
-
"source": [
|
117 |
-
"# automodels: defaults to BertModel\n",
|
118 |
-
"# it's normal to get warnings as a BertModel will not load the weights used for PreTraining\n",
|
119 |
-
"astroBERT_automodel = AutoModel.from_pretrained(remote_model_path, \n",
|
120 |
-
" use_auth_token=True,\n",
|
121 |
-
" )"
|
122 |
-
]
|
123 |
-
},
|
124 |
-
{
|
125 |
-
"cell_type": "code",
|
126 |
-
"execution_count": 8,
|
127 |
-
"id": "572ddd38-a0dc-4583-a5a6-c4f3b2cb2553",
|
128 |
-
"metadata": {},
|
129 |
-
"outputs": [],
|
130 |
-
"source": [
|
131 |
-
"# 2 - make some inference, the outputs are the embeddings"
|
132 |
-
]
|
133 |
-
},
|
134 |
-
{
|
135 |
-
"cell_type": "code",
|
136 |
-
"execution_count": 9,
|
137 |
-
"id": "32fc0b97-4a2d-42ab-aa83-f5d8b39672b1",
|
138 |
-
"metadata": {},
|
139 |
-
"outputs": [
|
140 |
-
{
|
141 |
-
"name": "stdout",
|
142 |
-
"output_type": "stream",
|
143 |
-
"text": [
|
144 |
-
"torch.Size([3, 54])\n"
|
145 |
-
]
|
146 |
-
}
|
147 |
-
],
|
148 |
-
"source": [
|
149 |
-
"# list of strings for which we want embeddings\n",
|
150 |
-
"strings = ['The Chandra X-ray Observatory (CXO), previously known as the Advanced X-ray Astrophysics Facility (AXAF), is a Flagship-class space telescope launched aboard the Space Shuttle Columbia during STS-93 by NASA on July 23, 1999.',\n",
|
151 |
-
" 'Independent lines of evidence from Type Ia supernovae and the CMB imply that the universe today is dominated by a mysterious form of energy known as dark energy, which appears to homogeneously permeate all of space.',\n",
|
152 |
-
" 'This work has been developed in the framework of the ‘Darklight’ programme, supported by the European Research Council through an Advanced Research Grant to LG (Project # 291521).'\n",
|
153 |
-
" ]\n",
|
154 |
-
"\n",
|
155 |
-
"# tokenizer the strings, with padding (needed to process multiple strings efficiently)\n",
|
156 |
-
"inputs = astroBERT_tokenizer(strings, \n",
|
157 |
-
" padding=True, \n",
|
158 |
-
" return_tensors='pt'\n",
|
159 |
-
" )\n",
|
160 |
-
"\n",
|
161 |
-
"# check the shape of the inputs\n",
|
162 |
-
"print(inputs['input_ids'].shape)"
|
163 |
-
]
|
164 |
-
},
|
165 |
-
{
|
166 |
-
"cell_type": "code",
|
167 |
-
"execution_count": 10,
|
168 |
-
"id": "8b7c9456-573a-48e7-9bc2-839fcc25631d",
|
169 |
-
"metadata": {},
|
170 |
-
"outputs": [],
|
171 |
-
"source": [
|
172 |
-
"# pass the inputs through astroBERT\n",
|
173 |
-
"import torch\n",
|
174 |
-
"# no need for gradients, since we are only doing inference\n",
|
175 |
-
"with torch.no_grad():\n",
|
176 |
-
" output = astroBERT_automodel(**inputs, \n",
|
177 |
-
" output_hidden_states=False\n",
|
178 |
-
" ) "
|
179 |
-
]
|
180 |
-
},
|
181 |
-
{
|
182 |
-
"cell_type": "code",
|
183 |
-
"execution_count": 11,
|
184 |
-
"id": "116de57a-bb31-48d7-9556-64e01a16d56f",
|
185 |
-
"metadata": {},
|
186 |
-
"outputs": [
|
187 |
-
{
|
188 |
-
"name": "stdout",
|
189 |
-
"output_type": "stream",
|
190 |
-
"text": [
|
191 |
-
"torch.Size([3, 54, 768])\n"
|
192 |
-
]
|
193 |
-
}
|
194 |
-
],
|
195 |
-
"source": [
|
196 |
-
"# BertModel outputs two tensors: last_hidden_state (our embeddings) and pooler_output (to be discarded as it's not meaningful)\n",
|
197 |
-
"# see https://huggingface.co/docs/transformers/model_doc/bert#transformers.BertModel.forward\n",
|
198 |
-
"# embeddings will have shape = (# of strings, size of tokenized strings(padded), 768 (BERT embedding size))\n",
|
199 |
-
"embeddings = output[0]\n",
|
200 |
-
"print(embeddings.shape)"
|
201 |
-
]
|
202 |
-
},
|
203 |
-
{
|
204 |
-
"cell_type": "code",
|
205 |
-
"execution_count": 12,
|
206 |
-
"id": "38e45291-6fd7-48cf-83df-e1cc5c8a699f",
|
207 |
-
"metadata": {},
|
208 |
-
"outputs": [
|
209 |
-
{
|
210 |
-
"name": "stdout",
|
211 |
-
"output_type": "stream",
|
212 |
-
"text": [
|
213 |
-
"tensor([[ 0.5546, 0.9121, 0.6550, ..., -0.1925, 0.7077, -0.2405],\n",
|
214 |
-
" [ 0.6252, 0.3175, 1.0899, ..., 0.0576, 0.0529, 0.0603],\n",
|
215 |
-
" [ 0.1803, -0.4567, 1.2688, ..., 0.6026, -0.5718, -0.2060],\n",
|
216 |
-
" ...,\n",
|
217 |
-
" [-0.4397, -0.5334, 1.1682, ..., 0.9541, 0.4046, -0.4756],\n",
|
218 |
-
" [-0.3911, 0.7793, 0.2432, ..., 0.2268, -1.0489, -1.4864],\n",
|
219 |
-
" [-0.4529, -0.7346, 0.0675, ..., -0.3246, -0.2333, -0.6154]])\n"
|
220 |
-
]
|
221 |
-
}
|
222 |
-
],
|
223 |
-
"source": [
|
224 |
-
"print(embeddings[0])"
|
225 |
-
]
|
226 |
-
},
|
227 |
-
{
|
228 |
-
"cell_type": "code",
|
229 |
-
"execution_count": 13,
|
230 |
-
"id": "26acf89f-b7fc-4872-ac81-0ee65030b465",
|
231 |
-
"metadata": {},
|
232 |
-
"outputs": [],
|
233 |
-
"source": [
|
234 |
-
"# If you wish to use the hidden states as additional embeddings, you can use output_hidden_states=True\n",
|
235 |
-
"\n",
|
236 |
-
"# no need for gradients, since we are only doing inference\n",
|
237 |
-
"with torch.no_grad():\n",
|
238 |
-
" output = astroBERT_automodel(**inputs, \n",
|
239 |
-
" output_hidden_states=True\n",
|
240 |
-
" ) "
|
241 |
-
]
|
242 |
-
},
|
243 |
-
{
|
244 |
-
"cell_type": "code",
|
245 |
-
"execution_count": 14,
|
246 |
-
"id": "a54314e9-5dcb-4c10-b0d2-219a93c7d16e",
|
247 |
-
"metadata": {},
|
248 |
-
"outputs": [
|
249 |
-
{
|
250 |
-
"name": "stdout",
|
251 |
-
"output_type": "stream",
|
252 |
-
"text": [
|
253 |
-
"13\n",
|
254 |
-
"torch.Size([3, 54, 768])\n"
|
255 |
-
]
|
256 |
-
}
|
257 |
-
],
|
258 |
-
"source": [
|
259 |
-
"# This will produce 13 embeddings, one for each hidden layer\n",
|
260 |
-
"embeddings = output[2]\n",
|
261 |
-
"print(len(embeddings))\n",
|
262 |
-
"print(embeddings[0].shape)"
|
263 |
-
]
|
264 |
-
},
|
265 |
-
{
|
266 |
-
"cell_type": "code",
|
267 |
-
"execution_count": null,
|
268 |
-
"id": "76765dcb-8035-44b2-a5a3-db181b561095",
|
269 |
-
"metadata": {},
|
270 |
-
"outputs": [],
|
271 |
-
"source": []
|
272 |
-
}
|
273 |
-
],
|
274 |
-
"metadata": {
|
275 |
-
"kernelspec": {
|
276 |
-
"display_name": "Python 3 (ipykernel)",
|
277 |
-
"language": "python",
|
278 |
-
"name": "python3"
|
279 |
-
},
|
280 |
-
"language_info": {
|
281 |
-
"codemirror_mode": {
|
282 |
-
"name": "ipython",
|
283 |
-
"version": 3
|
284 |
-
},
|
285 |
-
"file_extension": ".py",
|
286 |
-
"mimetype": "text/x-python",
|
287 |
-
"name": "python",
|
288 |
-
"nbconvert_exporter": "python",
|
289 |
-
"pygments_lexer": "ipython3",
|
290 |
-
"version": "3.8.5"
|
291 |
-
}
|
292 |
-
},
|
293 |
-
"nbformat": 4,
|
294 |
-
"nbformat_minor": 5
|
295 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Tutorials/.ipynb_checkpoints/1_Fill-Mask-checkpoint.ipynb
DELETED
@@ -1,425 +0,0 @@
|
|
1 |
-
{
|
2 |
-
"cells": [
|
3 |
-
{
|
4 |
-
"cell_type": "code",
|
5 |
-
"execution_count": 1,
|
6 |
-
"id": "33df4373-a37b-4fd0-bc67-c297812871e4",
|
7 |
-
"metadata": {},
|
8 |
-
"outputs": [],
|
9 |
-
"source": [
|
10 |
-
"# Use the trained astroBERT model with the fill-mask pipeline"
|
11 |
-
]
|
12 |
-
},
|
13 |
-
{
|
14 |
-
"cell_type": "markdown",
|
15 |
-
"id": "164ee9bd-27f9-40a4-8461-3ce12fc928b0",
|
16 |
-
"metadata": {},
|
17 |
-
"source": [
|
18 |
-
"# Tutorial 1: using astroBERT with the fill-mask pipeline"
|
19 |
-
]
|
20 |
-
},
|
21 |
-
{
|
22 |
-
"cell_type": "code",
|
23 |
-
"execution_count": 2,
|
24 |
-
"id": "59429414-f07e-45e5-8825-6fc6a8d26653",
|
25 |
-
"metadata": {},
|
26 |
-
"outputs": [],
|
27 |
-
"source": [
|
28 |
-
"# 1 - load models and tokenizer"
|
29 |
-
]
|
30 |
-
},
|
31 |
-
{
|
32 |
-
"cell_type": "code",
|
33 |
-
"execution_count": 3,
|
34 |
-
"id": "db8ee724-6a2a-4ea5-820e-5e2aa0a0f622",
|
35 |
-
"metadata": {},
|
36 |
-
"outputs": [
|
37 |
-
{
|
38 |
-
"name": "stderr",
|
39 |
-
"output_type": "stream",
|
40 |
-
"text": [
|
41 |
-
"2022-10-17 21:17:27.369794: I tensorflow/stream_executor/platform/default/dso_loader.cc:53] Successfully opened dynamic library libcudart.so.11.0\n"
|
42 |
-
]
|
43 |
-
}
|
44 |
-
],
|
45 |
-
"source": [
|
46 |
-
"from transformers import AutoTokenizer, BertForMaskedLM"
|
47 |
-
]
|
48 |
-
},
|
49 |
-
{
|
50 |
-
"cell_type": "code",
|
51 |
-
"execution_count": 4,
|
52 |
-
"id": "9a98fb63-0793-4684-a202-931cad17c7ca",
|
53 |
-
"metadata": {},
|
54 |
-
"outputs": [],
|
55 |
-
"source": [
|
56 |
-
"# the model path can either be the name of the Huggingface repository\n",
|
57 |
-
"remote_model_path = 'adsabs/astroBERT'\n",
|
58 |
-
"# or the local path to the directory containing model weight and tokenizer vocab\n",
|
59 |
-
"local_model_path = '../'"
|
60 |
-
]
|
61 |
-
},
|
62 |
-
{
|
63 |
-
"cell_type": "code",
|
64 |
-
"execution_count": 5,
|
65 |
-
"id": "25fedd16-283b-4817-9b19-2a5ff1c5ba88",
|
66 |
-
"metadata": {},
|
67 |
-
"outputs": [],
|
68 |
-
"source": [
|
69 |
-
"# make sure you load the tokenier with do_lower_case=False\n",
|
70 |
-
"astroBERT_tokenizer = AutoTokenizer.from_pretrained(pretrained_model_name_or_path=remote_model_path,\n",
|
71 |
-
" use_auth_token=True,\n",
|
72 |
-
" add_special_tokens=False,\n",
|
73 |
-
" do_lower_case=False,\n",
|
74 |
-
" )"
|
75 |
-
]
|
76 |
-
},
|
77 |
-
{
|
78 |
-
"cell_type": "code",
|
79 |
-
"execution_count": 6,
|
80 |
-
"id": "fb10db03-a5f0-44f7-8d41-0285f898a90d",
|
81 |
-
"metadata": {},
|
82 |
-
"outputs": [
|
83 |
-
{
|
84 |
-
"data": {
|
85 |
-
"application/vnd.jupyter.widget-view+json": {
|
86 |
-
"model_id": "b6e0bf5ee71b4986a682adb43e994ede",
|
87 |
-
"version_major": 2,
|
88 |
-
"version_minor": 0
|
89 |
-
},
|
90 |
-
"text/plain": [
|
91 |
-
"Downloading: 0%| | 0.00/666 [00:00<?, ?B/s]"
|
92 |
-
]
|
93 |
-
},
|
94 |
-
"metadata": {},
|
95 |
-
"output_type": "display_data"
|
96 |
-
},
|
97 |
-
{
|
98 |
-
"name": "stderr",
|
99 |
-
"output_type": "stream",
|
100 |
-
"text": [
|
101 |
-
"Some weights of the model checkpoint at adsabs/astroBERT were not used when initializing BertForMaskedLM: ['cls.seq_relationship.bias', 'cls.seq_relationship.weight']\n",
|
102 |
-
"- This IS expected if you are initializing BertForMaskedLM from the checkpoint of a model trained on another task or with another architecture (e.g. initializing a BertForSequenceClassification model from a BertForPreTraining model).\n",
|
103 |
-
"- This IS NOT expected if you are initializing BertForMaskedLM from the checkpoint of a model that you expect to be exactly identical (initializing a BertForSequenceClassification model from a BertForSequenceClassification model).\n"
|
104 |
-
]
|
105 |
-
}
|
106 |
-
],
|
107 |
-
"source": [
|
108 |
-
"astroBERT_automodel_for_mlm = BertForMaskedLM.from_pretrained(pretrained_model_name_or_path=remote_model_path, \n",
|
109 |
-
" use_auth_token=True,\n",
|
110 |
-
" )"
|
111 |
-
]
|
112 |
-
},
|
113 |
-
{
|
114 |
-
"cell_type": "code",
|
115 |
-
"execution_count": 7,
|
116 |
-
"id": "e8b9b073-3876-4d0b-b8b2-e46fa25c76f0",
|
117 |
-
"metadata": {},
|
118 |
-
"outputs": [],
|
119 |
-
"source": [
|
120 |
-
"# for pipeline to work you have to ensure that the model returns a dict\n",
|
121 |
-
"astroBERT_automodel_for_mlm.config.return_dict=True"
|
122 |
-
]
|
123 |
-
},
|
124 |
-
{
|
125 |
-
"cell_type": "code",
|
126 |
-
"execution_count": 8,
|
127 |
-
"id": "94338f6f-3467-4696-bf7d-f41a12eb889d",
|
128 |
-
"metadata": {},
|
129 |
-
"outputs": [],
|
130 |
-
"source": [
|
131 |
-
"from transformers import FillMaskPipeline"
|
132 |
-
]
|
133 |
-
},
|
134 |
-
{
|
135 |
-
"cell_type": "code",
|
136 |
-
"execution_count": 9,
|
137 |
-
"id": "7b980d9f-4d86-4b54-9324-d57dd9b4b64f",
|
138 |
-
"metadata": {},
|
139 |
-
"outputs": [],
|
140 |
-
"source": [
|
141 |
-
"astroBERT_pipeline = FillMaskPipeline(model=astroBERT_automodel_for_mlm,\n",
|
142 |
-
" tokenizer=astroBERT_tokenizer,\n",
|
143 |
-
" task='fill-mask',\n",
|
144 |
-
" )"
|
145 |
-
]
|
146 |
-
},
|
147 |
-
{
|
148 |
-
"cell_type": "code",
|
149 |
-
"execution_count": 10,
|
150 |
-
"id": "5cb4d27b-ee3c-4ac7-ace2-4cc57ea9ce7a",
|
151 |
-
"metadata": {},
|
152 |
-
"outputs": [],
|
153 |
-
"source": [
|
154 |
-
"clean_sentences = ['M67 is one of the most studied open clusters.',\n",
|
155 |
-
"'A solar twin is a star with atmospheric parameters and chemical composition very similar to our Sun.',\n",
|
156 |
-
"'The dynamical evolution of planets close to their star is affected by tidal effects',\n",
|
157 |
-
"'The Kepler satellite collected high-precision long-term and continuous light curves for more than 100,000 solar-type stars',\n",
|
158 |
-
"'The Local Group is composed of the Milky Way, the Andromeda Galaxy, and numerous smaller satellite galaxies.',\n",
|
159 |
-
"'Cepheid variables are used to determine the distances to galaxies in the local universe.',\n",
|
160 |
-
"'Jets are created and sustained by accretion of matter onto a compact massive object.',\n",
|
161 |
-
"'A single star of one solar mass will evolve into a white dwarf.',\n",
|
162 |
-
"'The Very Large Array observes the sky at radio wavelengths.',\n",
|
163 |
-
"'Elements heavier than iron are generated in supernovae explosions.',\n",
|
164 |
-
"'Spitzer was the first spacecraft to fly in an Earth-trailing orbit.',\n",
|
165 |
-
"'Galaxy mergers can occur when two (or more) galaxies collide',\n",
|
166 |
-
"'Dark matter is a hypothetical form of matter thought to account for approximately 85% of the matter in the universe.',\n",
|
167 |
-
"'The Local Group of galaxies is pulled toward The Great Attractor.',\n",
|
168 |
-
"'The Moon is the only satellite of the Earth.',\n",
|
169 |
-
"'Galaxies are categorized according to their visual morphology as elliptical, spiral, or irregular.',\n",
|
170 |
-
"'Stars are made mostly of hydrogen.',\n",
|
171 |
-
"'Comet tails are created as comets approach the Sun.',\n",
|
172 |
-
"'Pluto is a dwarf planet in the Kuiper Belt.',\n",
|
173 |
-
"'The Milky Way has a supermassive black hole, Sagittarius A*, at its center.',\n",
|
174 |
-
"'Andromeda is the nearest large galaxy to the Milky Way and is roughly its equal in mass.',\n",
|
175 |
-
"'The interstellar medium is the gas and dust between stars.',\n",
|
176 |
-
"'The cosmic microwave background (CMB, CMBR), in Big Bang cosmology, is electromagnetic radiation which is a remnant from an early stage of the universe.',\n",
|
177 |
-
"'The Large and Small Magellanic Clouds are irregular dwarf galaxies and are two satellite galaxies of the Milky Way.']"
|
178 |
-
]
|
179 |
-
},
|
180 |
-
{
|
181 |
-
"cell_type": "code",
|
182 |
-
"execution_count": 11,
|
183 |
-
"id": "9f3a6fdc-182f-4edb-8ef4-7e4253c2d4db",
|
184 |
-
"metadata": {},
|
185 |
-
"outputs": [],
|
186 |
-
"source": [
|
187 |
-
"masked_sentences = ['M67 is one of the most studied [MASK] clusters.',\n",
|
188 |
-
"'A solar twin is a star with [MASK] parameters and chemical composition very similar to our Sun.',\n",
|
189 |
-
"'The dynamical evolution of planets close to their star is affected by [MASK] effects',\n",
|
190 |
-
"'The Kepler satellite collected high-precision long-term and continuous light [MASK] for more than 100,000 solar-type stars',\n",
|
191 |
-
"'The Local Group is composed of the Milky Way, the [MASK] Galaxy, and numerous smaller satellite galaxies.',\n",
|
192 |
-
"'Cepheid variables are used to determine the [MASK] to galaxies in the local universe.',\n",
|
193 |
-
"'Jets are created and sustained by [MASK] of matter onto a compact massive object.',\n",
|
194 |
-
"'A single star of one solar mass will evolve into a [MASK] dwarf.',\n",
|
195 |
-
"'The Very Large Array observes the sky at [MASK] wavelengths.',\n",
|
196 |
-
"'Elements heavier than [MASK] are generated in supernovae explosions.',\n",
|
197 |
-
"'Spitzer was the first [MASK] to fly in an Earth-trailing orbit.',\n",
|
198 |
-
"'Galaxy [MASK] can occur when two (or more) galaxies collide',\n",
|
199 |
-
"'Dark [MASK] is a hypothetical form of matter thought to account for approximately 85% of the matter in the universe.',\n",
|
200 |
-
"'The Local Group of galaxies is pulled toward The Great [MASK] .',\n",
|
201 |
-
"'The Moon is the only [MASK] of the Earth.',\n",
|
202 |
-
"'Galaxies are categorized according to their visual morphology as [MASK] , spiral, or irregular.',\n",
|
203 |
-
"'Stars are made mostly of [MASK] .',\n",
|
204 |
-
"'Comet tails are created as comets approach the [MASK] .',\n",
|
205 |
-
"'Pluto is a dwarf [MASK] in the Kuiper Belt.',\n",
|
206 |
-
"'The Milky Way has a [MASK] black hole, Sagittarius A*, at its center.',\n",
|
207 |
-
"'Andromeda is the nearest large [MASK] to the Milky Way and is roughly its equal in mass.',\n",
|
208 |
-
"'The [MASK] medium is the gas and dust between stars.',\n",
|
209 |
-
"'The cosmic microwave background (CMB, CMBR), in Big Bang cosmology, is electromagnetic radiation which is a remnant from an early stage of the [MASK] .',\n",
|
210 |
-
"'The Large and Small Magellanic Clouds are irregular [MASK] galaxies and are two satellite galaxies of the Milky Way.',\n",
|
211 |
-
"]"
|
212 |
-
]
|
213 |
-
},
|
214 |
-
{
|
215 |
-
"cell_type": "code",
|
216 |
-
"execution_count": 12,
|
217 |
-
"id": "d4c729ad-89f4-4e70-b433-a65b6035c10b",
|
218 |
-
"metadata": {},
|
219 |
-
"outputs": [],
|
220 |
-
"source": [
|
221 |
-
"masked_words = [x for s1,s2 in zip(clean_sentences, masked_sentences) \n",
|
222 |
-
" for x,y in zip(s1.split(), s2.split()) if y=='[MASK]']"
|
223 |
-
]
|
224 |
-
},
|
225 |
-
{
|
226 |
-
"cell_type": "code",
|
227 |
-
"execution_count": 13,
|
228 |
-
"id": "2a07a641-61a7-42dd-b70e-62eb97ad4e4b",
|
229 |
-
"metadata": {},
|
230 |
-
"outputs": [],
|
231 |
-
"source": [
|
232 |
-
"results = astroBERT_pipeline(inputs=masked_sentences, \n",
|
233 |
-
" top_k=3\n",
|
234 |
-
" )"
|
235 |
-
]
|
236 |
-
},
|
237 |
-
{
|
238 |
-
"cell_type": "code",
|
239 |
-
"execution_count": 14,
|
240 |
-
"id": "ec2880d9-a8ad-4919-ab5b-732f3bcc21ae",
|
241 |
-
"metadata": {},
|
242 |
-
"outputs": [
|
243 |
-
{
|
244 |
-
"name": "stdout",
|
245 |
-
"output_type": "stream",
|
246 |
-
"text": [
|
247 |
-
"M67 is one of the most studied [MASK] clusters.\n",
|
248 |
-
"original: open\n",
|
249 |
-
"\t open 0.87\n",
|
250 |
-
"\t globular 0.07\n",
|
251 |
-
"\t star 0.03\n",
|
252 |
-
"\n",
|
253 |
-
"A solar twin is a star with [MASK] parameters and chemical composition very similar to our Sun.\n",
|
254 |
-
"original: atmospheric\n",
|
255 |
-
"\t fundamental 0.56\n",
|
256 |
-
"\t physical 0.25\n",
|
257 |
-
"\t stellar 0.05\n",
|
258 |
-
"\n",
|
259 |
-
"The dynamical evolution of planets close to their star is affected by [MASK] effects\n",
|
260 |
-
"original: tidal\n",
|
261 |
-
"\t tidal 0.07\n",
|
262 |
-
"\t electromagnetic 0.05\n",
|
263 |
-
"\t electrostatic 0.04\n",
|
264 |
-
"\n",
|
265 |
-
"The Kepler satellite collected high-precision long-term and continuous light [MASK] for more than 100,000 solar-type stars\n",
|
266 |
-
"original: curves\n",
|
267 |
-
"\t curves 0.43\n",
|
268 |
-
"\t ##s 0.04\n",
|
269 |
-
"\t conditions 0.04\n",
|
270 |
-
"\n",
|
271 |
-
"The Local Group is composed of the Milky Way, the [MASK] Galaxy, and numerous smaller satellite galaxies.\n",
|
272 |
-
"original: Andromeda\n",
|
273 |
-
"\t Andromeda 0.99\n",
|
274 |
-
"\t M31 0.00\n",
|
275 |
-
"\t Sagittarius 0.00\n",
|
276 |
-
"\n",
|
277 |
-
"Cepheid variables are used to determine the [MASK] to galaxies in the local universe.\n",
|
278 |
-
"original: distances\n",
|
279 |
-
"\t distances 0.79\n",
|
280 |
-
"\t distance 0.21\n",
|
281 |
-
"\t redshifts 0.00\n",
|
282 |
-
"\n",
|
283 |
-
"Jets are created and sustained by [MASK] of matter onto a compact massive object.\n",
|
284 |
-
"original: accretion\n",
|
285 |
-
"\t accretion 0.79\n",
|
286 |
-
"\t infall 0.13\n",
|
287 |
-
"\t fall 0.02\n",
|
288 |
-
"\n",
|
289 |
-
"A single star of one solar mass will evolve into a [MASK] dwarf.\n",
|
290 |
-
"original: white\n",
|
291 |
-
"\t white 0.77\n",
|
292 |
-
"\t brown 0.19\n",
|
293 |
-
"\t red 0.02\n",
|
294 |
-
"\n",
|
295 |
-
"The Very Large Array observes the sky at [MASK] wavelengths.\n",
|
296 |
-
"original: radio\n",
|
297 |
-
"\t radio 0.29\n",
|
298 |
-
"\t centimeter 0.10\n",
|
299 |
-
"\t all 0.09\n",
|
300 |
-
"\n",
|
301 |
-
"Elements heavier than [MASK] are generated in supernovae explosions.\n",
|
302 |
-
"original: iron\n",
|
303 |
-
"\t iron 0.34\n",
|
304 |
-
"\t helium 0.16\n",
|
305 |
-
"\t oxygen 0.07\n",
|
306 |
-
"\n",
|
307 |
-
"Spitzer was the first [MASK] to fly in an Earth-trailing orbit.\n",
|
308 |
-
"original: spacecraft\n",
|
309 |
-
"\t satellite 0.42\n",
|
310 |
-
"\t spacecraft 0.20\n",
|
311 |
-
"\t observatory 0.16\n",
|
312 |
-
"\n",
|
313 |
-
"Galaxy [MASK] can occur when two (or more) galaxies collide\n",
|
314 |
-
"original: mergers\n",
|
315 |
-
"\t . 0.26\n",
|
316 |
-
"\t A 0.05\n",
|
317 |
-
"\t 1 0.04\n",
|
318 |
-
"\n",
|
319 |
-
"Dark [MASK] is a hypothetical form of matter thought to account for approximately 85% of the matter in the universe.\n",
|
320 |
-
"original: matter\n",
|
321 |
-
"\t energy 0.64\n",
|
322 |
-
"\t Energy 0.24\n",
|
323 |
-
"\t matter 0.10\n",
|
324 |
-
"\n",
|
325 |
-
"The Local Group of galaxies is pulled toward The Great [MASK] .\n",
|
326 |
-
"original: Attractor.\n",
|
327 |
-
"\t Wall 0.96\n",
|
328 |
-
"\t East 0.01\n",
|
329 |
-
"\t Planet 0.00\n",
|
330 |
-
"\n",
|
331 |
-
"The Moon is the only [MASK] of the Earth.\n",
|
332 |
-
"original: satellite\n",
|
333 |
-
"\t satellite 0.38\n",
|
334 |
-
"\t moon 0.31\n",
|
335 |
-
"\t constituent 0.07\n",
|
336 |
-
"\n",
|
337 |
-
"Galaxies are categorized according to their visual morphology as [MASK] , spiral, or irregular.\n",
|
338 |
-
"original: elliptical,\n",
|
339 |
-
"\t elliptical 0.92\n",
|
340 |
-
"\t spheroidal 0.02\n",
|
341 |
-
"\t irregular 0.01\n",
|
342 |
-
"\n",
|
343 |
-
"Stars are made mostly of [MASK] .\n",
|
344 |
-
"original: hydrogen.\n",
|
345 |
-
"\t hydrogen 0.20\n",
|
346 |
-
"\t helium 0.14\n",
|
347 |
-
"\t carbon 0.12\n",
|
348 |
-
"\n",
|
349 |
-
"Comet tails are created as comets approach the [MASK] .\n",
|
350 |
-
"original: Sun.\n",
|
351 |
-
"\t Sun 0.45\n",
|
352 |
-
"\t sun 0.23\n",
|
353 |
-
"\t Earth 0.19\n",
|
354 |
-
"\n",
|
355 |
-
"Pluto is a dwarf [MASK] in the Kuiper Belt.\n",
|
356 |
-
"original: planet\n",
|
357 |
-
"\t planet 0.96\n",
|
358 |
-
"\t satellite 0.02\n",
|
359 |
-
"\t nova 0.00\n",
|
360 |
-
"\n",
|
361 |
-
"The Milky Way has a [MASK] black hole, Sagittarius A*, at its center.\n",
|
362 |
-
"original: supermassive\n",
|
363 |
-
"\t supermassive 0.80\n",
|
364 |
-
"\t massive 0.17\n",
|
365 |
-
"\t stellar 0.00\n",
|
366 |
-
"\n",
|
367 |
-
"Andromeda is the nearest large [MASK] to the Milky Way and is roughly its equal in mass.\n",
|
368 |
-
"original: galaxy\n",
|
369 |
-
"\t galaxy 0.68\n",
|
370 |
-
"\t spiral 0.12\n",
|
371 |
-
"\t satellite 0.09\n",
|
372 |
-
"\n",
|
373 |
-
"The [MASK] medium is the gas and dust between stars.\n",
|
374 |
-
"original: interstellar\n",
|
375 |
-
"\t interstellar 0.87\n",
|
376 |
-
"\t interplanetary 0.05\n",
|
377 |
-
"\t intracluster 0.03\n",
|
378 |
-
"\n",
|
379 |
-
"The cosmic microwave background (CMB, CMBR), in Big Bang cosmology, is electromagnetic radiation which is a remnant from an early stage of the [MASK] .\n",
|
380 |
-
"original: universe.\n",
|
381 |
-
"\t universe 0.45\n",
|
382 |
-
"\t Universe 0.26\n",
|
383 |
-
"\t expansion 0.09\n",
|
384 |
-
"\n",
|
385 |
-
"The Large and Small Magellanic Clouds are irregular [MASK] galaxies and are two satellite galaxies of the Milky Way.\n",
|
386 |
-
"original: dwarf\n",
|
387 |
-
"\t dwarf 0.68\n",
|
388 |
-
"\t satellite 0.13\n",
|
389 |
-
"\t Magellanic 0.08\n",
|
390 |
-
"\n"
|
391 |
-
]
|
392 |
-
}
|
393 |
-
],
|
394 |
-
"source": [
|
395 |
-
"for w, s, rs in zip(masked_words, masked_sentences, results):\n",
|
396 |
-
" print(s)\n",
|
397 |
-
" print('original: {}'.format(w))\n",
|
398 |
-
" for r in rs:\n",
|
399 |
-
" print('\\t {} {:0.2f}'.format(r['token_str'], r['score']))\n",
|
400 |
-
" print()"
|
401 |
-
]
|
402 |
-
}
|
403 |
-
],
|
404 |
-
"metadata": {
|
405 |
-
"kernelspec": {
|
406 |
-
"display_name": "Python 3 (ipykernel)",
|
407 |
-
"language": "python",
|
408 |
-
"name": "python3"
|
409 |
-
},
|
410 |
-
"language_info": {
|
411 |
-
"codemirror_mode": {
|
412 |
-
"name": "ipython",
|
413 |
-
"version": 3
|
414 |
-
},
|
415 |
-
"file_extension": ".py",
|
416 |
-
"mimetype": "text/x-python",
|
417 |
-
"name": "python",
|
418 |
-
"nbconvert_exporter": "python",
|
419 |
-
"pygments_lexer": "ipython3",
|
420 |
-
"version": "3.8.5"
|
421 |
-
}
|
422 |
-
},
|
423 |
-
"nbformat": 4,
|
424 |
-
"nbformat_minor": 5
|
425 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Tutorials/0_Embeddings.ipynb
CHANGED
@@ -40,7 +40,7 @@
|
|
40 |
"name": "stderr",
|
41 |
"output_type": "stream",
|
42 |
"text": [
|
43 |
-
"2022-10-
|
44 |
]
|
45 |
}
|
46 |
],
|
@@ -107,7 +107,7 @@
|
|
107 |
"name": "stderr",
|
108 |
"output_type": "stream",
|
109 |
"text": [
|
110 |
-
"Some weights of the model checkpoint at adsabs/astroBERT were not used when initializing BertModel: ['cls.predictions.transform.dense.
|
111 |
"- This IS expected if you are initializing BertModel from the checkpoint of a model trained on another task or with another architecture (e.g. initializing a BertForSequenceClassification model from a BertForPreTraining model).\n",
|
112 |
"- This IS NOT expected if you are initializing BertModel from the checkpoint of a model that you expect to be exactly identical (initializing a BertForSequenceClassification model from a BertForSequenceClassification model).\n"
|
113 |
]
|
|
|
40 |
"name": "stderr",
|
41 |
"output_type": "stream",
|
42 |
"text": [
|
43 |
+
"2022-10-19 10:05:02.842926: I tensorflow/stream_executor/platform/default/dso_loader.cc:53] Successfully opened dynamic library libcudart.so.11.0\n"
|
44 |
]
|
45 |
}
|
46 |
],
|
|
|
107 |
"name": "stderr",
|
108 |
"output_type": "stream",
|
109 |
"text": [
|
110 |
+
"Some weights of the model checkpoint at adsabs/astroBERT were not used when initializing BertModel: ['cls.predictions.transform.dense.bias', 'cls.predictions.decoder.bias', 'cls.predictions.transform.LayerNorm.bias', 'cls.seq_relationship.bias', 'cls.predictions.bias', 'cls.predictions.transform.dense.weight', 'cls.seq_relationship.weight', 'cls.predictions.transform.LayerNorm.weight', 'cls.predictions.decoder.weight']\n",
|
111 |
"- This IS expected if you are initializing BertModel from the checkpoint of a model trained on another task or with another architecture (e.g. initializing a BertForSequenceClassification model from a BertForPreTraining model).\n",
|
112 |
"- This IS NOT expected if you are initializing BertModel from the checkpoint of a model that you expect to be exactly identical (initializing a BertForSequenceClassification model from a BertForSequenceClassification model).\n"
|
113 |
]
|
config.json
CHANGED
@@ -1,7 +1,7 @@
|
|
1 |
{
|
2 |
-
"_name_or_path": "
|
3 |
"architectures": [
|
4 |
-
"
|
5 |
],
|
6 |
"attention_probs_dropout_prob": 0.1,
|
7 |
"classifier_dropout": null,
|
@@ -9,138 +9,8 @@
|
|
9 |
"hidden_act": "gelu",
|
10 |
"hidden_dropout_prob": 0.1,
|
11 |
"hidden_size": 768,
|
12 |
-
"id2label": {
|
13 |
-
"0": "LABEL_0",
|
14 |
-
"1": "LABEL_1",
|
15 |
-
"2": "LABEL_2",
|
16 |
-
"3": "LABEL_3",
|
17 |
-
"4": "LABEL_4",
|
18 |
-
"5": "LABEL_5",
|
19 |
-
"6": "LABEL_6",
|
20 |
-
"7": "LABEL_7",
|
21 |
-
"8": "LABEL_8",
|
22 |
-
"9": "LABEL_9",
|
23 |
-
"10": "LABEL_10",
|
24 |
-
"11": "LABEL_11",
|
25 |
-
"12": "LABEL_12",
|
26 |
-
"13": "LABEL_13",
|
27 |
-
"14": "LABEL_14",
|
28 |
-
"15": "LABEL_15",
|
29 |
-
"16": "LABEL_16",
|
30 |
-
"17": "LABEL_17",
|
31 |
-
"18": "LABEL_18",
|
32 |
-
"19": "LABEL_19",
|
33 |
-
"20": "LABEL_20",
|
34 |
-
"21": "LABEL_21",
|
35 |
-
"22": "LABEL_22",
|
36 |
-
"23": "LABEL_23",
|
37 |
-
"24": "LABEL_24",
|
38 |
-
"25": "LABEL_25",
|
39 |
-
"26": "LABEL_26",
|
40 |
-
"27": "LABEL_27",
|
41 |
-
"28": "LABEL_28",
|
42 |
-
"29": "LABEL_29",
|
43 |
-
"30": "LABEL_30",
|
44 |
-
"31": "LABEL_31",
|
45 |
-
"32": "LABEL_32",
|
46 |
-
"33": "LABEL_33",
|
47 |
-
"34": "LABEL_34",
|
48 |
-
"35": "LABEL_35",
|
49 |
-
"36": "LABEL_36",
|
50 |
-
"37": "LABEL_37",
|
51 |
-
"38": "LABEL_38",
|
52 |
-
"39": "LABEL_39",
|
53 |
-
"40": "LABEL_40",
|
54 |
-
"41": "LABEL_41",
|
55 |
-
"42": "LABEL_42",
|
56 |
-
"43": "LABEL_43",
|
57 |
-
"44": "LABEL_44",
|
58 |
-
"45": "LABEL_45",
|
59 |
-
"46": "LABEL_46",
|
60 |
-
"47": "LABEL_47",
|
61 |
-
"48": "LABEL_48",
|
62 |
-
"49": "LABEL_49",
|
63 |
-
"50": "LABEL_50",
|
64 |
-
"51": "LABEL_51",
|
65 |
-
"52": "LABEL_52",
|
66 |
-
"53": "LABEL_53",
|
67 |
-
"54": "LABEL_54",
|
68 |
-
"55": "LABEL_55",
|
69 |
-
"56": "LABEL_56",
|
70 |
-
"57": "LABEL_57",
|
71 |
-
"58": "LABEL_58",
|
72 |
-
"59": "LABEL_59",
|
73 |
-
"60": "LABEL_60",
|
74 |
-
"61": "LABEL_61",
|
75 |
-
"62": "LABEL_62"
|
76 |
-
},
|
77 |
"initializer_range": 0.02,
|
78 |
"intermediate_size": 3072,
|
79 |
-
"label2id": {
|
80 |
-
"LABEL_0": 0,
|
81 |
-
"LABEL_1": 1,
|
82 |
-
"LABEL_10": 10,
|
83 |
-
"LABEL_11": 11,
|
84 |
-
"LABEL_12": 12,
|
85 |
-
"LABEL_13": 13,
|
86 |
-
"LABEL_14": 14,
|
87 |
-
"LABEL_15": 15,
|
88 |
-
"LABEL_16": 16,
|
89 |
-
"LABEL_17": 17,
|
90 |
-
"LABEL_18": 18,
|
91 |
-
"LABEL_19": 19,
|
92 |
-
"LABEL_2": 2,
|
93 |
-
"LABEL_20": 20,
|
94 |
-
"LABEL_21": 21,
|
95 |
-
"LABEL_22": 22,
|
96 |
-
"LABEL_23": 23,
|
97 |
-
"LABEL_24": 24,
|
98 |
-
"LABEL_25": 25,
|
99 |
-
"LABEL_26": 26,
|
100 |
-
"LABEL_27": 27,
|
101 |
-
"LABEL_28": 28,
|
102 |
-
"LABEL_29": 29,
|
103 |
-
"LABEL_3": 3,
|
104 |
-
"LABEL_30": 30,
|
105 |
-
"LABEL_31": 31,
|
106 |
-
"LABEL_32": 32,
|
107 |
-
"LABEL_33": 33,
|
108 |
-
"LABEL_34": 34,
|
109 |
-
"LABEL_35": 35,
|
110 |
-
"LABEL_36": 36,
|
111 |
-
"LABEL_37": 37,
|
112 |
-
"LABEL_38": 38,
|
113 |
-
"LABEL_39": 39,
|
114 |
-
"LABEL_4": 4,
|
115 |
-
"LABEL_40": 40,
|
116 |
-
"LABEL_41": 41,
|
117 |
-
"LABEL_42": 42,
|
118 |
-
"LABEL_43": 43,
|
119 |
-
"LABEL_44": 44,
|
120 |
-
"LABEL_45": 45,
|
121 |
-
"LABEL_46": 46,
|
122 |
-
"LABEL_47": 47,
|
123 |
-
"LABEL_48": 48,
|
124 |
-
"LABEL_49": 49,
|
125 |
-
"LABEL_5": 5,
|
126 |
-
"LABEL_50": 50,
|
127 |
-
"LABEL_51": 51,
|
128 |
-
"LABEL_52": 52,
|
129 |
-
"LABEL_53": 53,
|
130 |
-
"LABEL_54": 54,
|
131 |
-
"LABEL_55": 55,
|
132 |
-
"LABEL_56": 56,
|
133 |
-
"LABEL_57": 57,
|
134 |
-
"LABEL_58": 58,
|
135 |
-
"LABEL_59": 59,
|
136 |
-
"LABEL_6": 6,
|
137 |
-
"LABEL_60": 60,
|
138 |
-
"LABEL_61": 61,
|
139 |
-
"LABEL_62": 62,
|
140 |
-
"LABEL_7": 7,
|
141 |
-
"LABEL_8": 8,
|
142 |
-
"LABEL_9": 9
|
143 |
-
},
|
144 |
"layer_norm_eps": 1e-12,
|
145 |
"max_position_embeddings": 512,
|
146 |
"model_type": "bert",
|
@@ -148,7 +18,6 @@
|
|
148 |
"num_hidden_layers": 12,
|
149 |
"pad_token_id": 0,
|
150 |
"position_embedding_type": "absolute",
|
151 |
-
"return_dict": false,
|
152 |
"torch_dtype": "float32",
|
153 |
"transformers_version": "4.17.0",
|
154 |
"type_vocab_size": 2,
|
|
|
1 |
{
|
2 |
+
"_name_or_path": "adsabs/astroBERT",
|
3 |
"architectures": [
|
4 |
+
"BertForPreTraining"
|
5 |
],
|
6 |
"attention_probs_dropout_prob": 0.1,
|
7 |
"classifier_dropout": null,
|
|
|
9 |
"hidden_act": "gelu",
|
10 |
"hidden_dropout_prob": 0.1,
|
11 |
"hidden_size": 768,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
12 |
"initializer_range": 0.02,
|
13 |
"intermediate_size": 3072,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
14 |
"layer_norm_eps": 1e-12,
|
15 |
"max_position_embeddings": 512,
|
16 |
"model_type": "bert",
|
|
|
18 |
"num_hidden_layers": 12,
|
19 |
"pad_token_id": 0,
|
20 |
"position_embedding_type": "absolute",
|
|
|
21 |
"torch_dtype": "float32",
|
22 |
"transformers_version": "4.17.0",
|
23 |
"type_vocab_size": 2,
|
pytorch_model.bin
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:3268b70d3529eb896bf43c0c8fa933f6282b82fa196e2659ab116d49fbbca6ac
|
3 |
+
size 438904355
|