fgrezes commited on
Commit
1565f86
·
1 Parent(s): e0c9e48

Revert "astroBERT model ner model all_labeled_data_run01 checkpoint-169600"

Browse files

This reverts commit e0c9e48487cc3c13021c03807116d83a86e44e35.

.ipynb_checkpoints/README-checkpoint.md DELETED
@@ -1,3 +0,0 @@
1
- ---
2
- license: mit
3
- ---
 
 
 
 
Tutorials/.ipynb_checkpoints/0_Embeddings-checkpoint.html DELETED
The diff for this file is too large to render. See raw diff
 
Tutorials/.ipynb_checkpoints/0_Embeddings-checkpoint.ipynb DELETED
@@ -1,295 +0,0 @@
1
- {
2
- "cells": [
3
- {
4
- "cell_type": "code",
5
- "execution_count": 1,
6
- "id": "274e6135-2d97-4244-9183-65bcb1d24c80",
7
- "metadata": {},
8
- "outputs": [],
9
- "source": [
10
- "# Use the trained astroBERT model to generate embedings of text\n",
11
- "# to be used for downstream tasks"
12
- ]
13
- },
14
- {
15
- "cell_type": "markdown",
16
- "id": "2cc88ed3-6f52-49a2-99c0-344387758ab5",
17
- "metadata": {},
18
- "source": [
19
- "# Tutorial 0: Loading astroBERT to produce text embeddings\n",
20
- "This tutorial will show you how to load astroBERT and produce text embeddings that can be used on downstream tasks."
21
- ]
22
- },
23
- {
24
- "cell_type": "code",
25
- "execution_count": 2,
26
- "id": "9e65c041-9d66-4fb1-96b9-4937000da02e",
27
- "metadata": {},
28
- "outputs": [],
29
- "source": [
30
- "# 1 - load models and tokenizer"
31
- ]
32
- },
33
- {
34
- "cell_type": "code",
35
- "execution_count": 3,
36
- "id": "67d99e96-c532-49ef-8542-a48eef818956",
37
- "metadata": {},
38
- "outputs": [
39
- {
40
- "name": "stderr",
41
- "output_type": "stream",
42
- "text": [
43
- "2022-10-20 16:07:24.705905: I tensorflow/stream_executor/platform/default/dso_loader.cc:53] Successfully opened dynamic library libcudart.so.11.0\n"
44
- ]
45
- }
46
- ],
47
- "source": [
48
- "from transformers import AutoTokenizer, AutoModel"
49
- ]
50
- },
51
- {
52
- "cell_type": "code",
53
- "execution_count": 4,
54
- "id": "00e1d48e-9898-44ef-b00e-43e3ab7fed7d",
55
- "metadata": {},
56
- "outputs": [],
57
- "source": [
58
- "# the model path can either be the name of the Huggingface repository\n",
59
- "remote_model_path = 'adsabs/astroBERT'\n",
60
- "# or the local path to the directory containing model weight and tokenizer vocab\n",
61
- "local_model_path = '../'"
62
- ]
63
- },
64
- {
65
- "cell_type": "code",
66
- "execution_count": 5,
67
- "id": "9bcc6009-6009-463f-a7da-f010c5fae27e",
68
- "metadata": {},
69
- "outputs": [],
70
- "source": [
71
- "# make sure you load the tokenier with do_lower_case=False\n",
72
- "astroBERT_tokenizer = AutoTokenizer.from_pretrained(pretrained_model_name_or_path=remote_model_path,\n",
73
- " use_auth_token=True,\n",
74
- " add_special_tokens=True,\n",
75
- " do_lower_case=False,\n",
76
- " )"
77
- ]
78
- },
79
- {
80
- "cell_type": "code",
81
- "execution_count": 6,
82
- "id": "dbd144f0-6038-4917-94b0-aea9da72cac5",
83
- "metadata": {},
84
- "outputs": [
85
- {
86
- "data": {
87
- "text/plain": [
88
- "PreTrainedTokenizerFast(name_or_path='adsabs/astroBERT', vocab_size=30000, model_max_len=1000000000000000019884624838656, is_fast=True, padding_side='right', truncation_side='right', special_tokens={'unk_token': '[UNK]', 'sep_token': '[SEP]', 'pad_token': '[PAD]', 'cls_token': '[CLS]', 'mask_token': '[MASK]'})"
89
- ]
90
- },
91
- "execution_count": 6,
92
- "metadata": {},
93
- "output_type": "execute_result"
94
- }
95
- ],
96
- "source": [
97
- "astroBERT_tokenizer"
98
- ]
99
- },
100
- {
101
- "cell_type": "code",
102
- "execution_count": 7,
103
- "id": "dd9a9257-cbe4-4908-a9f4-8e1431dc375a",
104
- "metadata": {},
105
- "outputs": [
106
- {
107
- "name": "stderr",
108
- "output_type": "stream",
109
- "text": [
110
- "Some weights of the model checkpoint at adsabs/astroBERT were not used when initializing BertModel: ['cls.predictions.transform.dense.weight', 'cls.predictions.transform.dense.bias', 'cls.seq_relationship.weight', 'cls.predictions.decoder.weight', 'cls.seq_relationship.bias', 'cls.predictions.bias', 'cls.predictions.transform.LayerNorm.bias', 'cls.predictions.decoder.bias', 'cls.predictions.transform.LayerNorm.weight']\n",
111
- "- This IS expected if you are initializing BertModel from the checkpoint of a model trained on another task or with another architecture (e.g. initializing a BertForSequenceClassification model from a BertForPreTraining model).\n",
112
- "- This IS NOT expected if you are initializing BertModel from the checkpoint of a model that you expect to be exactly identical (initializing a BertForSequenceClassification model from a BertForSequenceClassification model).\n"
113
- ]
114
- }
115
- ],
116
- "source": [
117
- "# automodels: defaults to BertModel\n",
118
- "# it's normal to get warnings as a BertModel will not load the weights used for PreTraining\n",
119
- "astroBERT_automodel = AutoModel.from_pretrained(remote_model_path, \n",
120
- " use_auth_token=True,\n",
121
- " )"
122
- ]
123
- },
124
- {
125
- "cell_type": "code",
126
- "execution_count": 8,
127
- "id": "572ddd38-a0dc-4583-a5a6-c4f3b2cb2553",
128
- "metadata": {},
129
- "outputs": [],
130
- "source": [
131
- "# 2 - make some inference, the outputs are the embeddings"
132
- ]
133
- },
134
- {
135
- "cell_type": "code",
136
- "execution_count": 9,
137
- "id": "32fc0b97-4a2d-42ab-aa83-f5d8b39672b1",
138
- "metadata": {},
139
- "outputs": [
140
- {
141
- "name": "stdout",
142
- "output_type": "stream",
143
- "text": [
144
- "torch.Size([3, 54])\n"
145
- ]
146
- }
147
- ],
148
- "source": [
149
- "# list of strings for which we want embeddings\n",
150
- "strings = ['The Chandra X-ray Observatory (CXO), previously known as the Advanced X-ray Astrophysics Facility (AXAF), is a Flagship-class space telescope launched aboard the Space Shuttle Columbia during STS-93 by NASA on July 23, 1999.',\n",
151
- " 'Independent lines of evidence from Type Ia supernovae and the CMB imply that the universe today is dominated by a mysterious form of energy known as dark energy, which appears to homogeneously permeate all of space.',\n",
152
- " 'This work has been developed in the framework of the ‘Darklight’ programme, supported by the European Research Council through an Advanced Research Grant to LG (Project # 291521).'\n",
153
- " ]\n",
154
- "\n",
155
- "# tokenizer the strings, with padding (needed to process multiple strings efficiently)\n",
156
- "inputs = astroBERT_tokenizer(strings, \n",
157
- " padding=True, \n",
158
- " return_tensors='pt'\n",
159
- " )\n",
160
- "\n",
161
- "# check the shape of the inputs\n",
162
- "print(inputs['input_ids'].shape)"
163
- ]
164
- },
165
- {
166
- "cell_type": "code",
167
- "execution_count": 10,
168
- "id": "8b7c9456-573a-48e7-9bc2-839fcc25631d",
169
- "metadata": {},
170
- "outputs": [],
171
- "source": [
172
- "# pass the inputs through astroBERT\n",
173
- "import torch\n",
174
- "# no need for gradients, since we are only doing inference\n",
175
- "with torch.no_grad():\n",
176
- " output = astroBERT_automodel(**inputs, \n",
177
- " output_hidden_states=False\n",
178
- " ) "
179
- ]
180
- },
181
- {
182
- "cell_type": "code",
183
- "execution_count": 11,
184
- "id": "116de57a-bb31-48d7-9556-64e01a16d56f",
185
- "metadata": {},
186
- "outputs": [
187
- {
188
- "name": "stdout",
189
- "output_type": "stream",
190
- "text": [
191
- "torch.Size([3, 54, 768])\n"
192
- ]
193
- }
194
- ],
195
- "source": [
196
- "# BertModel outputs two tensors: last_hidden_state (our embeddings) and pooler_output (to be discarded as it's not meaningful)\n",
197
- "# see https://huggingface.co/docs/transformers/model_doc/bert#transformers.BertModel.forward\n",
198
- "# embeddings will have shape = (# of strings, size of tokenized strings(padded), 768 (BERT embedding size))\n",
199
- "embeddings = output[0]\n",
200
- "print(embeddings.shape)"
201
- ]
202
- },
203
- {
204
- "cell_type": "code",
205
- "execution_count": 12,
206
- "id": "38e45291-6fd7-48cf-83df-e1cc5c8a699f",
207
- "metadata": {},
208
- "outputs": [
209
- {
210
- "name": "stdout",
211
- "output_type": "stream",
212
- "text": [
213
- "tensor([[ 0.5546, 0.9121, 0.6550, ..., -0.1925, 0.7077, -0.2405],\n",
214
- " [ 0.6252, 0.3175, 1.0899, ..., 0.0576, 0.0529, 0.0603],\n",
215
- " [ 0.1803, -0.4567, 1.2688, ..., 0.6026, -0.5718, -0.2060],\n",
216
- " ...,\n",
217
- " [-0.4397, -0.5334, 1.1682, ..., 0.9541, 0.4046, -0.4756],\n",
218
- " [-0.3911, 0.7793, 0.2432, ..., 0.2268, -1.0489, -1.4864],\n",
219
- " [-0.4529, -0.7346, 0.0675, ..., -0.3246, -0.2333, -0.6154]])\n"
220
- ]
221
- }
222
- ],
223
- "source": [
224
- "print(embeddings[0])"
225
- ]
226
- },
227
- {
228
- "cell_type": "code",
229
- "execution_count": 13,
230
- "id": "26acf89f-b7fc-4872-ac81-0ee65030b465",
231
- "metadata": {},
232
- "outputs": [],
233
- "source": [
234
- "# If you wish to use the hidden states as additional embeddings, you can use output_hidden_states=True\n",
235
- "\n",
236
- "# no need for gradients, since we are only doing inference\n",
237
- "with torch.no_grad():\n",
238
- " output = astroBERT_automodel(**inputs, \n",
239
- " output_hidden_states=True\n",
240
- " ) "
241
- ]
242
- },
243
- {
244
- "cell_type": "code",
245
- "execution_count": 14,
246
- "id": "a54314e9-5dcb-4c10-b0d2-219a93c7d16e",
247
- "metadata": {},
248
- "outputs": [
249
- {
250
- "name": "stdout",
251
- "output_type": "stream",
252
- "text": [
253
- "13\n",
254
- "torch.Size([3, 54, 768])\n"
255
- ]
256
- }
257
- ],
258
- "source": [
259
- "# This will produce 13 embeddings, one for each hidden layer\n",
260
- "embeddings = output[2]\n",
261
- "print(len(embeddings))\n",
262
- "print(embeddings[0].shape)"
263
- ]
264
- },
265
- {
266
- "cell_type": "code",
267
- "execution_count": null,
268
- "id": "76765dcb-8035-44b2-a5a3-db181b561095",
269
- "metadata": {},
270
- "outputs": [],
271
- "source": []
272
- }
273
- ],
274
- "metadata": {
275
- "kernelspec": {
276
- "display_name": "Python 3 (ipykernel)",
277
- "language": "python",
278
- "name": "python3"
279
- },
280
- "language_info": {
281
- "codemirror_mode": {
282
- "name": "ipython",
283
- "version": 3
284
- },
285
- "file_extension": ".py",
286
- "mimetype": "text/x-python",
287
- "name": "python",
288
- "nbconvert_exporter": "python",
289
- "pygments_lexer": "ipython3",
290
- "version": "3.8.5"
291
- }
292
- },
293
- "nbformat": 4,
294
- "nbformat_minor": 5
295
- }
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Tutorials/.ipynb_checkpoints/1_Fill-Mask-checkpoint.ipynb DELETED
@@ -1,425 +0,0 @@
1
- {
2
- "cells": [
3
- {
4
- "cell_type": "code",
5
- "execution_count": 1,
6
- "id": "33df4373-a37b-4fd0-bc67-c297812871e4",
7
- "metadata": {},
8
- "outputs": [],
9
- "source": [
10
- "# Use the trained astroBERT model with the fill-mask pipeline"
11
- ]
12
- },
13
- {
14
- "cell_type": "markdown",
15
- "id": "164ee9bd-27f9-40a4-8461-3ce12fc928b0",
16
- "metadata": {},
17
- "source": [
18
- "# Tutorial 1: using astroBERT with the fill-mask pipeline"
19
- ]
20
- },
21
- {
22
- "cell_type": "code",
23
- "execution_count": 2,
24
- "id": "59429414-f07e-45e5-8825-6fc6a8d26653",
25
- "metadata": {},
26
- "outputs": [],
27
- "source": [
28
- "# 1 - load models and tokenizer"
29
- ]
30
- },
31
- {
32
- "cell_type": "code",
33
- "execution_count": 3,
34
- "id": "db8ee724-6a2a-4ea5-820e-5e2aa0a0f622",
35
- "metadata": {},
36
- "outputs": [
37
- {
38
- "name": "stderr",
39
- "output_type": "stream",
40
- "text": [
41
- "2022-10-17 21:17:27.369794: I tensorflow/stream_executor/platform/default/dso_loader.cc:53] Successfully opened dynamic library libcudart.so.11.0\n"
42
- ]
43
- }
44
- ],
45
- "source": [
46
- "from transformers import AutoTokenizer, BertForMaskedLM"
47
- ]
48
- },
49
- {
50
- "cell_type": "code",
51
- "execution_count": 4,
52
- "id": "9a98fb63-0793-4684-a202-931cad17c7ca",
53
- "metadata": {},
54
- "outputs": [],
55
- "source": [
56
- "# the model path can either be the name of the Huggingface repository\n",
57
- "remote_model_path = 'adsabs/astroBERT'\n",
58
- "# or the local path to the directory containing model weight and tokenizer vocab\n",
59
- "local_model_path = '../'"
60
- ]
61
- },
62
- {
63
- "cell_type": "code",
64
- "execution_count": 5,
65
- "id": "25fedd16-283b-4817-9b19-2a5ff1c5ba88",
66
- "metadata": {},
67
- "outputs": [],
68
- "source": [
69
- "# make sure you load the tokenier with do_lower_case=False\n",
70
- "astroBERT_tokenizer = AutoTokenizer.from_pretrained(pretrained_model_name_or_path=remote_model_path,\n",
71
- " use_auth_token=True,\n",
72
- " add_special_tokens=False,\n",
73
- " do_lower_case=False,\n",
74
- " )"
75
- ]
76
- },
77
- {
78
- "cell_type": "code",
79
- "execution_count": 6,
80
- "id": "fb10db03-a5f0-44f7-8d41-0285f898a90d",
81
- "metadata": {},
82
- "outputs": [
83
- {
84
- "data": {
85
- "application/vnd.jupyter.widget-view+json": {
86
- "model_id": "b6e0bf5ee71b4986a682adb43e994ede",
87
- "version_major": 2,
88
- "version_minor": 0
89
- },
90
- "text/plain": [
91
- "Downloading: 0%| | 0.00/666 [00:00<?, ?B/s]"
92
- ]
93
- },
94
- "metadata": {},
95
- "output_type": "display_data"
96
- },
97
- {
98
- "name": "stderr",
99
- "output_type": "stream",
100
- "text": [
101
- "Some weights of the model checkpoint at adsabs/astroBERT were not used when initializing BertForMaskedLM: ['cls.seq_relationship.bias', 'cls.seq_relationship.weight']\n",
102
- "- This IS expected if you are initializing BertForMaskedLM from the checkpoint of a model trained on another task or with another architecture (e.g. initializing a BertForSequenceClassification model from a BertForPreTraining model).\n",
103
- "- This IS NOT expected if you are initializing BertForMaskedLM from the checkpoint of a model that you expect to be exactly identical (initializing a BertForSequenceClassification model from a BertForSequenceClassification model).\n"
104
- ]
105
- }
106
- ],
107
- "source": [
108
- "astroBERT_automodel_for_mlm = BertForMaskedLM.from_pretrained(pretrained_model_name_or_path=remote_model_path, \n",
109
- " use_auth_token=True,\n",
110
- " )"
111
- ]
112
- },
113
- {
114
- "cell_type": "code",
115
- "execution_count": 7,
116
- "id": "e8b9b073-3876-4d0b-b8b2-e46fa25c76f0",
117
- "metadata": {},
118
- "outputs": [],
119
- "source": [
120
- "# for pipeline to work you have to ensure that the model returns a dict\n",
121
- "astroBERT_automodel_for_mlm.config.return_dict=True"
122
- ]
123
- },
124
- {
125
- "cell_type": "code",
126
- "execution_count": 8,
127
- "id": "94338f6f-3467-4696-bf7d-f41a12eb889d",
128
- "metadata": {},
129
- "outputs": [],
130
- "source": [
131
- "from transformers import FillMaskPipeline"
132
- ]
133
- },
134
- {
135
- "cell_type": "code",
136
- "execution_count": 9,
137
- "id": "7b980d9f-4d86-4b54-9324-d57dd9b4b64f",
138
- "metadata": {},
139
- "outputs": [],
140
- "source": [
141
- "astroBERT_pipeline = FillMaskPipeline(model=astroBERT_automodel_for_mlm,\n",
142
- " tokenizer=astroBERT_tokenizer,\n",
143
- " task='fill-mask',\n",
144
- " )"
145
- ]
146
- },
147
- {
148
- "cell_type": "code",
149
- "execution_count": 10,
150
- "id": "5cb4d27b-ee3c-4ac7-ace2-4cc57ea9ce7a",
151
- "metadata": {},
152
- "outputs": [],
153
- "source": [
154
- "clean_sentences = ['M67 is one of the most studied open clusters.',\n",
155
- "'A solar twin is a star with atmospheric parameters and chemical composition very similar to our Sun.',\n",
156
- "'The dynamical evolution of planets close to their star is affected by tidal effects',\n",
157
- "'The Kepler satellite collected high-precision long-term and continuous light curves for more than 100,000 solar-type stars',\n",
158
- "'The Local Group is composed of the Milky Way, the Andromeda Galaxy, and numerous smaller satellite galaxies.',\n",
159
- "'Cepheid variables are used to determine the distances to galaxies in the local universe.',\n",
160
- "'Jets are created and sustained by accretion of matter onto a compact massive object.',\n",
161
- "'A single star of one solar mass will evolve into a white dwarf.',\n",
162
- "'The Very Large Array observes the sky at radio wavelengths.',\n",
163
- "'Elements heavier than iron are generated in supernovae explosions.',\n",
164
- "'Spitzer was the first spacecraft to fly in an Earth-trailing orbit.',\n",
165
- "'Galaxy mergers can occur when two (or more) galaxies collide',\n",
166
- "'Dark matter is a hypothetical form of matter thought to account for approximately 85% of the matter in the universe.',\n",
167
- "'The Local Group of galaxies is pulled toward The Great Attractor.',\n",
168
- "'The Moon is the only satellite of the Earth.',\n",
169
- "'Galaxies are categorized according to their visual morphology as elliptical, spiral, or irregular.',\n",
170
- "'Stars are made mostly of hydrogen.',\n",
171
- "'Comet tails are created as comets approach the Sun.',\n",
172
- "'Pluto is a dwarf planet in the Kuiper Belt.',\n",
173
- "'The Milky Way has a supermassive black hole, Sagittarius A*, at its center.',\n",
174
- "'Andromeda is the nearest large galaxy to the Milky Way and is roughly its equal in mass.',\n",
175
- "'The interstellar medium is the gas and dust between stars.',\n",
176
- "'The cosmic microwave background (CMB, CMBR), in Big Bang cosmology, is electromagnetic radiation which is a remnant from an early stage of the universe.',\n",
177
- "'The Large and Small Magellanic Clouds are irregular dwarf galaxies and are two satellite galaxies of the Milky Way.']"
178
- ]
179
- },
180
- {
181
- "cell_type": "code",
182
- "execution_count": 11,
183
- "id": "9f3a6fdc-182f-4edb-8ef4-7e4253c2d4db",
184
- "metadata": {},
185
- "outputs": [],
186
- "source": [
187
- "masked_sentences = ['M67 is one of the most studied [MASK] clusters.',\n",
188
- "'A solar twin is a star with [MASK] parameters and chemical composition very similar to our Sun.',\n",
189
- "'The dynamical evolution of planets close to their star is affected by [MASK] effects',\n",
190
- "'The Kepler satellite collected high-precision long-term and continuous light [MASK] for more than 100,000 solar-type stars',\n",
191
- "'The Local Group is composed of the Milky Way, the [MASK] Galaxy, and numerous smaller satellite galaxies.',\n",
192
- "'Cepheid variables are used to determine the [MASK] to galaxies in the local universe.',\n",
193
- "'Jets are created and sustained by [MASK] of matter onto a compact massive object.',\n",
194
- "'A single star of one solar mass will evolve into a [MASK] dwarf.',\n",
195
- "'The Very Large Array observes the sky at [MASK] wavelengths.',\n",
196
- "'Elements heavier than [MASK] are generated in supernovae explosions.',\n",
197
- "'Spitzer was the first [MASK] to fly in an Earth-trailing orbit.',\n",
198
- "'Galaxy [MASK] can occur when two (or more) galaxies collide',\n",
199
- "'Dark [MASK] is a hypothetical form of matter thought to account for approximately 85% of the matter in the universe.',\n",
200
- "'The Local Group of galaxies is pulled toward The Great [MASK] .',\n",
201
- "'The Moon is the only [MASK] of the Earth.',\n",
202
- "'Galaxies are categorized according to their visual morphology as [MASK] , spiral, or irregular.',\n",
203
- "'Stars are made mostly of [MASK] .',\n",
204
- "'Comet tails are created as comets approach the [MASK] .',\n",
205
- "'Pluto is a dwarf [MASK] in the Kuiper Belt.',\n",
206
- "'The Milky Way has a [MASK] black hole, Sagittarius A*, at its center.',\n",
207
- "'Andromeda is the nearest large [MASK] to the Milky Way and is roughly its equal in mass.',\n",
208
- "'The [MASK] medium is the gas and dust between stars.',\n",
209
- "'The cosmic microwave background (CMB, CMBR), in Big Bang cosmology, is electromagnetic radiation which is a remnant from an early stage of the [MASK] .',\n",
210
- "'The Large and Small Magellanic Clouds are irregular [MASK] galaxies and are two satellite galaxies of the Milky Way.',\n",
211
- "]"
212
- ]
213
- },
214
- {
215
- "cell_type": "code",
216
- "execution_count": 12,
217
- "id": "d4c729ad-89f4-4e70-b433-a65b6035c10b",
218
- "metadata": {},
219
- "outputs": [],
220
- "source": [
221
- "masked_words = [x for s1,s2 in zip(clean_sentences, masked_sentences) \n",
222
- " for x,y in zip(s1.split(), s2.split()) if y=='[MASK]']"
223
- ]
224
- },
225
- {
226
- "cell_type": "code",
227
- "execution_count": 13,
228
- "id": "2a07a641-61a7-42dd-b70e-62eb97ad4e4b",
229
- "metadata": {},
230
- "outputs": [],
231
- "source": [
232
- "results = astroBERT_pipeline(inputs=masked_sentences, \n",
233
- " top_k=3\n",
234
- " )"
235
- ]
236
- },
237
- {
238
- "cell_type": "code",
239
- "execution_count": 14,
240
- "id": "ec2880d9-a8ad-4919-ab5b-732f3bcc21ae",
241
- "metadata": {},
242
- "outputs": [
243
- {
244
- "name": "stdout",
245
- "output_type": "stream",
246
- "text": [
247
- "M67 is one of the most studied [MASK] clusters.\n",
248
- "original: open\n",
249
- "\t open 0.87\n",
250
- "\t globular 0.07\n",
251
- "\t star 0.03\n",
252
- "\n",
253
- "A solar twin is a star with [MASK] parameters and chemical composition very similar to our Sun.\n",
254
- "original: atmospheric\n",
255
- "\t fundamental 0.56\n",
256
- "\t physical 0.25\n",
257
- "\t stellar 0.05\n",
258
- "\n",
259
- "The dynamical evolution of planets close to their star is affected by [MASK] effects\n",
260
- "original: tidal\n",
261
- "\t tidal 0.07\n",
262
- "\t electromagnetic 0.05\n",
263
- "\t electrostatic 0.04\n",
264
- "\n",
265
- "The Kepler satellite collected high-precision long-term and continuous light [MASK] for more than 100,000 solar-type stars\n",
266
- "original: curves\n",
267
- "\t curves 0.43\n",
268
- "\t ##s 0.04\n",
269
- "\t conditions 0.04\n",
270
- "\n",
271
- "The Local Group is composed of the Milky Way, the [MASK] Galaxy, and numerous smaller satellite galaxies.\n",
272
- "original: Andromeda\n",
273
- "\t Andromeda 0.99\n",
274
- "\t M31 0.00\n",
275
- "\t Sagittarius 0.00\n",
276
- "\n",
277
- "Cepheid variables are used to determine the [MASK] to galaxies in the local universe.\n",
278
- "original: distances\n",
279
- "\t distances 0.79\n",
280
- "\t distance 0.21\n",
281
- "\t redshifts 0.00\n",
282
- "\n",
283
- "Jets are created and sustained by [MASK] of matter onto a compact massive object.\n",
284
- "original: accretion\n",
285
- "\t accretion 0.79\n",
286
- "\t infall 0.13\n",
287
- "\t fall 0.02\n",
288
- "\n",
289
- "A single star of one solar mass will evolve into a [MASK] dwarf.\n",
290
- "original: white\n",
291
- "\t white 0.77\n",
292
- "\t brown 0.19\n",
293
- "\t red 0.02\n",
294
- "\n",
295
- "The Very Large Array observes the sky at [MASK] wavelengths.\n",
296
- "original: radio\n",
297
- "\t radio 0.29\n",
298
- "\t centimeter 0.10\n",
299
- "\t all 0.09\n",
300
- "\n",
301
- "Elements heavier than [MASK] are generated in supernovae explosions.\n",
302
- "original: iron\n",
303
- "\t iron 0.34\n",
304
- "\t helium 0.16\n",
305
- "\t oxygen 0.07\n",
306
- "\n",
307
- "Spitzer was the first [MASK] to fly in an Earth-trailing orbit.\n",
308
- "original: spacecraft\n",
309
- "\t satellite 0.42\n",
310
- "\t spacecraft 0.20\n",
311
- "\t observatory 0.16\n",
312
- "\n",
313
- "Galaxy [MASK] can occur when two (or more) galaxies collide\n",
314
- "original: mergers\n",
315
- "\t . 0.26\n",
316
- "\t A 0.05\n",
317
- "\t 1 0.04\n",
318
- "\n",
319
- "Dark [MASK] is a hypothetical form of matter thought to account for approximately 85% of the matter in the universe.\n",
320
- "original: matter\n",
321
- "\t energy 0.64\n",
322
- "\t Energy 0.24\n",
323
- "\t matter 0.10\n",
324
- "\n",
325
- "The Local Group of galaxies is pulled toward The Great [MASK] .\n",
326
- "original: Attractor.\n",
327
- "\t Wall 0.96\n",
328
- "\t East 0.01\n",
329
- "\t Planet 0.00\n",
330
- "\n",
331
- "The Moon is the only [MASK] of the Earth.\n",
332
- "original: satellite\n",
333
- "\t satellite 0.38\n",
334
- "\t moon 0.31\n",
335
- "\t constituent 0.07\n",
336
- "\n",
337
- "Galaxies are categorized according to their visual morphology as [MASK] , spiral, or irregular.\n",
338
- "original: elliptical,\n",
339
- "\t elliptical 0.92\n",
340
- "\t spheroidal 0.02\n",
341
- "\t irregular 0.01\n",
342
- "\n",
343
- "Stars are made mostly of [MASK] .\n",
344
- "original: hydrogen.\n",
345
- "\t hydrogen 0.20\n",
346
- "\t helium 0.14\n",
347
- "\t carbon 0.12\n",
348
- "\n",
349
- "Comet tails are created as comets approach the [MASK] .\n",
350
- "original: Sun.\n",
351
- "\t Sun 0.45\n",
352
- "\t sun 0.23\n",
353
- "\t Earth 0.19\n",
354
- "\n",
355
- "Pluto is a dwarf [MASK] in the Kuiper Belt.\n",
356
- "original: planet\n",
357
- "\t planet 0.96\n",
358
- "\t satellite 0.02\n",
359
- "\t nova 0.00\n",
360
- "\n",
361
- "The Milky Way has a [MASK] black hole, Sagittarius A*, at its center.\n",
362
- "original: supermassive\n",
363
- "\t supermassive 0.80\n",
364
- "\t massive 0.17\n",
365
- "\t stellar 0.00\n",
366
- "\n",
367
- "Andromeda is the nearest large [MASK] to the Milky Way and is roughly its equal in mass.\n",
368
- "original: galaxy\n",
369
- "\t galaxy 0.68\n",
370
- "\t spiral 0.12\n",
371
- "\t satellite 0.09\n",
372
- "\n",
373
- "The [MASK] medium is the gas and dust between stars.\n",
374
- "original: interstellar\n",
375
- "\t interstellar 0.87\n",
376
- "\t interplanetary 0.05\n",
377
- "\t intracluster 0.03\n",
378
- "\n",
379
- "The cosmic microwave background (CMB, CMBR), in Big Bang cosmology, is electromagnetic radiation which is a remnant from an early stage of the [MASK] .\n",
380
- "original: universe.\n",
381
- "\t universe 0.45\n",
382
- "\t Universe 0.26\n",
383
- "\t expansion 0.09\n",
384
- "\n",
385
- "The Large and Small Magellanic Clouds are irregular [MASK] galaxies and are two satellite galaxies of the Milky Way.\n",
386
- "original: dwarf\n",
387
- "\t dwarf 0.68\n",
388
- "\t satellite 0.13\n",
389
- "\t Magellanic 0.08\n",
390
- "\n"
391
- ]
392
- }
393
- ],
394
- "source": [
395
- "for w, s, rs in zip(masked_words, masked_sentences, results):\n",
396
- " print(s)\n",
397
- " print('original: {}'.format(w))\n",
398
- " for r in rs:\n",
399
- " print('\\t {} {:0.2f}'.format(r['token_str'], r['score']))\n",
400
- " print()"
401
- ]
402
- }
403
- ],
404
- "metadata": {
405
- "kernelspec": {
406
- "display_name": "Python 3 (ipykernel)",
407
- "language": "python",
408
- "name": "python3"
409
- },
410
- "language_info": {
411
- "codemirror_mode": {
412
- "name": "ipython",
413
- "version": 3
414
- },
415
- "file_extension": ".py",
416
- "mimetype": "text/x-python",
417
- "name": "python",
418
- "nbconvert_exporter": "python",
419
- "pygments_lexer": "ipython3",
420
- "version": "3.8.5"
421
- }
422
- },
423
- "nbformat": 4,
424
- "nbformat_minor": 5
425
- }
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Tutorials/0_Embeddings.ipynb CHANGED
@@ -40,7 +40,7 @@
40
  "name": "stderr",
41
  "output_type": "stream",
42
  "text": [
43
- "2022-10-20 16:07:24.705905: I tensorflow/stream_executor/platform/default/dso_loader.cc:53] Successfully opened dynamic library libcudart.so.11.0\n"
44
  ]
45
  }
46
  ],
@@ -107,7 +107,7 @@
107
  "name": "stderr",
108
  "output_type": "stream",
109
  "text": [
110
- "Some weights of the model checkpoint at adsabs/astroBERT were not used when initializing BertModel: ['cls.predictions.transform.dense.weight', 'cls.predictions.transform.dense.bias', 'cls.seq_relationship.weight', 'cls.predictions.decoder.weight', 'cls.seq_relationship.bias', 'cls.predictions.bias', 'cls.predictions.transform.LayerNorm.bias', 'cls.predictions.decoder.bias', 'cls.predictions.transform.LayerNorm.weight']\n",
111
  "- This IS expected if you are initializing BertModel from the checkpoint of a model trained on another task or with another architecture (e.g. initializing a BertForSequenceClassification model from a BertForPreTraining model).\n",
112
  "- This IS NOT expected if you are initializing BertModel from the checkpoint of a model that you expect to be exactly identical (initializing a BertForSequenceClassification model from a BertForSequenceClassification model).\n"
113
  ]
 
40
  "name": "stderr",
41
  "output_type": "stream",
42
  "text": [
43
+ "2022-10-19 10:05:02.842926: I tensorflow/stream_executor/platform/default/dso_loader.cc:53] Successfully opened dynamic library libcudart.so.11.0\n"
44
  ]
45
  }
46
  ],
 
107
  "name": "stderr",
108
  "output_type": "stream",
109
  "text": [
110
+ "Some weights of the model checkpoint at adsabs/astroBERT were not used when initializing BertModel: ['cls.predictions.transform.dense.bias', 'cls.predictions.decoder.bias', 'cls.predictions.transform.LayerNorm.bias', 'cls.seq_relationship.bias', 'cls.predictions.bias', 'cls.predictions.transform.dense.weight', 'cls.seq_relationship.weight', 'cls.predictions.transform.LayerNorm.weight', 'cls.predictions.decoder.weight']\n",
111
  "- This IS expected if you are initializing BertModel from the checkpoint of a model trained on another task or with another architecture (e.g. initializing a BertForSequenceClassification model from a BertForPreTraining model).\n",
112
  "- This IS NOT expected if you are initializing BertModel from the checkpoint of a model that you expect to be exactly identical (initializing a BertForSequenceClassification model from a BertForSequenceClassification model).\n"
113
  ]
config.json CHANGED
@@ -1,7 +1,7 @@
1
  {
2
- "_name_or_path": "../astroBERT-Tasks/Finetuning_1_NER/trained-models/NER_astroBERT_all_labeled_data_run01/checkpoint-169600/",
3
  "architectures": [
4
- "BertForTokenClassification"
5
  ],
6
  "attention_probs_dropout_prob": 0.1,
7
  "classifier_dropout": null,
@@ -9,138 +9,8 @@
9
  "hidden_act": "gelu",
10
  "hidden_dropout_prob": 0.1,
11
  "hidden_size": 768,
12
- "id2label": {
13
- "0": "LABEL_0",
14
- "1": "LABEL_1",
15
- "2": "LABEL_2",
16
- "3": "LABEL_3",
17
- "4": "LABEL_4",
18
- "5": "LABEL_5",
19
- "6": "LABEL_6",
20
- "7": "LABEL_7",
21
- "8": "LABEL_8",
22
- "9": "LABEL_9",
23
- "10": "LABEL_10",
24
- "11": "LABEL_11",
25
- "12": "LABEL_12",
26
- "13": "LABEL_13",
27
- "14": "LABEL_14",
28
- "15": "LABEL_15",
29
- "16": "LABEL_16",
30
- "17": "LABEL_17",
31
- "18": "LABEL_18",
32
- "19": "LABEL_19",
33
- "20": "LABEL_20",
34
- "21": "LABEL_21",
35
- "22": "LABEL_22",
36
- "23": "LABEL_23",
37
- "24": "LABEL_24",
38
- "25": "LABEL_25",
39
- "26": "LABEL_26",
40
- "27": "LABEL_27",
41
- "28": "LABEL_28",
42
- "29": "LABEL_29",
43
- "30": "LABEL_30",
44
- "31": "LABEL_31",
45
- "32": "LABEL_32",
46
- "33": "LABEL_33",
47
- "34": "LABEL_34",
48
- "35": "LABEL_35",
49
- "36": "LABEL_36",
50
- "37": "LABEL_37",
51
- "38": "LABEL_38",
52
- "39": "LABEL_39",
53
- "40": "LABEL_40",
54
- "41": "LABEL_41",
55
- "42": "LABEL_42",
56
- "43": "LABEL_43",
57
- "44": "LABEL_44",
58
- "45": "LABEL_45",
59
- "46": "LABEL_46",
60
- "47": "LABEL_47",
61
- "48": "LABEL_48",
62
- "49": "LABEL_49",
63
- "50": "LABEL_50",
64
- "51": "LABEL_51",
65
- "52": "LABEL_52",
66
- "53": "LABEL_53",
67
- "54": "LABEL_54",
68
- "55": "LABEL_55",
69
- "56": "LABEL_56",
70
- "57": "LABEL_57",
71
- "58": "LABEL_58",
72
- "59": "LABEL_59",
73
- "60": "LABEL_60",
74
- "61": "LABEL_61",
75
- "62": "LABEL_62"
76
- },
77
  "initializer_range": 0.02,
78
  "intermediate_size": 3072,
79
- "label2id": {
80
- "LABEL_0": 0,
81
- "LABEL_1": 1,
82
- "LABEL_10": 10,
83
- "LABEL_11": 11,
84
- "LABEL_12": 12,
85
- "LABEL_13": 13,
86
- "LABEL_14": 14,
87
- "LABEL_15": 15,
88
- "LABEL_16": 16,
89
- "LABEL_17": 17,
90
- "LABEL_18": 18,
91
- "LABEL_19": 19,
92
- "LABEL_2": 2,
93
- "LABEL_20": 20,
94
- "LABEL_21": 21,
95
- "LABEL_22": 22,
96
- "LABEL_23": 23,
97
- "LABEL_24": 24,
98
- "LABEL_25": 25,
99
- "LABEL_26": 26,
100
- "LABEL_27": 27,
101
- "LABEL_28": 28,
102
- "LABEL_29": 29,
103
- "LABEL_3": 3,
104
- "LABEL_30": 30,
105
- "LABEL_31": 31,
106
- "LABEL_32": 32,
107
- "LABEL_33": 33,
108
- "LABEL_34": 34,
109
- "LABEL_35": 35,
110
- "LABEL_36": 36,
111
- "LABEL_37": 37,
112
- "LABEL_38": 38,
113
- "LABEL_39": 39,
114
- "LABEL_4": 4,
115
- "LABEL_40": 40,
116
- "LABEL_41": 41,
117
- "LABEL_42": 42,
118
- "LABEL_43": 43,
119
- "LABEL_44": 44,
120
- "LABEL_45": 45,
121
- "LABEL_46": 46,
122
- "LABEL_47": 47,
123
- "LABEL_48": 48,
124
- "LABEL_49": 49,
125
- "LABEL_5": 5,
126
- "LABEL_50": 50,
127
- "LABEL_51": 51,
128
- "LABEL_52": 52,
129
- "LABEL_53": 53,
130
- "LABEL_54": 54,
131
- "LABEL_55": 55,
132
- "LABEL_56": 56,
133
- "LABEL_57": 57,
134
- "LABEL_58": 58,
135
- "LABEL_59": 59,
136
- "LABEL_6": 6,
137
- "LABEL_60": 60,
138
- "LABEL_61": 61,
139
- "LABEL_62": 62,
140
- "LABEL_7": 7,
141
- "LABEL_8": 8,
142
- "LABEL_9": 9
143
- },
144
  "layer_norm_eps": 1e-12,
145
  "max_position_embeddings": 512,
146
  "model_type": "bert",
@@ -148,7 +18,6 @@
148
  "num_hidden_layers": 12,
149
  "pad_token_id": 0,
150
  "position_embedding_type": "absolute",
151
- "return_dict": false,
152
  "torch_dtype": "float32",
153
  "transformers_version": "4.17.0",
154
  "type_vocab_size": 2,
 
1
  {
2
+ "_name_or_path": "adsabs/astroBERT",
3
  "architectures": [
4
+ "BertForPreTraining"
5
  ],
6
  "attention_probs_dropout_prob": 0.1,
7
  "classifier_dropout": null,
 
9
  "hidden_act": "gelu",
10
  "hidden_dropout_prob": 0.1,
11
  "hidden_size": 768,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
12
  "initializer_range": 0.02,
13
  "intermediate_size": 3072,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
14
  "layer_norm_eps": 1e-12,
15
  "max_position_embeddings": 512,
16
  "model_type": "bert",
 
18
  "num_hidden_layers": 12,
19
  "pad_token_id": 0,
20
  "position_embedding_type": "absolute",
 
21
  "torch_dtype": "float32",
22
  "transformers_version": "4.17.0",
23
  "type_vocab_size": 2,
pytorch_model.bin CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:069bc02d7c193d06fc9d23ce25f59129ff2c6724d424d60d600343e52f9e12f7
3
- size 434238321
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3268b70d3529eb896bf43c0c8fa933f6282b82fa196e2659ab116d49fbbca6ac
3
+ size 438904355