adriansanz commited on
Commit
405e16a
·
verified ·
1 Parent(s): a8cd770

Add new SentenceTransformer model.

Browse files
.gitattributes CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ tokenizer.json filter=lfs diff=lfs merge=lfs -text
1_Pooling/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 1024,
3
+ "pooling_mode_cls_token": true,
4
+ "pooling_mode_mean_tokens": false,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true
10
+ }
README.md ADDED
@@ -0,0 +1,886 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: BAAI/bge-m3
3
+ datasets: []
4
+ language: []
5
+ library_name: sentence-transformers
6
+ metrics:
7
+ - cosine_accuracy@1
8
+ - cosine_accuracy@3
9
+ - cosine_accuracy@5
10
+ - cosine_accuracy@10
11
+ - cosine_precision@1
12
+ - cosine_precision@3
13
+ - cosine_precision@5
14
+ - cosine_precision@10
15
+ - cosine_recall@1
16
+ - cosine_recall@3
17
+ - cosine_recall@5
18
+ - cosine_recall@10
19
+ - cosine_ndcg@10
20
+ - cosine_mrr@10
21
+ - cosine_map@100
22
+ pipeline_tag: sentence-similarity
23
+ tags:
24
+ - sentence-transformers
25
+ - sentence-similarity
26
+ - feature-extraction
27
+ - generated_from_trainer
28
+ - dataset_size:5750
29
+ - loss:MatryoshkaLoss
30
+ - loss:MultipleNegativesRankingLoss
31
+ widget:
32
+ - source_sentence: El seu objecte és que -prèviament a la seva execució material-
33
+ l'Ajuntament comprovi l'adequació de l'actuació a la normativa i planejament,
34
+ així com a les ordenances municipals.
35
+ sentences:
36
+ - Quin és el paper de la normativa en la llicència de tala de masses arbòries?
37
+ - Com puc actualitzar les meves dades de naixement al Padró?
38
+ - Quin és el paper de la persona tècnica competent en la llicència per a la primera
39
+ utilització i ocupació parcial de l'edifici?
40
+ - source_sentence: El seu objecte és que -prèviament a la seva execució material-
41
+ l'Ajuntament comprovi l'adequació de l’actuació a la normativa i planejament,
42
+ així com a les ordenances municipals sobre l’ús del sòl i edificació.
43
+ sentences:
44
+ - Quin és el propòsit del tràmit CA05?
45
+ - Quin és el propòsit del tràmit de llicència d'instal·lació de producció d'energia
46
+ elèctrica?
47
+ - Quin és el paper de l'Ajuntament de Sant Quirze del Vallès en la notificació electrònica
48
+ de procediments?
49
+ - source_sentence: 'PROFESSIONALS: Assistència jurídica, traducció/interpretació,
50
+ psicologia, o qualsevol professió o habilitat que vulgueu posar a disposició del
51
+ banc de recursos.'
52
+ sentences:
53
+ - Quin és el propòsit del tràmit de comunicació prèvia d'obertura d'activitat de
54
+ baix risc?
55
+ - Quin és el tipus d’autorització que es necessita per a talls de carrers?
56
+ - Quin és el paper dels professionals en el banc de recursos?
57
+ - source_sentence: No està especificat
58
+ sentences:
59
+ - Quin és el percentatge de bonificació per a una família nombrosa amb 3 membres
60
+ i una renda màxima anual bruta de 25.815,45 euros?
61
+ - Quin és el propòsit del tràmit de baixa del Padró d'Habitants per defunció?
62
+ - Quin és el procediment per a cancel·lar les concessions de drets funeraris de
63
+ nínxols?
64
+ - source_sentence: 'Import En cas de renovació per caducitat, pèrdua, sostracció o
65
+ deteriorament: 12,00 € (en metàl·lic i preferiblement import exacte).'
66
+ sentences:
67
+ - Quin és el procediment per a la renovació del DNI en cas de sostracció?
68
+ - Quin és el paper del motiu legítim en l'oposició de dades personals en cas de
69
+ motiu legítim i situació personal concreta?
70
+ - Vull fer una activitat a l'espai públic, quin és el tràmit que debo seguir?
71
+ model-index:
72
+ - name: SentenceTransformer based on BAAI/bge-m3
73
+ results:
74
+ - task:
75
+ type: information-retrieval
76
+ name: Information Retrieval
77
+ dataset:
78
+ name: dim 1024
79
+ type: dim_1024
80
+ metrics:
81
+ - type: cosine_accuracy@1
82
+ value: 0.0406885758998435
83
+ name: Cosine Accuracy@1
84
+ - type: cosine_accuracy@3
85
+ value: 0.11737089201877934
86
+ name: Cosine Accuracy@3
87
+ - type: cosine_accuracy@5
88
+ value: 0.18153364632237873
89
+ name: Cosine Accuracy@5
90
+ - type: cosine_accuracy@10
91
+ value: 0.3302034428794992
92
+ name: Cosine Accuracy@10
93
+ - type: cosine_precision@1
94
+ value: 0.0406885758998435
95
+ name: Cosine Precision@1
96
+ - type: cosine_precision@3
97
+ value: 0.03912363067292644
98
+ name: Cosine Precision@3
99
+ - type: cosine_precision@5
100
+ value: 0.03630672926447575
101
+ name: Cosine Precision@5
102
+ - type: cosine_precision@10
103
+ value: 0.03302034428794992
104
+ name: Cosine Precision@10
105
+ - type: cosine_recall@1
106
+ value: 0.0406885758998435
107
+ name: Cosine Recall@1
108
+ - type: cosine_recall@3
109
+ value: 0.11737089201877934
110
+ name: Cosine Recall@3
111
+ - type: cosine_recall@5
112
+ value: 0.18153364632237873
113
+ name: Cosine Recall@5
114
+ - type: cosine_recall@10
115
+ value: 0.3302034428794992
116
+ name: Cosine Recall@10
117
+ - type: cosine_ndcg@10
118
+ value: 0.15804646538595332
119
+ name: Cosine Ndcg@10
120
+ - type: cosine_mrr@10
121
+ value: 0.10652433117221861
122
+ name: Cosine Mrr@10
123
+ - type: cosine_map@100
124
+ value: 0.12794271910761573
125
+ name: Cosine Map@100
126
+ - task:
127
+ type: information-retrieval
128
+ name: Information Retrieval
129
+ dataset:
130
+ name: dim 768
131
+ type: dim_768
132
+ metrics:
133
+ - type: cosine_accuracy@1
134
+ value: 0.03912363067292645
135
+ name: Cosine Accuracy@1
136
+ - type: cosine_accuracy@3
137
+ value: 0.107981220657277
138
+ name: Cosine Accuracy@3
139
+ - type: cosine_accuracy@5
140
+ value: 0.18153364632237873
141
+ name: Cosine Accuracy@5
142
+ - type: cosine_accuracy@10
143
+ value: 0.3286384976525822
144
+ name: Cosine Accuracy@10
145
+ - type: cosine_precision@1
146
+ value: 0.03912363067292645
147
+ name: Cosine Precision@1
148
+ - type: cosine_precision@3
149
+ value: 0.03599374021909233
150
+ name: Cosine Precision@3
151
+ - type: cosine_precision@5
152
+ value: 0.03630672926447575
153
+ name: Cosine Precision@5
154
+ - type: cosine_precision@10
155
+ value: 0.03286384976525822
156
+ name: Cosine Precision@10
157
+ - type: cosine_recall@1
158
+ value: 0.03912363067292645
159
+ name: Cosine Recall@1
160
+ - type: cosine_recall@3
161
+ value: 0.107981220657277
162
+ name: Cosine Recall@3
163
+ - type: cosine_recall@5
164
+ value: 0.18153364632237873
165
+ name: Cosine Recall@5
166
+ - type: cosine_recall@10
167
+ value: 0.3286384976525822
168
+ name: Cosine Recall@10
169
+ - type: cosine_ndcg@10
170
+ value: 0.15506867908727437
171
+ name: Cosine Ndcg@10
172
+ - type: cosine_mrr@10
173
+ value: 0.10328203790645119
174
+ name: Cosine Mrr@10
175
+ - type: cosine_map@100
176
+ value: 0.12470788174358402
177
+ name: Cosine Map@100
178
+ - task:
179
+ type: information-retrieval
180
+ name: Information Retrieval
181
+ dataset:
182
+ name: dim 512
183
+ type: dim_512
184
+ metrics:
185
+ - type: cosine_accuracy@1
186
+ value: 0.0406885758998435
187
+ name: Cosine Accuracy@1
188
+ - type: cosine_accuracy@3
189
+ value: 0.10172143974960876
190
+ name: Cosine Accuracy@3
191
+ - type: cosine_accuracy@5
192
+ value: 0.16588419405320814
193
+ name: Cosine Accuracy@5
194
+ - type: cosine_accuracy@10
195
+ value: 0.3223787167449139
196
+ name: Cosine Accuracy@10
197
+ - type: cosine_precision@1
198
+ value: 0.0406885758998435
199
+ name: Cosine Precision@1
200
+ - type: cosine_precision@3
201
+ value: 0.033907146583202916
202
+ name: Cosine Precision@3
203
+ - type: cosine_precision@5
204
+ value: 0.03317683881064163
205
+ name: Cosine Precision@5
206
+ - type: cosine_precision@10
207
+ value: 0.03223787167449139
208
+ name: Cosine Precision@10
209
+ - type: cosine_recall@1
210
+ value: 0.0406885758998435
211
+ name: Cosine Recall@1
212
+ - type: cosine_recall@3
213
+ value: 0.10172143974960876
214
+ name: Cosine Recall@3
215
+ - type: cosine_recall@5
216
+ value: 0.16588419405320814
217
+ name: Cosine Recall@5
218
+ - type: cosine_recall@10
219
+ value: 0.3223787167449139
220
+ name: Cosine Recall@10
221
+ - type: cosine_ndcg@10
222
+ value: 0.15172399342641055
223
+ name: Cosine Ndcg@10
224
+ - type: cosine_mrr@10
225
+ value: 0.1010190774275283
226
+ name: Cosine Mrr@10
227
+ - type: cosine_map@100
228
+ value: 0.12301092660478197
229
+ name: Cosine Map@100
230
+ - task:
231
+ type: information-retrieval
232
+ name: Information Retrieval
233
+ dataset:
234
+ name: dim 256
235
+ type: dim_256
236
+ metrics:
237
+ - type: cosine_accuracy@1
238
+ value: 0.04225352112676056
239
+ name: Cosine Accuracy@1
240
+ - type: cosine_accuracy@3
241
+ value: 0.10954616588419405
242
+ name: Cosine Accuracy@3
243
+ - type: cosine_accuracy@5
244
+ value: 0.18466353677621283
245
+ name: Cosine Accuracy@5
246
+ - type: cosine_accuracy@10
247
+ value: 0.3270735524256651
248
+ name: Cosine Accuracy@10
249
+ - type: cosine_precision@1
250
+ value: 0.04225352112676056
251
+ name: Cosine Precision@1
252
+ - type: cosine_precision@3
253
+ value: 0.03651538862806468
254
+ name: Cosine Precision@3
255
+ - type: cosine_precision@5
256
+ value: 0.03693270735524257
257
+ name: Cosine Precision@5
258
+ - type: cosine_precision@10
259
+ value: 0.03270735524256651
260
+ name: Cosine Precision@10
261
+ - type: cosine_recall@1
262
+ value: 0.04225352112676056
263
+ name: Cosine Recall@1
264
+ - type: cosine_recall@3
265
+ value: 0.10954616588419405
266
+ name: Cosine Recall@3
267
+ - type: cosine_recall@5
268
+ value: 0.18466353677621283
269
+ name: Cosine Recall@5
270
+ - type: cosine_recall@10
271
+ value: 0.3270735524256651
272
+ name: Cosine Recall@10
273
+ - type: cosine_ndcg@10
274
+ value: 0.15644008525556197
275
+ name: Cosine Ndcg@10
276
+ - type: cosine_mrr@10
277
+ value: 0.10541458628313109
278
+ name: Cosine Mrr@10
279
+ - type: cosine_map@100
280
+ value: 0.1273528705075161
281
+ name: Cosine Map@100
282
+ - task:
283
+ type: information-retrieval
284
+ name: Information Retrieval
285
+ dataset:
286
+ name: dim 128
287
+ type: dim_128
288
+ metrics:
289
+ - type: cosine_accuracy@1
290
+ value: 0.0406885758998435
291
+ name: Cosine Accuracy@1
292
+ - type: cosine_accuracy@3
293
+ value: 0.11267605633802817
294
+ name: Cosine Accuracy@3
295
+ - type: cosine_accuracy@5
296
+ value: 0.17996870109546165
297
+ name: Cosine Accuracy@5
298
+ - type: cosine_accuracy@10
299
+ value: 0.3145539906103286
300
+ name: Cosine Accuracy@10
301
+ - type: cosine_precision@1
302
+ value: 0.0406885758998435
303
+ name: Cosine Precision@1
304
+ - type: cosine_precision@3
305
+ value: 0.03755868544600939
306
+ name: Cosine Precision@3
307
+ - type: cosine_precision@5
308
+ value: 0.03599374021909233
309
+ name: Cosine Precision@5
310
+ - type: cosine_precision@10
311
+ value: 0.03145539906103287
312
+ name: Cosine Precision@10
313
+ - type: cosine_recall@1
314
+ value: 0.0406885758998435
315
+ name: Cosine Recall@1
316
+ - type: cosine_recall@3
317
+ value: 0.11267605633802817
318
+ name: Cosine Recall@3
319
+ - type: cosine_recall@5
320
+ value: 0.17996870109546165
321
+ name: Cosine Recall@5
322
+ - type: cosine_recall@10
323
+ value: 0.3145539906103286
324
+ name: Cosine Recall@10
325
+ - type: cosine_ndcg@10
326
+ value: 0.15177339619789426
327
+ name: Cosine Ndcg@10
328
+ - type: cosine_mrr@10
329
+ value: 0.10291936806021326
330
+ name: Cosine Mrr@10
331
+ - type: cosine_map@100
332
+ value: 0.12605282457123526
333
+ name: Cosine Map@100
334
+ - task:
335
+ type: information-retrieval
336
+ name: Information Retrieval
337
+ dataset:
338
+ name: dim 64
339
+ type: dim_64
340
+ metrics:
341
+ - type: cosine_accuracy@1
342
+ value: 0.0406885758998435
343
+ name: Cosine Accuracy@1
344
+ - type: cosine_accuracy@3
345
+ value: 0.09859154929577464
346
+ name: Cosine Accuracy@3
347
+ - type: cosine_accuracy@5
348
+ value: 0.1596244131455399
349
+ name: Cosine Accuracy@5
350
+ - type: cosine_accuracy@10
351
+ value: 0.29107981220657275
352
+ name: Cosine Accuracy@10
353
+ - type: cosine_precision@1
354
+ value: 0.0406885758998435
355
+ name: Cosine Precision@1
356
+ - type: cosine_precision@3
357
+ value: 0.03286384976525822
358
+ name: Cosine Precision@3
359
+ - type: cosine_precision@5
360
+ value: 0.03192488262910798
361
+ name: Cosine Precision@5
362
+ - type: cosine_precision@10
363
+ value: 0.02910798122065728
364
+ name: Cosine Precision@10
365
+ - type: cosine_recall@1
366
+ value: 0.0406885758998435
367
+ name: Cosine Recall@1
368
+ - type: cosine_recall@3
369
+ value: 0.09859154929577464
370
+ name: Cosine Recall@3
371
+ - type: cosine_recall@5
372
+ value: 0.1596244131455399
373
+ name: Cosine Recall@5
374
+ - type: cosine_recall@10
375
+ value: 0.29107981220657275
376
+ name: Cosine Recall@10
377
+ - type: cosine_ndcg@10
378
+ value: 0.14046451788883374
379
+ name: Cosine Ndcg@10
380
+ - type: cosine_mrr@10
381
+ value: 0.09552562287304085
382
+ name: Cosine Mrr@10
383
+ - type: cosine_map@100
384
+ value: 0.11941800675417487
385
+ name: Cosine Map@100
386
+ ---
387
+
388
+ # SentenceTransformer based on BAAI/bge-m3
389
+
390
+ This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [BAAI/bge-m3](https://huggingface.co/BAAI/bge-m3). It maps sentences & paragraphs to a 1024-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
391
+
392
+ ## Model Details
393
+
394
+ ### Model Description
395
+ - **Model Type:** Sentence Transformer
396
+ - **Base model:** [BAAI/bge-m3](https://huggingface.co/BAAI/bge-m3) <!-- at revision 5617a9f61b028005a4858fdac845db406aefb181 -->
397
+ - **Maximum Sequence Length:** 8192 tokens
398
+ - **Output Dimensionality:** 1024 tokens
399
+ - **Similarity Function:** Cosine Similarity
400
+ <!-- - **Training Dataset:** Unknown -->
401
+ <!-- - **Language:** Unknown -->
402
+ <!-- - **License:** Unknown -->
403
+
404
+ ### Model Sources
405
+
406
+ - **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
407
+ - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
408
+ - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
409
+
410
+ ### Full Model Architecture
411
+
412
+ ```
413
+ SentenceTransformer(
414
+ (0): Transformer({'max_seq_length': 8192, 'do_lower_case': False}) with Transformer model: XLMRobertaModel
415
+ (1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
416
+ (2): Normalize()
417
+ )
418
+ ```
419
+
420
+ ## Usage
421
+
422
+ ### Direct Usage (Sentence Transformers)
423
+
424
+ First install the Sentence Transformers library:
425
+
426
+ ```bash
427
+ pip install -U sentence-transformers
428
+ ```
429
+
430
+ Then you can load this model and run inference.
431
+ ```python
432
+ from sentence_transformers import SentenceTransformer
433
+
434
+ # Download from the 🤗 Hub
435
+ model = SentenceTransformer("adriansanz/sqv-5ep")
436
+ # Run inference
437
+ sentences = [
438
+ 'Import En cas de renovació per caducitat, pèrdua, sostracció o deteriorament: 12,00 € (en metàl·lic i preferiblement import exacte).',
439
+ 'Quin és el procediment per a la renovació del DNI en cas de sostracció?',
440
+ "Quin és el paper del motiu legítim en l'oposició de dades personals en cas de motiu legítim i situació personal concreta?",
441
+ ]
442
+ embeddings = model.encode(sentences)
443
+ print(embeddings.shape)
444
+ # [3, 1024]
445
+
446
+ # Get the similarity scores for the embeddings
447
+ similarities = model.similarity(embeddings, embeddings)
448
+ print(similarities.shape)
449
+ # [3, 3]
450
+ ```
451
+
452
+ <!--
453
+ ### Direct Usage (Transformers)
454
+
455
+ <details><summary>Click to see the direct usage in Transformers</summary>
456
+
457
+ </details>
458
+ -->
459
+
460
+ <!--
461
+ ### Downstream Usage (Sentence Transformers)
462
+
463
+ You can finetune this model on your own dataset.
464
+
465
+ <details><summary>Click to expand</summary>
466
+
467
+ </details>
468
+ -->
469
+
470
+ <!--
471
+ ### Out-of-Scope Use
472
+
473
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
474
+ -->
475
+
476
+ ## Evaluation
477
+
478
+ ### Metrics
479
+
480
+ #### Information Retrieval
481
+ * Dataset: `dim_1024`
482
+ * Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
483
+
484
+ | Metric | Value |
485
+ |:--------------------|:-----------|
486
+ | cosine_accuracy@1 | 0.0407 |
487
+ | cosine_accuracy@3 | 0.1174 |
488
+ | cosine_accuracy@5 | 0.1815 |
489
+ | cosine_accuracy@10 | 0.3302 |
490
+ | cosine_precision@1 | 0.0407 |
491
+ | cosine_precision@3 | 0.0391 |
492
+ | cosine_precision@5 | 0.0363 |
493
+ | cosine_precision@10 | 0.033 |
494
+ | cosine_recall@1 | 0.0407 |
495
+ | cosine_recall@3 | 0.1174 |
496
+ | cosine_recall@5 | 0.1815 |
497
+ | cosine_recall@10 | 0.3302 |
498
+ | cosine_ndcg@10 | 0.158 |
499
+ | cosine_mrr@10 | 0.1065 |
500
+ | **cosine_map@100** | **0.1279** |
501
+
502
+ #### Information Retrieval
503
+ * Dataset: `dim_768`
504
+ * Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
505
+
506
+ | Metric | Value |
507
+ |:--------------------|:-----------|
508
+ | cosine_accuracy@1 | 0.0391 |
509
+ | cosine_accuracy@3 | 0.108 |
510
+ | cosine_accuracy@5 | 0.1815 |
511
+ | cosine_accuracy@10 | 0.3286 |
512
+ | cosine_precision@1 | 0.0391 |
513
+ | cosine_precision@3 | 0.036 |
514
+ | cosine_precision@5 | 0.0363 |
515
+ | cosine_precision@10 | 0.0329 |
516
+ | cosine_recall@1 | 0.0391 |
517
+ | cosine_recall@3 | 0.108 |
518
+ | cosine_recall@5 | 0.1815 |
519
+ | cosine_recall@10 | 0.3286 |
520
+ | cosine_ndcg@10 | 0.1551 |
521
+ | cosine_mrr@10 | 0.1033 |
522
+ | **cosine_map@100** | **0.1247** |
523
+
524
+ #### Information Retrieval
525
+ * Dataset: `dim_512`
526
+ * Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
527
+
528
+ | Metric | Value |
529
+ |:--------------------|:----------|
530
+ | cosine_accuracy@1 | 0.0407 |
531
+ | cosine_accuracy@3 | 0.1017 |
532
+ | cosine_accuracy@5 | 0.1659 |
533
+ | cosine_accuracy@10 | 0.3224 |
534
+ | cosine_precision@1 | 0.0407 |
535
+ | cosine_precision@3 | 0.0339 |
536
+ | cosine_precision@5 | 0.0332 |
537
+ | cosine_precision@10 | 0.0322 |
538
+ | cosine_recall@1 | 0.0407 |
539
+ | cosine_recall@3 | 0.1017 |
540
+ | cosine_recall@5 | 0.1659 |
541
+ | cosine_recall@10 | 0.3224 |
542
+ | cosine_ndcg@10 | 0.1517 |
543
+ | cosine_mrr@10 | 0.101 |
544
+ | **cosine_map@100** | **0.123** |
545
+
546
+ #### Information Retrieval
547
+ * Dataset: `dim_256`
548
+ * Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
549
+
550
+ | Metric | Value |
551
+ |:--------------------|:-----------|
552
+ | cosine_accuracy@1 | 0.0423 |
553
+ | cosine_accuracy@3 | 0.1095 |
554
+ | cosine_accuracy@5 | 0.1847 |
555
+ | cosine_accuracy@10 | 0.3271 |
556
+ | cosine_precision@1 | 0.0423 |
557
+ | cosine_precision@3 | 0.0365 |
558
+ | cosine_precision@5 | 0.0369 |
559
+ | cosine_precision@10 | 0.0327 |
560
+ | cosine_recall@1 | 0.0423 |
561
+ | cosine_recall@3 | 0.1095 |
562
+ | cosine_recall@5 | 0.1847 |
563
+ | cosine_recall@10 | 0.3271 |
564
+ | cosine_ndcg@10 | 0.1564 |
565
+ | cosine_mrr@10 | 0.1054 |
566
+ | **cosine_map@100** | **0.1274** |
567
+
568
+ #### Information Retrieval
569
+ * Dataset: `dim_128`
570
+ * Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
571
+
572
+ | Metric | Value |
573
+ |:--------------------|:-----------|
574
+ | cosine_accuracy@1 | 0.0407 |
575
+ | cosine_accuracy@3 | 0.1127 |
576
+ | cosine_accuracy@5 | 0.18 |
577
+ | cosine_accuracy@10 | 0.3146 |
578
+ | cosine_precision@1 | 0.0407 |
579
+ | cosine_precision@3 | 0.0376 |
580
+ | cosine_precision@5 | 0.036 |
581
+ | cosine_precision@10 | 0.0315 |
582
+ | cosine_recall@1 | 0.0407 |
583
+ | cosine_recall@3 | 0.1127 |
584
+ | cosine_recall@5 | 0.18 |
585
+ | cosine_recall@10 | 0.3146 |
586
+ | cosine_ndcg@10 | 0.1518 |
587
+ | cosine_mrr@10 | 0.1029 |
588
+ | **cosine_map@100** | **0.1261** |
589
+
590
+ #### Information Retrieval
591
+ * Dataset: `dim_64`
592
+ * Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
593
+
594
+ | Metric | Value |
595
+ |:--------------------|:-----------|
596
+ | cosine_accuracy@1 | 0.0407 |
597
+ | cosine_accuracy@3 | 0.0986 |
598
+ | cosine_accuracy@5 | 0.1596 |
599
+ | cosine_accuracy@10 | 0.2911 |
600
+ | cosine_precision@1 | 0.0407 |
601
+ | cosine_precision@3 | 0.0329 |
602
+ | cosine_precision@5 | 0.0319 |
603
+ | cosine_precision@10 | 0.0291 |
604
+ | cosine_recall@1 | 0.0407 |
605
+ | cosine_recall@3 | 0.0986 |
606
+ | cosine_recall@5 | 0.1596 |
607
+ | cosine_recall@10 | 0.2911 |
608
+ | cosine_ndcg@10 | 0.1405 |
609
+ | cosine_mrr@10 | 0.0955 |
610
+ | **cosine_map@100** | **0.1194** |
611
+
612
+ <!--
613
+ ## Bias, Risks and Limitations
614
+
615
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
616
+ -->
617
+
618
+ <!--
619
+ ### Recommendations
620
+
621
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
622
+ -->
623
+
624
+ ## Training Details
625
+
626
+ ### Training Dataset
627
+
628
+ #### Unnamed Dataset
629
+
630
+
631
+ * Size: 5,750 training samples
632
+ * Columns: <code>positive</code> and <code>anchor</code>
633
+ * Approximate statistics based on the first 1000 samples:
634
+ | | positive | anchor |
635
+ |:--------|:-----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|
636
+ | type | string | string |
637
+ | details | <ul><li>min: 4 tokens</li><li>mean: 43.32 tokens</li><li>max: 128 tokens</li></ul> | <ul><li>min: 9 tokens</li><li>mean: 20.77 tokens</li><li>max: 45 tokens</li></ul> |
638
+ * Samples:
639
+ | positive | anchor |
640
+ |:----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:---------------------------------------------------------------------------------------|
641
+ | <code>Aquest tràmit permet donar d'alta ofertes de treball que es gestionaran pel Servei a l'Ocupació.</code> | <code>Com puc saber si el meu perfil és compatible amb les ofertes de treball?</code> |
642
+ | <code>El titular de l’activitat ha de declarar sota la seva responsabilitat, que compleix els requisits establerts per la normativa vigent per a l’exercici de l’activitat, que disposa d’un certificat tècnic justificatiu i que es compromet a mantenir-ne el compliment durant el seu exercici.</code> | <code>Quin és el paper del titular de l'activitat en la Declaració responsable?</code> |
643
+ | <code>Aquest tipus de transmissió entre cedent i cessionari només podrà ser de caràcter gratuït i no condicionada.</code> | <code>Quin és el paper del cedent en la transmissió de drets funeraris?</code> |
644
+ * Loss: [<code>MatryoshkaLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#matryoshkaloss) with these parameters:
645
+ ```json
646
+ {
647
+ "loss": "MultipleNegativesRankingLoss",
648
+ "matryoshka_dims": [
649
+ 1024,
650
+ 768,
651
+ 512,
652
+ 256,
653
+ 128,
654
+ 64
655
+ ],
656
+ "matryoshka_weights": [
657
+ 1,
658
+ 1,
659
+ 1,
660
+ 1,
661
+ 1,
662
+ 1
663
+ ],
664
+ "n_dims_per_step": -1
665
+ }
666
+ ```
667
+
668
+ ### Training Hyperparameters
669
+ #### Non-Default Hyperparameters
670
+
671
+ - `eval_strategy`: epoch
672
+ - `per_device_train_batch_size`: 16
673
+ - `per_device_eval_batch_size`: 16
674
+ - `gradient_accumulation_steps`: 16
675
+ - `learning_rate`: 2e-05
676
+ - `num_train_epochs`: 5
677
+ - `lr_scheduler_type`: cosine
678
+ - `warmup_ratio`: 0.2
679
+ - `bf16`: True
680
+ - `tf32`: True
681
+ - `load_best_model_at_end`: True
682
+ - `optim`: adamw_torch_fused
683
+ - `batch_sampler`: no_duplicates
684
+
685
+ #### All Hyperparameters
686
+ <details><summary>Click to expand</summary>
687
+
688
+ - `overwrite_output_dir`: False
689
+ - `do_predict`: False
690
+ - `eval_strategy`: epoch
691
+ - `prediction_loss_only`: True
692
+ - `per_device_train_batch_size`: 16
693
+ - `per_device_eval_batch_size`: 16
694
+ - `per_gpu_train_batch_size`: None
695
+ - `per_gpu_eval_batch_size`: None
696
+ - `gradient_accumulation_steps`: 16
697
+ - `eval_accumulation_steps`: None
698
+ - `learning_rate`: 2e-05
699
+ - `weight_decay`: 0.0
700
+ - `adam_beta1`: 0.9
701
+ - `adam_beta2`: 0.999
702
+ - `adam_epsilon`: 1e-08
703
+ - `max_grad_norm`: 1.0
704
+ - `num_train_epochs`: 5
705
+ - `max_steps`: -1
706
+ - `lr_scheduler_type`: cosine
707
+ - `lr_scheduler_kwargs`: {}
708
+ - `warmup_ratio`: 0.2
709
+ - `warmup_steps`: 0
710
+ - `log_level`: passive
711
+ - `log_level_replica`: warning
712
+ - `log_on_each_node`: True
713
+ - `logging_nan_inf_filter`: True
714
+ - `save_safetensors`: True
715
+ - `save_on_each_node`: False
716
+ - `save_only_model`: False
717
+ - `restore_callback_states_from_checkpoint`: False
718
+ - `no_cuda`: False
719
+ - `use_cpu`: False
720
+ - `use_mps_device`: False
721
+ - `seed`: 42
722
+ - `data_seed`: None
723
+ - `jit_mode_eval`: False
724
+ - `use_ipex`: False
725
+ - `bf16`: True
726
+ - `fp16`: False
727
+ - `fp16_opt_level`: O1
728
+ - `half_precision_backend`: auto
729
+ - `bf16_full_eval`: False
730
+ - `fp16_full_eval`: False
731
+ - `tf32`: True
732
+ - `local_rank`: 0
733
+ - `ddp_backend`: None
734
+ - `tpu_num_cores`: None
735
+ - `tpu_metrics_debug`: False
736
+ - `debug`: []
737
+ - `dataloader_drop_last`: False
738
+ - `dataloader_num_workers`: 0
739
+ - `dataloader_prefetch_factor`: None
740
+ - `past_index`: -1
741
+ - `disable_tqdm`: False
742
+ - `remove_unused_columns`: True
743
+ - `label_names`: None
744
+ - `load_best_model_at_end`: True
745
+ - `ignore_data_skip`: False
746
+ - `fsdp`: []
747
+ - `fsdp_min_num_params`: 0
748
+ - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
749
+ - `fsdp_transformer_layer_cls_to_wrap`: None
750
+ - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
751
+ - `deepspeed`: None
752
+ - `label_smoothing_factor`: 0.0
753
+ - `optim`: adamw_torch_fused
754
+ - `optim_args`: None
755
+ - `adafactor`: False
756
+ - `group_by_length`: False
757
+ - `length_column_name`: length
758
+ - `ddp_find_unused_parameters`: None
759
+ - `ddp_bucket_cap_mb`: None
760
+ - `ddp_broadcast_buffers`: False
761
+ - `dataloader_pin_memory`: True
762
+ - `dataloader_persistent_workers`: False
763
+ - `skip_memory_metrics`: True
764
+ - `use_legacy_prediction_loop`: False
765
+ - `push_to_hub`: False
766
+ - `resume_from_checkpoint`: None
767
+ - `hub_model_id`: None
768
+ - `hub_strategy`: every_save
769
+ - `hub_private_repo`: False
770
+ - `hub_always_push`: False
771
+ - `gradient_checkpointing`: False
772
+ - `gradient_checkpointing_kwargs`: None
773
+ - `include_inputs_for_metrics`: False
774
+ - `eval_do_concat_batches`: True
775
+ - `fp16_backend`: auto
776
+ - `push_to_hub_model_id`: None
777
+ - `push_to_hub_organization`: None
778
+ - `mp_parameters`:
779
+ - `auto_find_batch_size`: False
780
+ - `full_determinism`: False
781
+ - `torchdynamo`: None
782
+ - `ray_scope`: last
783
+ - `ddp_timeout`: 1800
784
+ - `torch_compile`: False
785
+ - `torch_compile_backend`: None
786
+ - `torch_compile_mode`: None
787
+ - `dispatch_batches`: None
788
+ - `split_batches`: None
789
+ - `include_tokens_per_second`: False
790
+ - `include_num_input_tokens_seen`: False
791
+ - `neftune_noise_alpha`: None
792
+ - `optim_target_modules`: None
793
+ - `batch_eval_metrics`: False
794
+ - `eval_on_start`: False
795
+ - `batch_sampler`: no_duplicates
796
+ - `multi_dataset_batch_sampler`: proportional
797
+
798
+ </details>
799
+
800
+ ### Training Logs
801
+ | Epoch | Step | Training Loss | dim_1024_cosine_map@100 | dim_128_cosine_map@100 | dim_256_cosine_map@100 | dim_512_cosine_map@100 | dim_64_cosine_map@100 | dim_768_cosine_map@100 |
802
+ |:----------:|:------:|:-------------:|:-----------------------:|:----------------------:|:----------------------:|:----------------------:|:---------------------:|:----------------------:|
803
+ | 0.4444 | 10 | 4.5093 | - | - | - | - | - | - |
804
+ | 0.8889 | 20 | 2.7989 | - | - | - | - | - | - |
805
+ | 0.9778 | 22 | - | 0.1072 | 0.1182 | 0.1122 | 0.1083 | 0.1044 | 0.1082 |
806
+ | 1.3333 | 30 | 1.8343 | - | - | - | - | - | - |
807
+ | 1.7778 | 40 | 1.5248 | - | - | - | - | - | - |
808
+ | 2.0 | 45 | - | 0.1182 | 0.1203 | 0.1163 | 0.1188 | 0.1209 | 0.1229 |
809
+ | 2.2222 | 50 | 0.9624 | - | - | - | - | - | - |
810
+ | 2.6667 | 60 | 1.1161 | - | - | - | - | - | - |
811
+ | **2.9778** | **67** | **-** | **0.1235** | **0.1324** | **0.1302** | **0.1252** | **0.1213** | **0.1239** |
812
+ | 3.1111 | 70 | 0.7405 | - | - | - | - | - | - |
813
+ | 3.5556 | 80 | 0.8621 | - | - | - | - | - | - |
814
+ | 4.0 | 90 | 0.6071 | 0.1249 | 0.1282 | 0.1310 | 0.1280 | 0.1181 | 0.1278 |
815
+ | 4.4444 | 100 | 0.7091 | - | - | - | - | - | - |
816
+ | 4.8889 | 110 | 0.606 | 0.1279 | 0.1261 | 0.1274 | 0.1230 | 0.1194 | 0.1247 |
817
+
818
+ * The bold row denotes the saved checkpoint.
819
+
820
+ ### Framework Versions
821
+ - Python: 3.10.12
822
+ - Sentence Transformers: 3.0.1
823
+ - Transformers: 4.42.4
824
+ - PyTorch: 2.4.0+cu121
825
+ - Accelerate: 0.35.0.dev0
826
+ - Datasets: 2.21.0
827
+ - Tokenizers: 0.19.1
828
+
829
+ ## Citation
830
+
831
+ ### BibTeX
832
+
833
+ #### Sentence Transformers
834
+ ```bibtex
835
+ @inproceedings{reimers-2019-sentence-bert,
836
+ title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
837
+ author = "Reimers, Nils and Gurevych, Iryna",
838
+ booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
839
+ month = "11",
840
+ year = "2019",
841
+ publisher = "Association for Computational Linguistics",
842
+ url = "https://arxiv.org/abs/1908.10084",
843
+ }
844
+ ```
845
+
846
+ #### MatryoshkaLoss
847
+ ```bibtex
848
+ @misc{kusupati2024matryoshka,
849
+ title={Matryoshka Representation Learning},
850
+ author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
851
+ year={2024},
852
+ eprint={2205.13147},
853
+ archivePrefix={arXiv},
854
+ primaryClass={cs.LG}
855
+ }
856
+ ```
857
+
858
+ #### MultipleNegativesRankingLoss
859
+ ```bibtex
860
+ @misc{henderson2017efficient,
861
+ title={Efficient Natural Language Response Suggestion for Smart Reply},
862
+ author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
863
+ year={2017},
864
+ eprint={1705.00652},
865
+ archivePrefix={arXiv},
866
+ primaryClass={cs.CL}
867
+ }
868
+ ```
869
+
870
+ <!--
871
+ ## Glossary
872
+
873
+ *Clearly define terms in order to be accessible across audiences.*
874
+ -->
875
+
876
+ <!--
877
+ ## Model Card Authors
878
+
879
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
880
+ -->
881
+
882
+ <!--
883
+ ## Model Card Contact
884
+
885
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
886
+ -->
config.json ADDED
@@ -0,0 +1,28 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "BAAI/bge-m3",
3
+ "architectures": [
4
+ "XLMRobertaModel"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "bos_token_id": 0,
8
+ "classifier_dropout": null,
9
+ "eos_token_id": 2,
10
+ "hidden_act": "gelu",
11
+ "hidden_dropout_prob": 0.1,
12
+ "hidden_size": 1024,
13
+ "initializer_range": 0.02,
14
+ "intermediate_size": 4096,
15
+ "layer_norm_eps": 1e-05,
16
+ "max_position_embeddings": 8194,
17
+ "model_type": "xlm-roberta",
18
+ "num_attention_heads": 16,
19
+ "num_hidden_layers": 24,
20
+ "output_past": true,
21
+ "pad_token_id": 1,
22
+ "position_embedding_type": "absolute",
23
+ "torch_dtype": "float32",
24
+ "transformers_version": "4.42.4",
25
+ "type_vocab_size": 1,
26
+ "use_cache": true,
27
+ "vocab_size": 250002
28
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "3.0.1",
4
+ "transformers": "4.42.4",
5
+ "pytorch": "2.4.0+cu121"
6
+ },
7
+ "prompts": {},
8
+ "default_prompt_name": null,
9
+ "similarity_fn_name": null
10
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f37cb58aa6246ea431dbd905e2aba4548e8fa2fb12c4fa4a556f418c647fa3e6
3
+ size 2271064456
modules.json ADDED
@@ -0,0 +1,20 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ },
14
+ {
15
+ "idx": 2,
16
+ "name": "2",
17
+ "path": "2_Normalize",
18
+ "type": "sentence_transformers.models.Normalize"
19
+ }
20
+ ]
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 8192,
3
+ "do_lower_case": false
4
+ }
sentencepiece.bpe.model ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:cfc8146abe2a0488e9e2a0c56de7952f7c11ab059eca145a0a727afce0db2865
3
+ size 5069051
special_tokens_map.json ADDED
@@ -0,0 +1,51 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "<s>",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "cls_token": {
10
+ "content": "<s>",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "eos_token": {
17
+ "content": "</s>",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "mask_token": {
24
+ "content": "<mask>",
25
+ "lstrip": true,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "pad_token": {
31
+ "content": "<pad>",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ },
37
+ "sep_token": {
38
+ "content": "</s>",
39
+ "lstrip": false,
40
+ "normalized": false,
41
+ "rstrip": false,
42
+ "single_word": false
43
+ },
44
+ "unk_token": {
45
+ "content": "<unk>",
46
+ "lstrip": false,
47
+ "normalized": false,
48
+ "rstrip": false,
49
+ "single_word": false
50
+ }
51
+ }
tokenizer.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e4f7e21bec3fb0044ca0bb2d50eb5d4d8c596273c422baef84466d2c73748b9c
3
+ size 17083053
tokenizer_config.json ADDED
@@ -0,0 +1,55 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "<s>",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "1": {
12
+ "content": "<pad>",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "2": {
20
+ "content": "</s>",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "3": {
28
+ "content": "<unk>",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "250001": {
36
+ "content": "<mask>",
37
+ "lstrip": true,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "bos_token": "<s>",
45
+ "clean_up_tokenization_spaces": true,
46
+ "cls_token": "<s>",
47
+ "eos_token": "</s>",
48
+ "mask_token": "<mask>",
49
+ "model_max_length": 8192,
50
+ "pad_token": "<pad>",
51
+ "sep_token": "</s>",
52
+ "sp_model_kwargs": {},
53
+ "tokenizer_class": "XLMRobertaTokenizer",
54
+ "unk_token": "<unk>"
55
+ }