adriansanz commited on
Commit
182d2f5
1 Parent(s): 6bb2afe

Add new SentenceTransformer model.

Browse files
.gitattributes CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ tokenizer.json filter=lfs diff=lfs merge=lfs -text
1_Pooling/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 1024,
3
+ "pooling_mode_cls_token": true,
4
+ "pooling_mode_mean_tokens": false,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true
10
+ }
README.md ADDED
@@ -0,0 +1,887 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: BAAI/bge-m3
3
+ library_name: sentence-transformers
4
+ metrics:
5
+ - cosine_accuracy@1
6
+ - cosine_accuracy@3
7
+ - cosine_accuracy@5
8
+ - cosine_accuracy@10
9
+ - cosine_precision@1
10
+ - cosine_precision@3
11
+ - cosine_precision@5
12
+ - cosine_precision@10
13
+ - cosine_recall@1
14
+ - cosine_recall@3
15
+ - cosine_recall@5
16
+ - cosine_recall@10
17
+ - cosine_ndcg@10
18
+ - cosine_mrr@10
19
+ - cosine_map@100
20
+ pipeline_tag: sentence-similarity
21
+ tags:
22
+ - sentence-transformers
23
+ - sentence-similarity
24
+ - feature-extraction
25
+ - generated_from_trainer
26
+ - dataset_size:6749
27
+ - loss:MatryoshkaLoss
28
+ - loss:MultipleNegativesRankingLoss
29
+ widget:
30
+ - source_sentence: La presentació de la comunicació prèvia, acompanyada de la documentació
31
+ exigida, habilita a la persona interessada a executar els actes que s'hi descriuen,
32
+ des del dia de la seva presentació, sens perjudici de les facultats de comprovació,
33
+ control i inspecció de l'Ajuntament.
34
+ sentences:
35
+ - Quin és el resultat de la llicència d'usos i obres provisionals en relació amb
36
+ altres autoritzacions administratives?
37
+ - Quin és el paper de la persona interessada en aquest tràmit?
38
+ - Quin és el tipus d'impost que es beneficia d'aquest tràmit?
39
+ - source_sentence: L'aportació de residus a la Deixalleria municipal us permet obtenir
40
+ una bonificació de la taxa de residus del 15%.
41
+ sentences:
42
+ - Quin és el benefici de la Deixalleria municipal?
43
+ - Quin és el benefici de tenir un volant de convivència?
44
+ - Quin és el benefici de tenir el certificat del nombre d’habitants i habitatges
45
+ del Padró d’Habitants?
46
+ - source_sentence: La presentació de la comunicació prèvia, acompanyada de la documentació
47
+ exigida, habilita a la persona interessada a executar els actes que s'hi descriuen,
48
+ des del dia de la seva presentació, sens perjudici de les facultats de comprovació,
49
+ control i inspecció de l’Ajuntament.
50
+ sentences:
51
+ - Quin és el resultat de la presentació de la documentació exigida?
52
+ - Quina és la condició per a la concessió de la bonificació?
53
+ - On es troben els drets funeraris que es volen canviar?
54
+ - source_sentence: Renovació de concessió de drets funeraris a llarg termini (cementiri)
55
+ sentences:
56
+ - Quin és el requisit per aturar o estacionar el vehicle amb la targeta d'aparcament
57
+ de transport col·lectiu?
58
+ - Quin és el benefici de la concessió de drets funeraris a llarg termini?
59
+ - Quin és el tipus de residus que es requereixen per a la bonificació?
60
+ - source_sentence: La presentació de la sol·licitud no dona dret al muntatge de la
61
+ parada.
62
+ sentences:
63
+ - Quin és el motiu per canviar la persona titular dels drets funeraris?
64
+ - Quin és el propòsit de la reunió informativa i de coordinació?
65
+ - Quin és el requisit per a la presentació de la sol·licitud d’autorització?
66
+ model-index:
67
+ - name: SentenceTransformer based on BAAI/bge-m3
68
+ results:
69
+ - task:
70
+ type: information-retrieval
71
+ name: Information Retrieval
72
+ dataset:
73
+ name: dim 1024
74
+ type: dim_1024
75
+ metrics:
76
+ - type: cosine_accuracy@1
77
+ value: 0.044
78
+ name: Cosine Accuracy@1
79
+ - type: cosine_accuracy@3
80
+ value: 0.116
81
+ name: Cosine Accuracy@3
82
+ - type: cosine_accuracy@5
83
+ value: 0.18
84
+ name: Cosine Accuracy@5
85
+ - type: cosine_accuracy@10
86
+ value: 0.3506666666666667
87
+ name: Cosine Accuracy@10
88
+ - type: cosine_precision@1
89
+ value: 0.044
90
+ name: Cosine Precision@1
91
+ - type: cosine_precision@3
92
+ value: 0.03866666666666667
93
+ name: Cosine Precision@3
94
+ - type: cosine_precision@5
95
+ value: 0.036
96
+ name: Cosine Precision@5
97
+ - type: cosine_precision@10
98
+ value: 0.03506666666666667
99
+ name: Cosine Precision@10
100
+ - type: cosine_recall@1
101
+ value: 0.044
102
+ name: Cosine Recall@1
103
+ - type: cosine_recall@3
104
+ value: 0.116
105
+ name: Cosine Recall@3
106
+ - type: cosine_recall@5
107
+ value: 0.18
108
+ name: Cosine Recall@5
109
+ - type: cosine_recall@10
110
+ value: 0.3506666666666667
111
+ name: Cosine Recall@10
112
+ - type: cosine_ndcg@10
113
+ value: 0.16592235166459846
114
+ name: Cosine Ndcg@10
115
+ - type: cosine_mrr@10
116
+ value: 0.11099682539682543
117
+ name: Cosine Mrr@10
118
+ - type: cosine_map@100
119
+ value: 0.13414156200645738
120
+ name: Cosine Map@100
121
+ - task:
122
+ type: information-retrieval
123
+ name: Information Retrieval
124
+ dataset:
125
+ name: dim 768
126
+ type: dim_768
127
+ metrics:
128
+ - type: cosine_accuracy@1
129
+ value: 0.04133333333333333
130
+ name: Cosine Accuracy@1
131
+ - type: cosine_accuracy@3
132
+ value: 0.116
133
+ name: Cosine Accuracy@3
134
+ - type: cosine_accuracy@5
135
+ value: 0.17866666666666667
136
+ name: Cosine Accuracy@5
137
+ - type: cosine_accuracy@10
138
+ value: 0.3626666666666667
139
+ name: Cosine Accuracy@10
140
+ - type: cosine_precision@1
141
+ value: 0.04133333333333333
142
+ name: Cosine Precision@1
143
+ - type: cosine_precision@3
144
+ value: 0.03866666666666666
145
+ name: Cosine Precision@3
146
+ - type: cosine_precision@5
147
+ value: 0.03573333333333333
148
+ name: Cosine Precision@5
149
+ - type: cosine_precision@10
150
+ value: 0.03626666666666667
151
+ name: Cosine Precision@10
152
+ - type: cosine_recall@1
153
+ value: 0.04133333333333333
154
+ name: Cosine Recall@1
155
+ - type: cosine_recall@3
156
+ value: 0.116
157
+ name: Cosine Recall@3
158
+ - type: cosine_recall@5
159
+ value: 0.17866666666666667
160
+ name: Cosine Recall@5
161
+ - type: cosine_recall@10
162
+ value: 0.3626666666666667
163
+ name: Cosine Recall@10
164
+ - type: cosine_ndcg@10
165
+ value: 0.16902152680215465
166
+ name: Cosine Ndcg@10
167
+ - type: cosine_mrr@10
168
+ value: 0.11157989417989429
169
+ name: Cosine Mrr@10
170
+ - type: cosine_map@100
171
+ value: 0.13412743689937764
172
+ name: Cosine Map@100
173
+ - task:
174
+ type: information-retrieval
175
+ name: Information Retrieval
176
+ dataset:
177
+ name: dim 512
178
+ type: dim_512
179
+ metrics:
180
+ - type: cosine_accuracy@1
181
+ value: 0.04666666666666667
182
+ name: Cosine Accuracy@1
183
+ - type: cosine_accuracy@3
184
+ value: 0.116
185
+ name: Cosine Accuracy@3
186
+ - type: cosine_accuracy@5
187
+ value: 0.17866666666666667
188
+ name: Cosine Accuracy@5
189
+ - type: cosine_accuracy@10
190
+ value: 0.356
191
+ name: Cosine Accuracy@10
192
+ - type: cosine_precision@1
193
+ value: 0.04666666666666667
194
+ name: Cosine Precision@1
195
+ - type: cosine_precision@3
196
+ value: 0.03866666666666667
197
+ name: Cosine Precision@3
198
+ - type: cosine_precision@5
199
+ value: 0.03573333333333333
200
+ name: Cosine Precision@5
201
+ - type: cosine_precision@10
202
+ value: 0.03560000000000001
203
+ name: Cosine Precision@10
204
+ - type: cosine_recall@1
205
+ value: 0.04666666666666667
206
+ name: Cosine Recall@1
207
+ - type: cosine_recall@3
208
+ value: 0.116
209
+ name: Cosine Recall@3
210
+ - type: cosine_recall@5
211
+ value: 0.17866666666666667
212
+ name: Cosine Recall@5
213
+ - type: cosine_recall@10
214
+ value: 0.356
215
+ name: Cosine Recall@10
216
+ - type: cosine_ndcg@10
217
+ value: 0.16772455344289713
218
+ name: Cosine Ndcg@10
219
+ - type: cosine_mrr@10
220
+ value: 0.11209576719576728
221
+ name: Cosine Mrr@10
222
+ - type: cosine_map@100
223
+ value: 0.13459804045251053
224
+ name: Cosine Map@100
225
+ - task:
226
+ type: information-retrieval
227
+ name: Information Retrieval
228
+ dataset:
229
+ name: dim 256
230
+ type: dim_256
231
+ metrics:
232
+ - type: cosine_accuracy@1
233
+ value: 0.03866666666666667
234
+ name: Cosine Accuracy@1
235
+ - type: cosine_accuracy@3
236
+ value: 0.10666666666666667
237
+ name: Cosine Accuracy@3
238
+ - type: cosine_accuracy@5
239
+ value: 0.17066666666666666
240
+ name: Cosine Accuracy@5
241
+ - type: cosine_accuracy@10
242
+ value: 0.3413333333333333
243
+ name: Cosine Accuracy@10
244
+ - type: cosine_precision@1
245
+ value: 0.03866666666666667
246
+ name: Cosine Precision@1
247
+ - type: cosine_precision@3
248
+ value: 0.035555555555555556
249
+ name: Cosine Precision@3
250
+ - type: cosine_precision@5
251
+ value: 0.034133333333333335
252
+ name: Cosine Precision@5
253
+ - type: cosine_precision@10
254
+ value: 0.034133333333333335
255
+ name: Cosine Precision@10
256
+ - type: cosine_recall@1
257
+ value: 0.03866666666666667
258
+ name: Cosine Recall@1
259
+ - type: cosine_recall@3
260
+ value: 0.10666666666666667
261
+ name: Cosine Recall@3
262
+ - type: cosine_recall@5
263
+ value: 0.17066666666666666
264
+ name: Cosine Recall@5
265
+ - type: cosine_recall@10
266
+ value: 0.3413333333333333
267
+ name: Cosine Recall@10
268
+ - type: cosine_ndcg@10
269
+ value: 0.15868936356762114
270
+ name: Cosine Ndcg@10
271
+ - type: cosine_mrr@10
272
+ value: 0.10455608465608475
273
+ name: Cosine Mrr@10
274
+ - type: cosine_map@100
275
+ value: 0.12901246498692368
276
+ name: Cosine Map@100
277
+ - task:
278
+ type: information-retrieval
279
+ name: Information Retrieval
280
+ dataset:
281
+ name: dim 128
282
+ type: dim_128
283
+ metrics:
284
+ - type: cosine_accuracy@1
285
+ value: 0.04933333333333333
286
+ name: Cosine Accuracy@1
287
+ - type: cosine_accuracy@3
288
+ value: 0.12266666666666666
289
+ name: Cosine Accuracy@3
290
+ - type: cosine_accuracy@5
291
+ value: 0.19866666666666666
292
+ name: Cosine Accuracy@5
293
+ - type: cosine_accuracy@10
294
+ value: 0.36666666666666664
295
+ name: Cosine Accuracy@10
296
+ - type: cosine_precision@1
297
+ value: 0.04933333333333333
298
+ name: Cosine Precision@1
299
+ - type: cosine_precision@3
300
+ value: 0.040888888888888884
301
+ name: Cosine Precision@3
302
+ - type: cosine_precision@5
303
+ value: 0.039733333333333336
304
+ name: Cosine Precision@5
305
+ - type: cosine_precision@10
306
+ value: 0.03666666666666667
307
+ name: Cosine Precision@10
308
+ - type: cosine_recall@1
309
+ value: 0.04933333333333333
310
+ name: Cosine Recall@1
311
+ - type: cosine_recall@3
312
+ value: 0.12266666666666666
313
+ name: Cosine Recall@3
314
+ - type: cosine_recall@5
315
+ value: 0.19866666666666666
316
+ name: Cosine Recall@5
317
+ - type: cosine_recall@10
318
+ value: 0.36666666666666664
319
+ name: Cosine Recall@10
320
+ - type: cosine_ndcg@10
321
+ value: 0.17594327999948436
322
+ name: Cosine Ndcg@10
323
+ - type: cosine_mrr@10
324
+ value: 0.11901798941798955
325
+ name: Cosine Mrr@10
326
+ - type: cosine_map@100
327
+ value: 0.14198426639116846
328
+ name: Cosine Map@100
329
+ - task:
330
+ type: information-retrieval
331
+ name: Information Retrieval
332
+ dataset:
333
+ name: dim 64
334
+ type: dim_64
335
+ metrics:
336
+ - type: cosine_accuracy@1
337
+ value: 0.037333333333333336
338
+ name: Cosine Accuracy@1
339
+ - type: cosine_accuracy@3
340
+ value: 0.09466666666666666
341
+ name: Cosine Accuracy@3
342
+ - type: cosine_accuracy@5
343
+ value: 0.15733333333333333
344
+ name: Cosine Accuracy@5
345
+ - type: cosine_accuracy@10
346
+ value: 0.34
347
+ name: Cosine Accuracy@10
348
+ - type: cosine_precision@1
349
+ value: 0.037333333333333336
350
+ name: Cosine Precision@1
351
+ - type: cosine_precision@3
352
+ value: 0.03155555555555555
353
+ name: Cosine Precision@3
354
+ - type: cosine_precision@5
355
+ value: 0.03146666666666667
356
+ name: Cosine Precision@5
357
+ - type: cosine_precision@10
358
+ value: 0.034
359
+ name: Cosine Precision@10
360
+ - type: cosine_recall@1
361
+ value: 0.037333333333333336
362
+ name: Cosine Recall@1
363
+ - type: cosine_recall@3
364
+ value: 0.09466666666666666
365
+ name: Cosine Recall@3
366
+ - type: cosine_recall@5
367
+ value: 0.15733333333333333
368
+ name: Cosine Recall@5
369
+ - type: cosine_recall@10
370
+ value: 0.34
371
+ name: Cosine Recall@10
372
+ - type: cosine_ndcg@10
373
+ value: 0.1535334048621682
374
+ name: Cosine Ndcg@10
375
+ - type: cosine_mrr@10
376
+ value: 0.09865185185185205
377
+ name: Cosine Mrr@10
378
+ - type: cosine_map@100
379
+ value: 0.12262604132052936
380
+ name: Cosine Map@100
381
+ ---
382
+
383
+ # SentenceTransformer based on BAAI/bge-m3
384
+
385
+ This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [BAAI/bge-m3](https://huggingface.co/BAAI/bge-m3) on the json dataset. It maps sentences & paragraphs to a 1024-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
386
+
387
+ ## Model Details
388
+
389
+ ### Model Description
390
+ - **Model Type:** Sentence Transformer
391
+ - **Base model:** [BAAI/bge-m3](https://huggingface.co/BAAI/bge-m3) <!-- at revision 5617a9f61b028005a4858fdac845db406aefb181 -->
392
+ - **Maximum Sequence Length:** 8192 tokens
393
+ - **Output Dimensionality:** 1024 tokens
394
+ - **Similarity Function:** Cosine Similarity
395
+ - **Training Dataset:**
396
+ - json
397
+ <!-- - **Language:** Unknown -->
398
+ <!-- - **License:** Unknown -->
399
+
400
+ ### Model Sources
401
+
402
+ - **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
403
+ - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
404
+ - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
405
+
406
+ ### Full Model Architecture
407
+
408
+ ```
409
+ SentenceTransformer(
410
+ (0): Transformer({'max_seq_length': 8192, 'do_lower_case': False}) with Transformer model: XLMRobertaModel
411
+ (1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
412
+ (2): Normalize()
413
+ )
414
+ ```
415
+
416
+ ## Usage
417
+
418
+ ### Direct Usage (Sentence Transformers)
419
+
420
+ First install the Sentence Transformers library:
421
+
422
+ ```bash
423
+ pip install -U sentence-transformers
424
+ ```
425
+
426
+ Then you can load this model and run inference.
427
+ ```python
428
+ from sentence_transformers import SentenceTransformer
429
+
430
+ # Download from the 🤗 Hub
431
+ model = SentenceTransformer("adriansanz/sqv2")
432
+ # Run inference
433
+ sentences = [
434
+ 'La presentació de la sol·licitud no dona dret al muntatge de la parada.',
435
+ 'Quin és el requisit per a la presentació de la sol·licitud d’autorització?',
436
+ 'Quin és el motiu per canviar la persona titular dels drets funeraris?',
437
+ ]
438
+ embeddings = model.encode(sentences)
439
+ print(embeddings.shape)
440
+ # [3, 1024]
441
+
442
+ # Get the similarity scores for the embeddings
443
+ similarities = model.similarity(embeddings, embeddings)
444
+ print(similarities.shape)
445
+ # [3, 3]
446
+ ```
447
+
448
+ <!--
449
+ ### Direct Usage (Transformers)
450
+
451
+ <details><summary>Click to see the direct usage in Transformers</summary>
452
+
453
+ </details>
454
+ -->
455
+
456
+ <!--
457
+ ### Downstream Usage (Sentence Transformers)
458
+
459
+ You can finetune this model on your own dataset.
460
+
461
+ <details><summary>Click to expand</summary>
462
+
463
+ </details>
464
+ -->
465
+
466
+ <!--
467
+ ### Out-of-Scope Use
468
+
469
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
470
+ -->
471
+
472
+ ## Evaluation
473
+
474
+ ### Metrics
475
+
476
+ #### Information Retrieval
477
+ * Dataset: `dim_1024`
478
+ * Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
479
+
480
+ | Metric | Value |
481
+ |:--------------------|:-----------|
482
+ | cosine_accuracy@1 | 0.044 |
483
+ | cosine_accuracy@3 | 0.116 |
484
+ | cosine_accuracy@5 | 0.18 |
485
+ | cosine_accuracy@10 | 0.3507 |
486
+ | cosine_precision@1 | 0.044 |
487
+ | cosine_precision@3 | 0.0387 |
488
+ | cosine_precision@5 | 0.036 |
489
+ | cosine_precision@10 | 0.0351 |
490
+ | cosine_recall@1 | 0.044 |
491
+ | cosine_recall@3 | 0.116 |
492
+ | cosine_recall@5 | 0.18 |
493
+ | cosine_recall@10 | 0.3507 |
494
+ | cosine_ndcg@10 | 0.1659 |
495
+ | cosine_mrr@10 | 0.111 |
496
+ | **cosine_map@100** | **0.1341** |
497
+
498
+ #### Information Retrieval
499
+ * Dataset: `dim_768`
500
+ * Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
501
+
502
+ | Metric | Value |
503
+ |:--------------------|:-----------|
504
+ | cosine_accuracy@1 | 0.0413 |
505
+ | cosine_accuracy@3 | 0.116 |
506
+ | cosine_accuracy@5 | 0.1787 |
507
+ | cosine_accuracy@10 | 0.3627 |
508
+ | cosine_precision@1 | 0.0413 |
509
+ | cosine_precision@3 | 0.0387 |
510
+ | cosine_precision@5 | 0.0357 |
511
+ | cosine_precision@10 | 0.0363 |
512
+ | cosine_recall@1 | 0.0413 |
513
+ | cosine_recall@3 | 0.116 |
514
+ | cosine_recall@5 | 0.1787 |
515
+ | cosine_recall@10 | 0.3627 |
516
+ | cosine_ndcg@10 | 0.169 |
517
+ | cosine_mrr@10 | 0.1116 |
518
+ | **cosine_map@100** | **0.1341** |
519
+
520
+ #### Information Retrieval
521
+ * Dataset: `dim_512`
522
+ * Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
523
+
524
+ | Metric | Value |
525
+ |:--------------------|:-----------|
526
+ | cosine_accuracy@1 | 0.0467 |
527
+ | cosine_accuracy@3 | 0.116 |
528
+ | cosine_accuracy@5 | 0.1787 |
529
+ | cosine_accuracy@10 | 0.356 |
530
+ | cosine_precision@1 | 0.0467 |
531
+ | cosine_precision@3 | 0.0387 |
532
+ | cosine_precision@5 | 0.0357 |
533
+ | cosine_precision@10 | 0.0356 |
534
+ | cosine_recall@1 | 0.0467 |
535
+ | cosine_recall@3 | 0.116 |
536
+ | cosine_recall@5 | 0.1787 |
537
+ | cosine_recall@10 | 0.356 |
538
+ | cosine_ndcg@10 | 0.1677 |
539
+ | cosine_mrr@10 | 0.1121 |
540
+ | **cosine_map@100** | **0.1346** |
541
+
542
+ #### Information Retrieval
543
+ * Dataset: `dim_256`
544
+ * Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
545
+
546
+ | Metric | Value |
547
+ |:--------------------|:----------|
548
+ | cosine_accuracy@1 | 0.0387 |
549
+ | cosine_accuracy@3 | 0.1067 |
550
+ | cosine_accuracy@5 | 0.1707 |
551
+ | cosine_accuracy@10 | 0.3413 |
552
+ | cosine_precision@1 | 0.0387 |
553
+ | cosine_precision@3 | 0.0356 |
554
+ | cosine_precision@5 | 0.0341 |
555
+ | cosine_precision@10 | 0.0341 |
556
+ | cosine_recall@1 | 0.0387 |
557
+ | cosine_recall@3 | 0.1067 |
558
+ | cosine_recall@5 | 0.1707 |
559
+ | cosine_recall@10 | 0.3413 |
560
+ | cosine_ndcg@10 | 0.1587 |
561
+ | cosine_mrr@10 | 0.1046 |
562
+ | **cosine_map@100** | **0.129** |
563
+
564
+ #### Information Retrieval
565
+ * Dataset: `dim_128`
566
+ * Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
567
+
568
+ | Metric | Value |
569
+ |:--------------------|:----------|
570
+ | cosine_accuracy@1 | 0.0493 |
571
+ | cosine_accuracy@3 | 0.1227 |
572
+ | cosine_accuracy@5 | 0.1987 |
573
+ | cosine_accuracy@10 | 0.3667 |
574
+ | cosine_precision@1 | 0.0493 |
575
+ | cosine_precision@3 | 0.0409 |
576
+ | cosine_precision@5 | 0.0397 |
577
+ | cosine_precision@10 | 0.0367 |
578
+ | cosine_recall@1 | 0.0493 |
579
+ | cosine_recall@3 | 0.1227 |
580
+ | cosine_recall@5 | 0.1987 |
581
+ | cosine_recall@10 | 0.3667 |
582
+ | cosine_ndcg@10 | 0.1759 |
583
+ | cosine_mrr@10 | 0.119 |
584
+ | **cosine_map@100** | **0.142** |
585
+
586
+ #### Information Retrieval
587
+ * Dataset: `dim_64`
588
+ * Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
589
+
590
+ | Metric | Value |
591
+ |:--------------------|:-----------|
592
+ | cosine_accuracy@1 | 0.0373 |
593
+ | cosine_accuracy@3 | 0.0947 |
594
+ | cosine_accuracy@5 | 0.1573 |
595
+ | cosine_accuracy@10 | 0.34 |
596
+ | cosine_precision@1 | 0.0373 |
597
+ | cosine_precision@3 | 0.0316 |
598
+ | cosine_precision@5 | 0.0315 |
599
+ | cosine_precision@10 | 0.034 |
600
+ | cosine_recall@1 | 0.0373 |
601
+ | cosine_recall@3 | 0.0947 |
602
+ | cosine_recall@5 | 0.1573 |
603
+ | cosine_recall@10 | 0.34 |
604
+ | cosine_ndcg@10 | 0.1535 |
605
+ | cosine_mrr@10 | 0.0987 |
606
+ | **cosine_map@100** | **0.1226** |
607
+
608
+ <!--
609
+ ## Bias, Risks and Limitations
610
+
611
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
612
+ -->
613
+
614
+ <!--
615
+ ### Recommendations
616
+
617
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
618
+ -->
619
+
620
+ ## Training Details
621
+
622
+ ### Training Dataset
623
+
624
+ #### json
625
+
626
+ * Dataset: json
627
+ * Size: 6,749 training samples
628
+ * Columns: <code>positive</code> and <code>anchor</code>
629
+ * Approximate statistics based on the first 1000 samples:
630
+ | | positive | anchor |
631
+ |:--------|:-----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|
632
+ | type | string | string |
633
+ | details | <ul><li>min: 6 tokens</li><li>mean: 42.03 tokens</li><li>max: 106 tokens</li></ul> | <ul><li>min: 10 tokens</li><li>mean: 20.32 tokens</li><li>max: 54 tokens</li></ul> |
634
+ * Samples:
635
+ | positive | anchor |
636
+ |:--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:---------------------------------------------------------------------------------------------|
637
+ | <code>Aquest tràmit us permet compensar deutes de naturalesa pública a favor de l'Ajuntament, sigui quin sigui el seu estat (voluntari/executiu), amb crèdits reconeguts per aquest a favor del mateix deutor, i que el seu estat sigui pendent de pagament.</code> | <code>Quin és el benefici de la compensació de deutes amb crèdits?</code> |
638
+ | <code>El seu objecte és que -prèviament a la seva execució material- l'Ajuntament comprovi l'adequació de l’actuació a la normativa i planejament, així com a les ordenances municipals sobre l’ús del sòl i edificació.</code> | <code>Quin és el paper de les ordenances municipals en aquest tràmit?</code> |
639
+ | <code>Comunicació prèvia del manteniment en espais, zones o instal·lacions comunitàries interiors dels edificis (reparació i/o millora de materials).</code> | <code>Quin és el límit del manteniment en espais comunitaris interiors dels edificis?</code> |
640
+ * Loss: [<code>MatryoshkaLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#matryoshkaloss) with these parameters:
641
+ ```json
642
+ {
643
+ "loss": "MultipleNegativesRankingLoss",
644
+ "matryoshka_dims": [
645
+ 1024,
646
+ 768,
647
+ 512,
648
+ 256,
649
+ 128,
650
+ 64
651
+ ],
652
+ "matryoshka_weights": [
653
+ 1,
654
+ 1,
655
+ 1,
656
+ 1,
657
+ 1,
658
+ 1
659
+ ],
660
+ "n_dims_per_step": -1
661
+ }
662
+ ```
663
+
664
+ ### Training Hyperparameters
665
+ #### Non-Default Hyperparameters
666
+
667
+ - `eval_strategy`: epoch
668
+ - `per_device_train_batch_size`: 16
669
+ - `per_device_eval_batch_size`: 16
670
+ - `gradient_accumulation_steps`: 16
671
+ - `learning_rate`: 2e-05
672
+ - `num_train_epochs`: 5
673
+ - `lr_scheduler_type`: cosine
674
+ - `warmup_ratio`: 0.2
675
+ - `bf16`: True
676
+ - `tf32`: True
677
+ - `load_best_model_at_end`: True
678
+ - `optim`: adamw_torch_fused
679
+ - `batch_sampler`: no_duplicates
680
+
681
+ #### All Hyperparameters
682
+ <details><summary>Click to expand</summary>
683
+
684
+ - `overwrite_output_dir`: False
685
+ - `do_predict`: False
686
+ - `eval_strategy`: epoch
687
+ - `prediction_loss_only`: True
688
+ - `per_device_train_batch_size`: 16
689
+ - `per_device_eval_batch_size`: 16
690
+ - `per_gpu_train_batch_size`: None
691
+ - `per_gpu_eval_batch_size`: None
692
+ - `gradient_accumulation_steps`: 16
693
+ - `eval_accumulation_steps`: None
694
+ - `torch_empty_cache_steps`: None
695
+ - `learning_rate`: 2e-05
696
+ - `weight_decay`: 0.0
697
+ - `adam_beta1`: 0.9
698
+ - `adam_beta2`: 0.999
699
+ - `adam_epsilon`: 1e-08
700
+ - `max_grad_norm`: 1.0
701
+ - `num_train_epochs`: 5
702
+ - `max_steps`: -1
703
+ - `lr_scheduler_type`: cosine
704
+ - `lr_scheduler_kwargs`: {}
705
+ - `warmup_ratio`: 0.2
706
+ - `warmup_steps`: 0
707
+ - `log_level`: passive
708
+ - `log_level_replica`: warning
709
+ - `log_on_each_node`: True
710
+ - `logging_nan_inf_filter`: True
711
+ - `save_safetensors`: True
712
+ - `save_on_each_node`: False
713
+ - `save_only_model`: False
714
+ - `restore_callback_states_from_checkpoint`: False
715
+ - `no_cuda`: False
716
+ - `use_cpu`: False
717
+ - `use_mps_device`: False
718
+ - `seed`: 42
719
+ - `data_seed`: None
720
+ - `jit_mode_eval`: False
721
+ - `use_ipex`: False
722
+ - `bf16`: True
723
+ - `fp16`: False
724
+ - `fp16_opt_level`: O1
725
+ - `half_precision_backend`: auto
726
+ - `bf16_full_eval`: False
727
+ - `fp16_full_eval`: False
728
+ - `tf32`: True
729
+ - `local_rank`: 0
730
+ - `ddp_backend`: None
731
+ - `tpu_num_cores`: None
732
+ - `tpu_metrics_debug`: False
733
+ - `debug`: []
734
+ - `dataloader_drop_last`: False
735
+ - `dataloader_num_workers`: 0
736
+ - `dataloader_prefetch_factor`: None
737
+ - `past_index`: -1
738
+ - `disable_tqdm`: False
739
+ - `remove_unused_columns`: True
740
+ - `label_names`: None
741
+ - `load_best_model_at_end`: True
742
+ - `ignore_data_skip`: False
743
+ - `fsdp`: []
744
+ - `fsdp_min_num_params`: 0
745
+ - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
746
+ - `fsdp_transformer_layer_cls_to_wrap`: None
747
+ - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
748
+ - `deepspeed`: None
749
+ - `label_smoothing_factor`: 0.0
750
+ - `optim`: adamw_torch_fused
751
+ - `optim_args`: None
752
+ - `adafactor`: False
753
+ - `group_by_length`: False
754
+ - `length_column_name`: length
755
+ - `ddp_find_unused_parameters`: None
756
+ - `ddp_bucket_cap_mb`: None
757
+ - `ddp_broadcast_buffers`: False
758
+ - `dataloader_pin_memory`: True
759
+ - `dataloader_persistent_workers`: False
760
+ - `skip_memory_metrics`: True
761
+ - `use_legacy_prediction_loop`: False
762
+ - `push_to_hub`: False
763
+ - `resume_from_checkpoint`: None
764
+ - `hub_model_id`: None
765
+ - `hub_strategy`: every_save
766
+ - `hub_private_repo`: False
767
+ - `hub_always_push`: False
768
+ - `gradient_checkpointing`: False
769
+ - `gradient_checkpointing_kwargs`: None
770
+ - `include_inputs_for_metrics`: False
771
+ - `eval_do_concat_batches`: True
772
+ - `fp16_backend`: auto
773
+ - `push_to_hub_model_id`: None
774
+ - `push_to_hub_organization`: None
775
+ - `mp_parameters`:
776
+ - `auto_find_batch_size`: False
777
+ - `full_determinism`: False
778
+ - `torchdynamo`: None
779
+ - `ray_scope`: last
780
+ - `ddp_timeout`: 1800
781
+ - `torch_compile`: False
782
+ - `torch_compile_backend`: None
783
+ - `torch_compile_mode`: None
784
+ - `dispatch_batches`: None
785
+ - `split_batches`: None
786
+ - `include_tokens_per_second`: False
787
+ - `include_num_input_tokens_seen`: False
788
+ - `neftune_noise_alpha`: None
789
+ - `optim_target_modules`: None
790
+ - `batch_eval_metrics`: False
791
+ - `eval_on_start`: False
792
+ - `eval_use_gather_object`: False
793
+ - `batch_sampler`: no_duplicates
794
+ - `multi_dataset_batch_sampler`: proportional
795
+
796
+ </details>
797
+
798
+ ### Training Logs
799
+ | Epoch | Step | Training Loss | dim_1024_cosine_map@100 | dim_128_cosine_map@100 | dim_256_cosine_map@100 | dim_512_cosine_map@100 | dim_64_cosine_map@100 | dim_768_cosine_map@100 |
800
+ |:----------:|:-------:|:-------------:|:-----------------------:|:----------------------:|:----------------------:|:----------------------:|:---------------------:|:----------------------:|
801
+ | 0.3791 | 10 | 3.0867 | - | - | - | - | - | - |
802
+ | 0.7583 | 20 | 2.4414 | - | - | - | - | - | - |
803
+ | 0.9858 | 26 | - | 0.1266 | 0.1255 | 0.1232 | 0.1257 | 0.1091 | 0.1345 |
804
+ | 1.1351 | 30 | 1.7091 | - | - | - | - | - | - |
805
+ | 1.5142 | 40 | 1.2495 | - | - | - | - | - | - |
806
+ | 1.8934 | 50 | 0.9813 | - | - | - | - | - | - |
807
+ | 1.9692 | 52 | - | 0.1315 | 0.1325 | 0.1285 | 0.1328 | 0.1218 | 0.1309 |
808
+ | 2.2701 | 60 | 0.6918 | - | - | - | - | - | - |
809
+ | 2.6493 | 70 | 0.7146 | - | - | - | - | - | - |
810
+ | 2.9905 | 79 | - | 0.1370 | 0.1344 | 0.1355 | 0.1338 | 0.1269 | 0.1363 |
811
+ | 3.0261 | 80 | 0.6002 | - | - | - | - | - | - |
812
+ | 3.4052 | 90 | 0.4816 | - | - | - | - | - | - |
813
+ | 3.7844 | 100 | 0.4949 | - | - | - | - | - | - |
814
+ | 3.9739 | 105 | - | 0.1357 | 0.1393 | 0.1302 | 0.1347 | 0.1204 | 0.1354 |
815
+ | 4.1611 | 110 | 0.474 | - | - | - | - | - | - |
816
+ | 4.5403 | 120 | 0.4692 | - | - | - | - | - | - |
817
+ | **4.9194** | **130** | **0.4484** | **0.1341** | **0.142** | **0.129** | **0.1346** | **0.1226** | **0.1341** |
818
+
819
+ * The bold row denotes the saved checkpoint.
820
+
821
+ ### Framework Versions
822
+ - Python: 3.10.12
823
+ - Sentence Transformers: 3.1.0
824
+ - Transformers: 4.44.2
825
+ - PyTorch: 2.4.0+cu121
826
+ - Accelerate: 0.35.0.dev0
827
+ - Datasets: 3.0.0
828
+ - Tokenizers: 0.19.1
829
+
830
+ ## Citation
831
+
832
+ ### BibTeX
833
+
834
+ #### Sentence Transformers
835
+ ```bibtex
836
+ @inproceedings{reimers-2019-sentence-bert,
837
+ title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
838
+ author = "Reimers, Nils and Gurevych, Iryna",
839
+ booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
840
+ month = "11",
841
+ year = "2019",
842
+ publisher = "Association for Computational Linguistics",
843
+ url = "https://arxiv.org/abs/1908.10084",
844
+ }
845
+ ```
846
+
847
+ #### MatryoshkaLoss
848
+ ```bibtex
849
+ @misc{kusupati2024matryoshka,
850
+ title={Matryoshka Representation Learning},
851
+ author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
852
+ year={2024},
853
+ eprint={2205.13147},
854
+ archivePrefix={arXiv},
855
+ primaryClass={cs.LG}
856
+ }
857
+ ```
858
+
859
+ #### MultipleNegativesRankingLoss
860
+ ```bibtex
861
+ @misc{henderson2017efficient,
862
+ title={Efficient Natural Language Response Suggestion for Smart Reply},
863
+ author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
864
+ year={2017},
865
+ eprint={1705.00652},
866
+ archivePrefix={arXiv},
867
+ primaryClass={cs.CL}
868
+ }
869
+ ```
870
+
871
+ <!--
872
+ ## Glossary
873
+
874
+ *Clearly define terms in order to be accessible across audiences.*
875
+ -->
876
+
877
+ <!--
878
+ ## Model Card Authors
879
+
880
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
881
+ -->
882
+
883
+ <!--
884
+ ## Model Card Contact
885
+
886
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
887
+ -->
config.json ADDED
@@ -0,0 +1,28 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "BAAI/bge-m3",
3
+ "architectures": [
4
+ "XLMRobertaModel"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "bos_token_id": 0,
8
+ "classifier_dropout": null,
9
+ "eos_token_id": 2,
10
+ "hidden_act": "gelu",
11
+ "hidden_dropout_prob": 0.1,
12
+ "hidden_size": 1024,
13
+ "initializer_range": 0.02,
14
+ "intermediate_size": 4096,
15
+ "layer_norm_eps": 1e-05,
16
+ "max_position_embeddings": 8194,
17
+ "model_type": "xlm-roberta",
18
+ "num_attention_heads": 16,
19
+ "num_hidden_layers": 24,
20
+ "output_past": true,
21
+ "pad_token_id": 1,
22
+ "position_embedding_type": "absolute",
23
+ "torch_dtype": "float32",
24
+ "transformers_version": "4.44.2",
25
+ "type_vocab_size": 1,
26
+ "use_cache": true,
27
+ "vocab_size": 250002
28
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "3.1.0",
4
+ "transformers": "4.44.2",
5
+ "pytorch": "2.4.0+cu121"
6
+ },
7
+ "prompts": {},
8
+ "default_prompt_name": null,
9
+ "similarity_fn_name": null
10
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:7340b94692f84db7711b9e23ffaec2518d22401832e2f1b8d6eb4fc781a7b2a4
3
+ size 2271064456
modules.json ADDED
@@ -0,0 +1,20 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ },
14
+ {
15
+ "idx": 2,
16
+ "name": "2",
17
+ "path": "2_Normalize",
18
+ "type": "sentence_transformers.models.Normalize"
19
+ }
20
+ ]
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 8192,
3
+ "do_lower_case": false
4
+ }
sentencepiece.bpe.model ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:cfc8146abe2a0488e9e2a0c56de7952f7c11ab059eca145a0a727afce0db2865
3
+ size 5069051
special_tokens_map.json ADDED
@@ -0,0 +1,51 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "<s>",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "cls_token": {
10
+ "content": "<s>",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "eos_token": {
17
+ "content": "</s>",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "mask_token": {
24
+ "content": "<mask>",
25
+ "lstrip": true,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "pad_token": {
31
+ "content": "<pad>",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ },
37
+ "sep_token": {
38
+ "content": "</s>",
39
+ "lstrip": false,
40
+ "normalized": false,
41
+ "rstrip": false,
42
+ "single_word": false
43
+ },
44
+ "unk_token": {
45
+ "content": "<unk>",
46
+ "lstrip": false,
47
+ "normalized": false,
48
+ "rstrip": false,
49
+ "single_word": false
50
+ }
51
+ }
tokenizer.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e4f7e21bec3fb0044ca0bb2d50eb5d4d8c596273c422baef84466d2c73748b9c
3
+ size 17083053
tokenizer_config.json ADDED
@@ -0,0 +1,55 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "<s>",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "1": {
12
+ "content": "<pad>",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "2": {
20
+ "content": "</s>",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "3": {
28
+ "content": "<unk>",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "250001": {
36
+ "content": "<mask>",
37
+ "lstrip": true,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "bos_token": "<s>",
45
+ "clean_up_tokenization_spaces": true,
46
+ "cls_token": "<s>",
47
+ "eos_token": "</s>",
48
+ "mask_token": "<mask>",
49
+ "model_max_length": 8192,
50
+ "pad_token": "<pad>",
51
+ "sep_token": "</s>",
52
+ "sp_model_kwargs": {},
53
+ "tokenizer_class": "XLMRobertaTokenizer",
54
+ "unk_token": "<unk>"
55
+ }