File size: 33,156 Bytes
1302134
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
---
base_model: BAAI/bge-m3
library_name: sentence-transformers
metrics:
- cosine_accuracy@1
- cosine_accuracy@3
- cosine_accuracy@5
- cosine_accuracy@10
- cosine_precision@1
- cosine_precision@3
- cosine_precision@5
- cosine_precision@10
- cosine_recall@1
- cosine_recall@3
- cosine_recall@5
- cosine_recall@10
- cosine_ndcg@10
- cosine_mrr@10
- cosine_map@100
pipeline_tag: sentence-similarity
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:6468
- loss:MatryoshkaLoss
- loss:MultipleNegativesRankingLoss
widget:
- source_sentence: El seu objecte és que -prèviament a la seva execució material-
    l'Ajuntament comprovi l'adequació de l’actuació a la normativa i planejament,
    així com a les ordenances municipals sobre l’ús del sòl i edificació.
  sentences:
  - Quin és el paper de les ordenances municipals en la llicència d'extracció d'àrids
    i explotació de pedreres?
  - Quin és el percentatge de bonificació que es pot obtenir?
  - Quin és el propòsit del tràmit d'adjudicació d'habitatges socials i d'emergència?
- source_sentence: La renda és un element important en la tramitació d'un ajornament
    o fraccionament, ja que es  en compte per determinar si el sol·licitant compleix
    els requisits per a sol·licitar el criteri excepcional.
  sentences:
  - Quin és el paper de la renda en la tramitació d'un ajornament o fraccionament?
  - Quin és l'objectiu del tràmit C03?
  - Quin és el paper de les ordenances municipals en la llicència de parcel·lació?
- source_sentence: L’article 14 de la llei 39/2015 estableix l’obligatorietat de l’ús
    de mitjans electrònics, informàtics o telemàtics per desenvolupar totes les fases
    del procediment de contractació.
  sentences:
  - Quin és el paper de les ordenances municipals sobre l’ús del sòl i edificació
    en el tràmit de modificació substancial de la llicència d'obres?
  - Quin és el requisit per a la intervenció d'una persona tècnica?
  - Quin és el propòsit de l’article 14 de la llei 39/2015?
- source_sentence: El seu objecte és que -prèviament a la seva execució material-
    l'Ajuntament comprovi l'adequació de l’actuació a la normativa i planejament,
    així com a les ordenances municipals sobre l’ús del sòl i edificació.
  sentences:
  - Quin és el paper del planejament en el tràmit de llicència d'obres per l'obertura,
    la pavimentació i la modificació de camins rurals?
  - Quin és el requisit per presentar una sol·licitud?
  - Quin és el resultat de la falta de presentació de la documentació tècnica corresponent?
- source_sentence: L’Ajuntament de Sant Quirze del Vallès reconeix un dret preferent
    al titular del dret funerari sobre la corresponent sepultura o al successor o
    causahavent de l’anterior titular d’aquest dret, que permet adquirir de nou el
    dret funerari referit, sobre la mateixa sepultura, un cop el dret atorgat ha exhaurit
    el termini de vigència
  sentences:
  - Quin és el requisit per a les instal·lacions solars per mantenir la bonificació?
  - Quin és el paper del cens electoral en les eleccions?
  - Quan es pot adquirir de nou el dret funerari?
model-index:
- name: SentenceTransformer based on BAAI/bge-m3
  results:
  - task:
      type: information-retrieval
      name: Information Retrieval
    dataset:
      name: dim 1024
      type: dim_1024
    metrics:
    - type: cosine_accuracy@1
      value: 0.10173160173160173
      name: Cosine Accuracy@1
    - type: cosine_accuracy@3
      value: 0.27705627705627706
      name: Cosine Accuracy@3
    - type: cosine_accuracy@5
      value: 0.36796536796536794
      name: Cosine Accuracy@5
    - type: cosine_accuracy@10
      value: 0.48268398268398266
      name: Cosine Accuracy@10
    - type: cosine_precision@1
      value: 0.10173160173160173
      name: Cosine Precision@1
    - type: cosine_precision@3
      value: 0.09235209235209235
      name: Cosine Precision@3
    - type: cosine_precision@5
      value: 0.0735930735930736
      name: Cosine Precision@5
    - type: cosine_precision@10
      value: 0.04826839826839826
      name: Cosine Precision@10
    - type: cosine_recall@1
      value: 0.10173160173160173
      name: Cosine Recall@1
    - type: cosine_recall@3
      value: 0.27705627705627706
      name: Cosine Recall@3
    - type: cosine_recall@5
      value: 0.36796536796536794
      name: Cosine Recall@5
    - type: cosine_recall@10
      value: 0.48268398268398266
      name: Cosine Recall@10
    - type: cosine_ndcg@10
      value: 0.27573421573267004
      name: Cosine Ndcg@10
    - type: cosine_mrr@10
      value: 0.21126485947914525
      name: Cosine Mrr@10
    - type: cosine_map@100
      value: 0.22874042563037256
      name: Cosine Map@100
  - task:
      type: information-retrieval
      name: Information Retrieval
    dataset:
      name: dim 768
      type: dim_768
    metrics:
    - type: cosine_accuracy@1
      value: 0.11904761904761904
      name: Cosine Accuracy@1
    - type: cosine_accuracy@3
      value: 0.29004329004329005
      name: Cosine Accuracy@3
    - type: cosine_accuracy@5
      value: 0.3658008658008658
      name: Cosine Accuracy@5
    - type: cosine_accuracy@10
      value: 0.49567099567099565
      name: Cosine Accuracy@10
    - type: cosine_precision@1
      value: 0.11904761904761904
      name: Cosine Precision@1
    - type: cosine_precision@3
      value: 0.09668109668109669
      name: Cosine Precision@3
    - type: cosine_precision@5
      value: 0.07316017316017315
      name: Cosine Precision@5
    - type: cosine_precision@10
      value: 0.049567099567099565
      name: Cosine Precision@10
    - type: cosine_recall@1
      value: 0.11904761904761904
      name: Cosine Recall@1
    - type: cosine_recall@3
      value: 0.29004329004329005
      name: Cosine Recall@3
    - type: cosine_recall@5
      value: 0.3658008658008658
      name: Cosine Recall@5
    - type: cosine_recall@10
      value: 0.49567099567099565
      name: Cosine Recall@10
    - type: cosine_ndcg@10
      value: 0.2892077987787756
      name: Cosine Ndcg@10
    - type: cosine_mrr@10
      value: 0.22525767882910738
      name: Cosine Mrr@10
    - type: cosine_map@100
      value: 0.24276232307204765
      name: Cosine Map@100
  - task:
      type: information-retrieval
      name: Information Retrieval
    dataset:
      name: dim 512
      type: dim_512
    metrics:
    - type: cosine_accuracy@1
      value: 0.10822510822510822
      name: Cosine Accuracy@1
    - type: cosine_accuracy@3
      value: 0.2662337662337662
      name: Cosine Accuracy@3
    - type: cosine_accuracy@5
      value: 0.36363636363636365
      name: Cosine Accuracy@5
    - type: cosine_accuracy@10
      value: 0.5064935064935064
      name: Cosine Accuracy@10
    - type: cosine_precision@1
      value: 0.10822510822510822
      name: Cosine Precision@1
    - type: cosine_precision@3
      value: 0.08874458874458875
      name: Cosine Precision@3
    - type: cosine_precision@5
      value: 0.07272727272727272
      name: Cosine Precision@5
    - type: cosine_precision@10
      value: 0.050649350649350645
      name: Cosine Precision@10
    - type: cosine_recall@1
      value: 0.10822510822510822
      name: Cosine Recall@1
    - type: cosine_recall@3
      value: 0.2662337662337662
      name: Cosine Recall@3
    - type: cosine_recall@5
      value: 0.36363636363636365
      name: Cosine Recall@5
    - type: cosine_recall@10
      value: 0.5064935064935064
      name: Cosine Recall@10
    - type: cosine_ndcg@10
      value: 0.28386807922368074
      name: Cosine Ndcg@10
    - type: cosine_mrr@10
      value: 0.21557239057239053
      name: Cosine Mrr@10
    - type: cosine_map@100
      value: 0.23234161860560523
      name: Cosine Map@100
  - task:
      type: information-retrieval
      name: Information Retrieval
    dataset:
      name: dim 256
      type: dim_256
    metrics:
    - type: cosine_accuracy@1
      value: 0.11471861471861472
      name: Cosine Accuracy@1
    - type: cosine_accuracy@3
      value: 0.24025974025974026
      name: Cosine Accuracy@3
    - type: cosine_accuracy@5
      value: 0.3398268398268398
      name: Cosine Accuracy@5
    - type: cosine_accuracy@10
      value: 0.4805194805194805
      name: Cosine Accuracy@10
    - type: cosine_precision@1
      value: 0.11471861471861472
      name: Cosine Precision@1
    - type: cosine_precision@3
      value: 0.08008658008658008
      name: Cosine Precision@3
    - type: cosine_precision@5
      value: 0.06796536796536796
      name: Cosine Precision@5
    - type: cosine_precision@10
      value: 0.04805194805194805
      name: Cosine Precision@10
    - type: cosine_recall@1
      value: 0.11471861471861472
      name: Cosine Recall@1
    - type: cosine_recall@3
      value: 0.24025974025974026
      name: Cosine Recall@3
    - type: cosine_recall@5
      value: 0.3398268398268398
      name: Cosine Recall@5
    - type: cosine_recall@10
      value: 0.4805194805194805
      name: Cosine Recall@10
    - type: cosine_ndcg@10
      value: 0.2749619650624931
      name: Cosine Ndcg@10
    - type: cosine_mrr@10
      value: 0.21201642273070856
      name: Cosine Mrr@10
    - type: cosine_map@100
      value: 0.23043548788604293
      name: Cosine Map@100
  - task:
      type: information-retrieval
      name: Information Retrieval
    dataset:
      name: dim 128
      type: dim_128
    metrics:
    - type: cosine_accuracy@1
      value: 0.11255411255411256
      name: Cosine Accuracy@1
    - type: cosine_accuracy@3
      value: 0.26406926406926406
      name: Cosine Accuracy@3
    - type: cosine_accuracy@5
      value: 0.329004329004329
      name: Cosine Accuracy@5
    - type: cosine_accuracy@10
      value: 0.487012987012987
      name: Cosine Accuracy@10
    - type: cosine_precision@1
      value: 0.11255411255411256
      name: Cosine Precision@1
    - type: cosine_precision@3
      value: 0.08802308802308802
      name: Cosine Precision@3
    - type: cosine_precision@5
      value: 0.0658008658008658
      name: Cosine Precision@5
    - type: cosine_precision@10
      value: 0.048701298701298704
      name: Cosine Precision@10
    - type: cosine_recall@1
      value: 0.11255411255411256
      name: Cosine Recall@1
    - type: cosine_recall@3
      value: 0.26406926406926406
      name: Cosine Recall@3
    - type: cosine_recall@5
      value: 0.329004329004329
      name: Cosine Recall@5
    - type: cosine_recall@10
      value: 0.487012987012987
      name: Cosine Recall@10
    - type: cosine_ndcg@10
      value: 0.27907708560411776
      name: Cosine Ndcg@10
    - type: cosine_mrr@10
      value: 0.21522795987081703
      name: Cosine Mrr@10
    - type: cosine_map@100
      value: 0.23398722217128723
      name: Cosine Map@100
  - task:
      type: information-retrieval
      name: Information Retrieval
    dataset:
      name: dim 64
      type: dim_64
    metrics:
    - type: cosine_accuracy@1
      value: 0.1038961038961039
      name: Cosine Accuracy@1
    - type: cosine_accuracy@3
      value: 0.2619047619047619
      name: Cosine Accuracy@3
    - type: cosine_accuracy@5
      value: 0.3354978354978355
      name: Cosine Accuracy@5
    - type: cosine_accuracy@10
      value: 0.474025974025974
      name: Cosine Accuracy@10
    - type: cosine_precision@1
      value: 0.1038961038961039
      name: Cosine Precision@1
    - type: cosine_precision@3
      value: 0.0873015873015873
      name: Cosine Precision@3
    - type: cosine_precision@5
      value: 0.0670995670995671
      name: Cosine Precision@5
    - type: cosine_precision@10
      value: 0.0474025974025974
      name: Cosine Precision@10
    - type: cosine_recall@1
      value: 0.1038961038961039
      name: Cosine Recall@1
    - type: cosine_recall@3
      value: 0.2619047619047619
      name: Cosine Recall@3
    - type: cosine_recall@5
      value: 0.3354978354978355
      name: Cosine Recall@5
    - type: cosine_recall@10
      value: 0.474025974025974
      name: Cosine Recall@10
    - type: cosine_ndcg@10
      value: 0.2700415740619265
      name: Cosine Ndcg@10
    - type: cosine_mrr@10
      value: 0.20714285714285718
      name: Cosine Mrr@10
    - type: cosine_map@100
      value: 0.22556246902969454
      name: Cosine Map@100
---

# SentenceTransformer based on BAAI/bge-m3

This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [BAAI/bge-m3](https://huggingface.co/BAAI/bge-m3) on the json dataset. It maps sentences & paragraphs to a 1024-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.

## Model Details

### Model Description
- **Model Type:** Sentence Transformer
- **Base model:** [BAAI/bge-m3](https://huggingface.co/BAAI/bge-m3) <!-- at revision 5617a9f61b028005a4858fdac845db406aefb181 -->
- **Maximum Sequence Length:** 8192 tokens
- **Output Dimensionality:** 1024 tokens
- **Similarity Function:** Cosine Similarity
- **Training Dataset:**
    - json
<!-- - **Language:** Unknown -->
<!-- - **License:** Unknown -->

### Model Sources

- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)

### Full Model Architecture

```
SentenceTransformer(
  (0): Transformer({'max_seq_length': 8192, 'do_lower_case': False}) with Transformer model: XLMRobertaModel 
  (1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
  (2): Normalize()
)
```

## Usage

### Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

```bash
pip install -U sentence-transformers
```

Then you can load this model and run inference.
```python
from sentence_transformers import SentenceTransformer

# Download from the 🤗 Hub
model = SentenceTransformer("adriansanz/ST-tramits-SQV-007-5ep")
# Run inference
sentences = [
    'L’Ajuntament de Sant Quirze del Vallès reconeix un dret preferent al titular del dret funerari sobre la corresponent sepultura o al successor o causahavent de l’anterior titular d’aquest dret, que permet adquirir de nou el dret funerari referit, sobre la mateixa sepultura, un cop el dret atorgat ha exhaurit el termini de vigència',
    'Quan es pot adquirir de nou el dret funerari?',
    'Quin és el paper del cens electoral en les eleccions?',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 1024]

# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
```

<!--
### Direct Usage (Transformers)

<details><summary>Click to see the direct usage in Transformers</summary>

</details>
-->

<!--
### Downstream Usage (Sentence Transformers)

You can finetune this model on your own dataset.

<details><summary>Click to expand</summary>

</details>
-->

<!--
### Out-of-Scope Use

*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->

## Evaluation

### Metrics

#### Information Retrieval
* Dataset: `dim_1024`
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)

| Metric              | Value      |
|:--------------------|:-----------|
| cosine_accuracy@1   | 0.1017     |
| cosine_accuracy@3   | 0.2771     |
| cosine_accuracy@5   | 0.368      |
| cosine_accuracy@10  | 0.4827     |
| cosine_precision@1  | 0.1017     |
| cosine_precision@3  | 0.0924     |
| cosine_precision@5  | 0.0736     |
| cosine_precision@10 | 0.0483     |
| cosine_recall@1     | 0.1017     |
| cosine_recall@3     | 0.2771     |
| cosine_recall@5     | 0.368      |
| cosine_recall@10    | 0.4827     |
| cosine_ndcg@10      | 0.2757     |
| cosine_mrr@10       | 0.2113     |
| **cosine_map@100**  | **0.2287** |

#### Information Retrieval
* Dataset: `dim_768`
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)

| Metric              | Value      |
|:--------------------|:-----------|
| cosine_accuracy@1   | 0.119      |
| cosine_accuracy@3   | 0.29       |
| cosine_accuracy@5   | 0.3658     |
| cosine_accuracy@10  | 0.4957     |
| cosine_precision@1  | 0.119      |
| cosine_precision@3  | 0.0967     |
| cosine_precision@5  | 0.0732     |
| cosine_precision@10 | 0.0496     |
| cosine_recall@1     | 0.119      |
| cosine_recall@3     | 0.29       |
| cosine_recall@5     | 0.3658     |
| cosine_recall@10    | 0.4957     |
| cosine_ndcg@10      | 0.2892     |
| cosine_mrr@10       | 0.2253     |
| **cosine_map@100**  | **0.2428** |

#### Information Retrieval
* Dataset: `dim_512`
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)

| Metric              | Value      |
|:--------------------|:-----------|
| cosine_accuracy@1   | 0.1082     |
| cosine_accuracy@3   | 0.2662     |
| cosine_accuracy@5   | 0.3636     |
| cosine_accuracy@10  | 0.5065     |
| cosine_precision@1  | 0.1082     |
| cosine_precision@3  | 0.0887     |
| cosine_precision@5  | 0.0727     |
| cosine_precision@10 | 0.0506     |
| cosine_recall@1     | 0.1082     |
| cosine_recall@3     | 0.2662     |
| cosine_recall@5     | 0.3636     |
| cosine_recall@10    | 0.5065     |
| cosine_ndcg@10      | 0.2839     |
| cosine_mrr@10       | 0.2156     |
| **cosine_map@100**  | **0.2323** |

#### Information Retrieval
* Dataset: `dim_256`
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)

| Metric              | Value      |
|:--------------------|:-----------|
| cosine_accuracy@1   | 0.1147     |
| cosine_accuracy@3   | 0.2403     |
| cosine_accuracy@5   | 0.3398     |
| cosine_accuracy@10  | 0.4805     |
| cosine_precision@1  | 0.1147     |
| cosine_precision@3  | 0.0801     |
| cosine_precision@5  | 0.068      |
| cosine_precision@10 | 0.0481     |
| cosine_recall@1     | 0.1147     |
| cosine_recall@3     | 0.2403     |
| cosine_recall@5     | 0.3398     |
| cosine_recall@10    | 0.4805     |
| cosine_ndcg@10      | 0.275      |
| cosine_mrr@10       | 0.212      |
| **cosine_map@100**  | **0.2304** |

#### Information Retrieval
* Dataset: `dim_128`
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)

| Metric              | Value     |
|:--------------------|:----------|
| cosine_accuracy@1   | 0.1126    |
| cosine_accuracy@3   | 0.2641    |
| cosine_accuracy@5   | 0.329     |
| cosine_accuracy@10  | 0.487     |
| cosine_precision@1  | 0.1126    |
| cosine_precision@3  | 0.088     |
| cosine_precision@5  | 0.0658    |
| cosine_precision@10 | 0.0487    |
| cosine_recall@1     | 0.1126    |
| cosine_recall@3     | 0.2641    |
| cosine_recall@5     | 0.329     |
| cosine_recall@10    | 0.487     |
| cosine_ndcg@10      | 0.2791    |
| cosine_mrr@10       | 0.2152    |
| **cosine_map@100**  | **0.234** |

#### Information Retrieval
* Dataset: `dim_64`
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)

| Metric              | Value      |
|:--------------------|:-----------|
| cosine_accuracy@1   | 0.1039     |
| cosine_accuracy@3   | 0.2619     |
| cosine_accuracy@5   | 0.3355     |
| cosine_accuracy@10  | 0.474      |
| cosine_precision@1  | 0.1039     |
| cosine_precision@3  | 0.0873     |
| cosine_precision@5  | 0.0671     |
| cosine_precision@10 | 0.0474     |
| cosine_recall@1     | 0.1039     |
| cosine_recall@3     | 0.2619     |
| cosine_recall@5     | 0.3355     |
| cosine_recall@10    | 0.474      |
| cosine_ndcg@10      | 0.27       |
| cosine_mrr@10       | 0.2071     |
| **cosine_map@100**  | **0.2256** |

<!--
## Bias, Risks and Limitations

*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->

<!--
### Recommendations

*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->

## Training Details

### Training Dataset

#### json

* Dataset: json
* Size: 6,468 training samples
* Columns: <code>positive</code> and <code>anchor</code>
* Approximate statistics based on the first 1000 samples:
  |         | positive                                                                          | anchor                                                                             |
  |:--------|:----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|
  | type    | string                                                                            | string                                                                             |
  | details | <ul><li>min: 5 tokens</li><li>mean: 39.4 tokens</li><li>max: 168 tokens</li></ul> | <ul><li>min: 10 tokens</li><li>mean: 20.48 tokens</li><li>max: 44 tokens</li></ul> |
* Samples:
  | positive                                                                                                           | anchor                                                                                                                               |
  |:-------------------------------------------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------------------------------------------------------|
  | <code>Aquest tràmit permet la inscripció al padró dels canvis de domicili dins de Sant Quirze del Vallès...</code> | <code>Quin és el benefici de la inscripció al Padró d'Habitants?</code>                                                              |
  | <code>Els recursos que es poden oferir al banc de recursos són: MATERIALS, PROFESSIONALS i SOCIALS.</code>         | <code>Quins tipus de recursos es poden oferir al banc de recursos?</code>                                                            |
  | <code>El termini per a la presentació de sol·licituds serà del 8 al 21 de maig de 2024, ambdós inclosos.</code>    | <code>Quin és el termini per a la presentació de sol·licituds per a la preinscripció a l'Escola Bressol Municipal El Patufet?</code> |
* Loss: [<code>MatryoshkaLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#matryoshkaloss) with these parameters:
  ```json
  {
      "loss": "MultipleNegativesRankingLoss",
      "matryoshka_dims": [
          1024,
          768,
          512,
          256,
          128,
          64
      ],
      "matryoshka_weights": [
          1,
          1,
          1,
          1,
          1,
          1
      ],
      "n_dims_per_step": -1
  }
  ```

### Training Hyperparameters
#### Non-Default Hyperparameters

- `eval_strategy`: epoch
- `per_device_train_batch_size`: 16
- `per_device_eval_batch_size`: 16
- `gradient_accumulation_steps`: 16
- `learning_rate`: 2e-05
- `num_train_epochs`: 5
- `lr_scheduler_type`: cosine
- `warmup_ratio`: 0.2
- `bf16`: True
- `tf32`: True
- `load_best_model_at_end`: True
- `optim`: adamw_torch_fused
- `batch_sampler`: no_duplicates

#### All Hyperparameters
<details><summary>Click to expand</summary>

- `overwrite_output_dir`: False
- `do_predict`: False
- `eval_strategy`: epoch
- `prediction_loss_only`: True
- `per_device_train_batch_size`: 16
- `per_device_eval_batch_size`: 16
- `per_gpu_train_batch_size`: None
- `per_gpu_eval_batch_size`: None
- `gradient_accumulation_steps`: 16
- `eval_accumulation_steps`: None
- `torch_empty_cache_steps`: None
- `learning_rate`: 2e-05
- `weight_decay`: 0.0
- `adam_beta1`: 0.9
- `adam_beta2`: 0.999
- `adam_epsilon`: 1e-08
- `max_grad_norm`: 1.0
- `num_train_epochs`: 5
- `max_steps`: -1
- `lr_scheduler_type`: cosine
- `lr_scheduler_kwargs`: {}
- `warmup_ratio`: 0.2
- `warmup_steps`: 0
- `log_level`: passive
- `log_level_replica`: warning
- `log_on_each_node`: True
- `logging_nan_inf_filter`: True
- `save_safetensors`: True
- `save_on_each_node`: False
- `save_only_model`: False
- `restore_callback_states_from_checkpoint`: False
- `no_cuda`: False
- `use_cpu`: False
- `use_mps_device`: False
- `seed`: 42
- `data_seed`: None
- `jit_mode_eval`: False
- `use_ipex`: False
- `bf16`: True
- `fp16`: False
- `fp16_opt_level`: O1
- `half_precision_backend`: auto
- `bf16_full_eval`: False
- `fp16_full_eval`: False
- `tf32`: True
- `local_rank`: 0
- `ddp_backend`: None
- `tpu_num_cores`: None
- `tpu_metrics_debug`: False
- `debug`: []
- `dataloader_drop_last`: False
- `dataloader_num_workers`: 0
- `dataloader_prefetch_factor`: None
- `past_index`: -1
- `disable_tqdm`: False
- `remove_unused_columns`: True
- `label_names`: None
- `load_best_model_at_end`: True
- `ignore_data_skip`: False
- `fsdp`: []
- `fsdp_min_num_params`: 0
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
- `fsdp_transformer_layer_cls_to_wrap`: None
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
- `deepspeed`: None
- `label_smoothing_factor`: 0.0
- `optim`: adamw_torch_fused
- `optim_args`: None
- `adafactor`: False
- `group_by_length`: False
- `length_column_name`: length
- `ddp_find_unused_parameters`: None
- `ddp_bucket_cap_mb`: None
- `ddp_broadcast_buffers`: False
- `dataloader_pin_memory`: True
- `dataloader_persistent_workers`: False
- `skip_memory_metrics`: True
- `use_legacy_prediction_loop`: False
- `push_to_hub`: False
- `resume_from_checkpoint`: None
- `hub_model_id`: None
- `hub_strategy`: every_save
- `hub_private_repo`: False
- `hub_always_push`: False
- `gradient_checkpointing`: False
- `gradient_checkpointing_kwargs`: None
- `include_inputs_for_metrics`: False
- `eval_do_concat_batches`: True
- `fp16_backend`: auto
- `push_to_hub_model_id`: None
- `push_to_hub_organization`: None
- `mp_parameters`: 
- `auto_find_batch_size`: False
- `full_determinism`: False
- `torchdynamo`: None
- `ray_scope`: last
- `ddp_timeout`: 1800
- `torch_compile`: False
- `torch_compile_backend`: None
- `torch_compile_mode`: None
- `dispatch_batches`: None
- `split_batches`: None
- `include_tokens_per_second`: False
- `include_num_input_tokens_seen`: False
- `neftune_noise_alpha`: None
- `optim_target_modules`: None
- `batch_eval_metrics`: False
- `eval_on_start`: False
- `eval_use_gather_object`: False
- `batch_sampler`: no_duplicates
- `multi_dataset_batch_sampler`: proportional

</details>

### Training Logs
| Epoch     | Step   | Training Loss | dim_1024_cosine_map@100 | dim_128_cosine_map@100 | dim_256_cosine_map@100 | dim_512_cosine_map@100 | dim_64_cosine_map@100 | dim_768_cosine_map@100 |
|:---------:|:------:|:-------------:|:-----------------------:|:----------------------:|:----------------------:|:----------------------:|:---------------------:|:----------------------:|
| 0.3951    | 10     | 4.4042        | -                       | -                      | -                      | -                      | -                     | -                      |
| 0.7901    | 20     | 2.9471        | -                       | -                      | -                      | -                      | -                     | -                      |
| 0.9877    | 25     | -             | 0.2293                  | 0.2045                 | 0.2099                 | 0.2138                 | 0.1717                | 0.2242                 |
| 1.1852    | 30     | 2.2351        | -                       | -                      | -                      | -                      | -                     | -                      |
| 1.5802    | 40     | 1.5289        | -                       | -                      | -                      | -                      | -                     | -                      |
| 1.9753    | 50     | 1.2045        | 0.2332                  | 0.2182                 | 0.2277                 | 0.2221                 | 0.2051                | 0.2248                 |
| 2.3704    | 60     | 0.9435        | -                       | -                      | -                      | -                      | -                     | -                      |
| 2.7654    | 70     | 0.7958        | -                       | -                      | -                      | -                      | -                     | -                      |
| **2.963** | **75** | **-**         | **0.2379**              | **0.2352**             | **0.2276**             | **0.2204**             | **0.2138**            | **0.2235**             |
| 3.1605    | 80     | 0.6703        | -                       | -                      | -                      | -                      | -                     | -                      |
| 3.5556    | 90     | 0.6162        | -                       | -                      | -                      | -                      | -                     | -                      |
| 3.9506    | 100    | 0.6079        | -                       | -                      | -                      | -                      | -                     | -                      |
| 3.9901    | 101    | -             | 0.2251                  | 0.2307                 | 0.2201                 | 0.2343                 | 0.2210                | 0.2348                 |
| 4.3457    | 110    | 0.5085        | -                       | -                      | -                      | -                      | -                     | -                      |
| 4.7407    | 120    | 0.5248        | -                       | -                      | -                      | -                      | -                     | -                      |
| 4.9383    | 125    | -             | 0.2287                  | 0.2340                 | 0.2304                 | 0.2323                 | 0.2256                | 0.2428                 |

* The bold row denotes the saved checkpoint.

### Framework Versions
- Python: 3.10.12
- Sentence Transformers: 3.1.1
- Transformers: 4.44.2
- PyTorch: 2.4.1+cu121
- Accelerate: 0.35.0.dev0
- Datasets: 3.0.1
- Tokenizers: 0.19.1

## Citation

### BibTeX

#### Sentence Transformers
```bibtex
@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}
```

#### MatryoshkaLoss
```bibtex
@misc{kusupati2024matryoshka,
    title={Matryoshka Representation Learning},
    author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
    year={2024},
    eprint={2205.13147},
    archivePrefix={arXiv},
    primaryClass={cs.LG}
}
```

#### MultipleNegativesRankingLoss
```bibtex
@misc{henderson2017efficient,
    title={Efficient Natural Language Response Suggestion for Smart Reply},
    author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
    year={2017},
    eprint={1705.00652},
    archivePrefix={arXiv},
    primaryClass={cs.CL}
}
```

<!--
## Glossary

*Clearly define terms in order to be accessible across audiences.*
-->

<!--
## Model Card Authors

*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->

<!--
## Model Card Contact

*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
-->