adriansanz commited on
Commit
2b06937
1 Parent(s): 44e62c9

Add new SentenceTransformer model.

Browse files
.gitattributes CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ tokenizer.json filter=lfs diff=lfs merge=lfs -text
1_Pooling/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 1024,
3
+ "pooling_mode_cls_token": true,
4
+ "pooling_mode_mean_tokens": false,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true
10
+ }
README.md ADDED
@@ -0,0 +1,898 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: BAAI/bge-m3
3
+ library_name: sentence-transformers
4
+ metrics:
5
+ - cosine_accuracy@1
6
+ - cosine_accuracy@3
7
+ - cosine_accuracy@5
8
+ - cosine_accuracy@10
9
+ - cosine_precision@1
10
+ - cosine_precision@3
11
+ - cosine_precision@5
12
+ - cosine_precision@10
13
+ - cosine_recall@1
14
+ - cosine_recall@3
15
+ - cosine_recall@5
16
+ - cosine_recall@10
17
+ - cosine_ndcg@10
18
+ - cosine_mrr@10
19
+ - cosine_map@100
20
+ pipeline_tag: sentence-similarity
21
+ tags:
22
+ - sentence-transformers
23
+ - sentence-similarity
24
+ - feature-extraction
25
+ - generated_from_trainer
26
+ - dataset_size:5175
27
+ - loss:MatryoshkaLoss
28
+ - loss:MultipleNegativesRankingLoss
29
+ widget:
30
+ - source_sentence: Caldrà executar l'obra comunicada prèviament d'acord amb les condicions
31
+ específiques que es contenen en el model normalitzat CT02.
32
+ sentences:
33
+ - Quin és el propòsit de la instal·lació d'un circ sense animals a la via pública?
34
+ - Quin és el destinatari de les dades bloquejades?
35
+ - Quin és el format de presentació de la comunicació prèvia?
36
+ - source_sentence: Armes utilitzables en activitats lúdico-esportives d’airsoft i
37
+ paintball...
38
+ sentences:
39
+ - Quin és el paper de l'AFA en la venda de llibres?
40
+ - Quin és el benefici de tenir dades personals correctes?
41
+ - Quin és el tipus d'activitats que es poden practicar amb les armes de 4a categoria?
42
+ - source_sentence: En les activitats sotmeses al règim d’autorització ambiental o
43
+ llicència municipal d’activitat (Annex I o Annex II de la Llei 20/2009) cal demanar
44
+ aquest certificat previ a la presentació de la sol·licitud d’autorització ambiental
45
+ o llicència municipal.
46
+ sentences:
47
+ - Quin és el benefici de tenir el certificat de compatibilitat urbanística en les
48
+ activitats sotmeses a llicència municipal d’activitat?
49
+ - Com puc controlar la recepció de propaganda electoral per correu?
50
+ - Quin és el benefici de la cessió d'un compostador domèstic per a l'entorn?
51
+ - source_sentence: La persona interessada posa en coneixement de l’Administració,
52
+ les actuacions urbanístiques que pretén dur a terme consistents en l'apuntalament
53
+ o reforç provisional d'estructures existents fins a la intervenció definitiva.
54
+ sentences:
55
+ - Qui pot participar en el Consell d'Adolescents?
56
+ - Quin és el resultat de la presentació de la comunicació prèvia?
57
+ - Quin és el paper de la persona interessada en relació amb la presentació de la
58
+ comunicació prèvia?
59
+ - source_sentence: La persona consumidora presenti la reclamació davant de l'entitat
60
+ acreditada en un termini superior a un any des de la data en què va presentar
61
+ la reclamació a l'empresa.
62
+ sentences:
63
+ - Quin és el tràmit per inscriure'm al Padró d'Habitants sense tenir constància
64
+ de la meva anterior residència?
65
+ - Quin és el resultat de la modificació substancial de la llicència d'obres en relació
66
+ a les autoritzacions administratives?
67
+ - Quin és el paper de l'entitat acreditada en la tramitació d'una reclamació?
68
+ model-index:
69
+ - name: SentenceTransformer based on BAAI/bge-m3
70
+ results:
71
+ - task:
72
+ type: information-retrieval
73
+ name: Information Retrieval
74
+ dataset:
75
+ name: dim 1024
76
+ type: dim_1024
77
+ metrics:
78
+ - type: cosine_accuracy@1
79
+ value: 0.057391304347826085
80
+ name: Cosine Accuracy@1
81
+ - type: cosine_accuracy@3
82
+ value: 0.15304347826086956
83
+ name: Cosine Accuracy@3
84
+ - type: cosine_accuracy@5
85
+ value: 0.23478260869565218
86
+ name: Cosine Accuracy@5
87
+ - type: cosine_accuracy@10
88
+ value: 0.41739130434782606
89
+ name: Cosine Accuracy@10
90
+ - type: cosine_precision@1
91
+ value: 0.057391304347826085
92
+ name: Cosine Precision@1
93
+ - type: cosine_precision@3
94
+ value: 0.051014492753623186
95
+ name: Cosine Precision@3
96
+ - type: cosine_precision@5
97
+ value: 0.04695652173913043
98
+ name: Cosine Precision@5
99
+ - type: cosine_precision@10
100
+ value: 0.04173913043478261
101
+ name: Cosine Precision@10
102
+ - type: cosine_recall@1
103
+ value: 0.057391304347826085
104
+ name: Cosine Recall@1
105
+ - type: cosine_recall@3
106
+ value: 0.15304347826086956
107
+ name: Cosine Recall@3
108
+ - type: cosine_recall@5
109
+ value: 0.23478260869565218
110
+ name: Cosine Recall@5
111
+ - type: cosine_recall@10
112
+ value: 0.41739130434782606
113
+ name: Cosine Recall@10
114
+ - type: cosine_ndcg@10
115
+ value: 0.20551130934080394
116
+ name: Cosine Ndcg@10
117
+ - type: cosine_mrr@10
118
+ value: 0.14188060731539
119
+ name: Cosine Mrr@10
120
+ - type: cosine_map@100
121
+ value: 0.16516795239083046
122
+ name: Cosine Map@100
123
+ - task:
124
+ type: information-retrieval
125
+ name: Information Retrieval
126
+ dataset:
127
+ name: dim 768
128
+ type: dim_768
129
+ metrics:
130
+ - type: cosine_accuracy@1
131
+ value: 0.05565217391304348
132
+ name: Cosine Accuracy@1
133
+ - type: cosine_accuracy@3
134
+ value: 0.16
135
+ name: Cosine Accuracy@3
136
+ - type: cosine_accuracy@5
137
+ value: 0.24
138
+ name: Cosine Accuracy@5
139
+ - type: cosine_accuracy@10
140
+ value: 0.40695652173913044
141
+ name: Cosine Accuracy@10
142
+ - type: cosine_precision@1
143
+ value: 0.05565217391304348
144
+ name: Cosine Precision@1
145
+ - type: cosine_precision@3
146
+ value: 0.05333333333333333
147
+ name: Cosine Precision@3
148
+ - type: cosine_precision@5
149
+ value: 0.048
150
+ name: Cosine Precision@5
151
+ - type: cosine_precision@10
152
+ value: 0.04069565217391305
153
+ name: Cosine Precision@10
154
+ - type: cosine_recall@1
155
+ value: 0.05565217391304348
156
+ name: Cosine Recall@1
157
+ - type: cosine_recall@3
158
+ value: 0.16
159
+ name: Cosine Recall@3
160
+ - type: cosine_recall@5
161
+ value: 0.24
162
+ name: Cosine Recall@5
163
+ - type: cosine_recall@10
164
+ value: 0.40695652173913044
165
+ name: Cosine Recall@10
166
+ - type: cosine_ndcg@10
167
+ value: 0.20158774447839253
168
+ name: Cosine Ndcg@10
169
+ - type: cosine_mrr@10
170
+ value: 0.13959282263630102
171
+ name: Cosine Mrr@10
172
+ - type: cosine_map@100
173
+ value: 0.16377775492511307
174
+ name: Cosine Map@100
175
+ - task:
176
+ type: information-retrieval
177
+ name: Information Retrieval
178
+ dataset:
179
+ name: dim 512
180
+ type: dim_512
181
+ metrics:
182
+ - type: cosine_accuracy@1
183
+ value: 0.06956521739130435
184
+ name: Cosine Accuracy@1
185
+ - type: cosine_accuracy@3
186
+ value: 0.16695652173913045
187
+ name: Cosine Accuracy@3
188
+ - type: cosine_accuracy@5
189
+ value: 0.24869565217391304
190
+ name: Cosine Accuracy@5
191
+ - type: cosine_accuracy@10
192
+ value: 0.4260869565217391
193
+ name: Cosine Accuracy@10
194
+ - type: cosine_precision@1
195
+ value: 0.06956521739130435
196
+ name: Cosine Precision@1
197
+ - type: cosine_precision@3
198
+ value: 0.05565217391304348
199
+ name: Cosine Precision@3
200
+ - type: cosine_precision@5
201
+ value: 0.04973913043478261
202
+ name: Cosine Precision@5
203
+ - type: cosine_precision@10
204
+ value: 0.042608695652173914
205
+ name: Cosine Precision@10
206
+ - type: cosine_recall@1
207
+ value: 0.06956521739130435
208
+ name: Cosine Recall@1
209
+ - type: cosine_recall@3
210
+ value: 0.16695652173913045
211
+ name: Cosine Recall@3
212
+ - type: cosine_recall@5
213
+ value: 0.24869565217391304
214
+ name: Cosine Recall@5
215
+ - type: cosine_recall@10
216
+ value: 0.4260869565217391
217
+ name: Cosine Recall@10
218
+ - type: cosine_ndcg@10
219
+ value: 0.21580306349457917
220
+ name: Cosine Ndcg@10
221
+ - type: cosine_mrr@10
222
+ value: 0.1526128364389235
223
+ name: Cosine Mrr@10
224
+ - type: cosine_map@100
225
+ value: 0.1754746652296583
226
+ name: Cosine Map@100
227
+ - task:
228
+ type: information-retrieval
229
+ name: Information Retrieval
230
+ dataset:
231
+ name: dim 256
232
+ type: dim_256
233
+ metrics:
234
+ - type: cosine_accuracy@1
235
+ value: 0.05565217391304348
236
+ name: Cosine Accuracy@1
237
+ - type: cosine_accuracy@3
238
+ value: 0.16695652173913045
239
+ name: Cosine Accuracy@3
240
+ - type: cosine_accuracy@5
241
+ value: 0.25217391304347825
242
+ name: Cosine Accuracy@5
243
+ - type: cosine_accuracy@10
244
+ value: 0.42434782608695654
245
+ name: Cosine Accuracy@10
246
+ - type: cosine_precision@1
247
+ value: 0.05565217391304348
248
+ name: Cosine Precision@1
249
+ - type: cosine_precision@3
250
+ value: 0.05565217391304348
251
+ name: Cosine Precision@3
252
+ - type: cosine_precision@5
253
+ value: 0.05043478260869566
254
+ name: Cosine Precision@5
255
+ - type: cosine_precision@10
256
+ value: 0.042434782608695654
257
+ name: Cosine Precision@10
258
+ - type: cosine_recall@1
259
+ value: 0.05565217391304348
260
+ name: Cosine Recall@1
261
+ - type: cosine_recall@3
262
+ value: 0.16695652173913045
263
+ name: Cosine Recall@3
264
+ - type: cosine_recall@5
265
+ value: 0.25217391304347825
266
+ name: Cosine Recall@5
267
+ - type: cosine_recall@10
268
+ value: 0.42434782608695654
269
+ name: Cosine Recall@10
270
+ - type: cosine_ndcg@10
271
+ value: 0.2100045076980214
272
+ name: Cosine Ndcg@10
273
+ - type: cosine_mrr@10
274
+ value: 0.14526432022084196
275
+ name: Cosine Mrr@10
276
+ - type: cosine_map@100
277
+ value: 0.1684764968624273
278
+ name: Cosine Map@100
279
+ - task:
280
+ type: information-retrieval
281
+ name: Information Retrieval
282
+ dataset:
283
+ name: dim 128
284
+ type: dim_128
285
+ metrics:
286
+ - type: cosine_accuracy@1
287
+ value: 0.06086956521739131
288
+ name: Cosine Accuracy@1
289
+ - type: cosine_accuracy@3
290
+ value: 0.1617391304347826
291
+ name: Cosine Accuracy@3
292
+ - type: cosine_accuracy@5
293
+ value: 0.2608695652173913
294
+ name: Cosine Accuracy@5
295
+ - type: cosine_accuracy@10
296
+ value: 0.4434782608695652
297
+ name: Cosine Accuracy@10
298
+ - type: cosine_precision@1
299
+ value: 0.06086956521739131
300
+ name: Cosine Precision@1
301
+ - type: cosine_precision@3
302
+ value: 0.05391304347826087
303
+ name: Cosine Precision@3
304
+ - type: cosine_precision@5
305
+ value: 0.05217391304347826
306
+ name: Cosine Precision@5
307
+ - type: cosine_precision@10
308
+ value: 0.04434782608695652
309
+ name: Cosine Precision@10
310
+ - type: cosine_recall@1
311
+ value: 0.06086956521739131
312
+ name: Cosine Recall@1
313
+ - type: cosine_recall@3
314
+ value: 0.1617391304347826
315
+ name: Cosine Recall@3
316
+ - type: cosine_recall@5
317
+ value: 0.2608695652173913
318
+ name: Cosine Recall@5
319
+ - type: cosine_recall@10
320
+ value: 0.4434782608695652
321
+ name: Cosine Recall@10
322
+ - type: cosine_ndcg@10
323
+ value: 0.21805066438366894
324
+ name: Cosine Ndcg@10
325
+ - type: cosine_mrr@10
326
+ value: 0.15018150448585244
327
+ name: Cosine Mrr@10
328
+ - type: cosine_map@100
329
+ value: 0.17220421856187046
330
+ name: Cosine Map@100
331
+ - task:
332
+ type: information-retrieval
333
+ name: Information Retrieval
334
+ dataset:
335
+ name: dim 64
336
+ type: dim_64
337
+ metrics:
338
+ - type: cosine_accuracy@1
339
+ value: 0.06086956521739131
340
+ name: Cosine Accuracy@1
341
+ - type: cosine_accuracy@3
342
+ value: 0.15478260869565216
343
+ name: Cosine Accuracy@3
344
+ - type: cosine_accuracy@5
345
+ value: 0.24521739130434783
346
+ name: Cosine Accuracy@5
347
+ - type: cosine_accuracy@10
348
+ value: 0.42782608695652175
349
+ name: Cosine Accuracy@10
350
+ - type: cosine_precision@1
351
+ value: 0.06086956521739131
352
+ name: Cosine Precision@1
353
+ - type: cosine_precision@3
354
+ value: 0.05159420289855072
355
+ name: Cosine Precision@3
356
+ - type: cosine_precision@5
357
+ value: 0.04904347826086957
358
+ name: Cosine Precision@5
359
+ - type: cosine_precision@10
360
+ value: 0.042782608695652175
361
+ name: Cosine Precision@10
362
+ - type: cosine_recall@1
363
+ value: 0.06086956521739131
364
+ name: Cosine Recall@1
365
+ - type: cosine_recall@3
366
+ value: 0.15478260869565216
367
+ name: Cosine Recall@3
368
+ - type: cosine_recall@5
369
+ value: 0.24521739130434783
370
+ name: Cosine Recall@5
371
+ - type: cosine_recall@10
372
+ value: 0.42782608695652175
373
+ name: Cosine Recall@10
374
+ - type: cosine_ndcg@10
375
+ value: 0.21079002748958972
376
+ name: Cosine Ndcg@10
377
+ - type: cosine_mrr@10
378
+ value: 0.14568875086266406
379
+ name: Cosine Mrr@10
380
+ - type: cosine_map@100
381
+ value: 0.16756200348857653
382
+ name: Cosine Map@100
383
+ ---
384
+
385
+ # SentenceTransformer based on BAAI/bge-m3
386
+
387
+ This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [BAAI/bge-m3](https://huggingface.co/BAAI/bge-m3) on the json dataset. It maps sentences & paragraphs to a 1024-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
388
+
389
+ ## Model Details
390
+
391
+ ### Model Description
392
+ - **Model Type:** Sentence Transformer
393
+ - **Base model:** [BAAI/bge-m3](https://huggingface.co/BAAI/bge-m3) <!-- at revision 5617a9f61b028005a4858fdac845db406aefb181 -->
394
+ - **Maximum Sequence Length:** 8192 tokens
395
+ - **Output Dimensionality:** 1024 tokens
396
+ - **Similarity Function:** Cosine Similarity
397
+ - **Training Dataset:**
398
+ - json
399
+ <!-- - **Language:** Unknown -->
400
+ <!-- - **License:** Unknown -->
401
+
402
+ ### Model Sources
403
+
404
+ - **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
405
+ - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
406
+ - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
407
+
408
+ ### Full Model Architecture
409
+
410
+ ```
411
+ SentenceTransformer(
412
+ (0): Transformer({'max_seq_length': 8192, 'do_lower_case': False}) with Transformer model: XLMRobertaModel
413
+ (1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
414
+ (2): Normalize()
415
+ )
416
+ ```
417
+
418
+ ## Usage
419
+
420
+ ### Direct Usage (Sentence Transformers)
421
+
422
+ First install the Sentence Transformers library:
423
+
424
+ ```bash
425
+ pip install -U sentence-transformers
426
+ ```
427
+
428
+ Then you can load this model and run inference.
429
+ ```python
430
+ from sentence_transformers import SentenceTransformer
431
+
432
+ # Download from the 🤗 Hub
433
+ model = SentenceTransformer("adriansanz/sqv-v4-10ep")
434
+ # Run inference
435
+ sentences = [
436
+ "La persona consumidora presenti la reclamació davant de l'entitat acreditada en un termini superior a un any des de la data en què va presentar la reclamació a l'empresa.",
437
+ "Quin és el paper de l'entitat acreditada en la tramitació d'una reclamació?",
438
+ "Quin és el resultat de la modificació substancial de la llicència d'obres en relació a les autoritzacions administratives?",
439
+ ]
440
+ embeddings = model.encode(sentences)
441
+ print(embeddings.shape)
442
+ # [3, 1024]
443
+
444
+ # Get the similarity scores for the embeddings
445
+ similarities = model.similarity(embeddings, embeddings)
446
+ print(similarities.shape)
447
+ # [3, 3]
448
+ ```
449
+
450
+ <!--
451
+ ### Direct Usage (Transformers)
452
+
453
+ <details><summary>Click to see the direct usage in Transformers</summary>
454
+
455
+ </details>
456
+ -->
457
+
458
+ <!--
459
+ ### Downstream Usage (Sentence Transformers)
460
+
461
+ You can finetune this model on your own dataset.
462
+
463
+ <details><summary>Click to expand</summary>
464
+
465
+ </details>
466
+ -->
467
+
468
+ <!--
469
+ ### Out-of-Scope Use
470
+
471
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
472
+ -->
473
+
474
+ ## Evaluation
475
+
476
+ ### Metrics
477
+
478
+ #### Information Retrieval
479
+ * Dataset: `dim_1024`
480
+ * Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
481
+
482
+ | Metric | Value |
483
+ |:--------------------|:-----------|
484
+ | cosine_accuracy@1 | 0.0574 |
485
+ | cosine_accuracy@3 | 0.153 |
486
+ | cosine_accuracy@5 | 0.2348 |
487
+ | cosine_accuracy@10 | 0.4174 |
488
+ | cosine_precision@1 | 0.0574 |
489
+ | cosine_precision@3 | 0.051 |
490
+ | cosine_precision@5 | 0.047 |
491
+ | cosine_precision@10 | 0.0417 |
492
+ | cosine_recall@1 | 0.0574 |
493
+ | cosine_recall@3 | 0.153 |
494
+ | cosine_recall@5 | 0.2348 |
495
+ | cosine_recall@10 | 0.4174 |
496
+ | cosine_ndcg@10 | 0.2055 |
497
+ | cosine_mrr@10 | 0.1419 |
498
+ | **cosine_map@100** | **0.1652** |
499
+
500
+ #### Information Retrieval
501
+ * Dataset: `dim_768`
502
+ * Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
503
+
504
+ | Metric | Value |
505
+ |:--------------------|:-----------|
506
+ | cosine_accuracy@1 | 0.0557 |
507
+ | cosine_accuracy@3 | 0.16 |
508
+ | cosine_accuracy@5 | 0.24 |
509
+ | cosine_accuracy@10 | 0.407 |
510
+ | cosine_precision@1 | 0.0557 |
511
+ | cosine_precision@3 | 0.0533 |
512
+ | cosine_precision@5 | 0.048 |
513
+ | cosine_precision@10 | 0.0407 |
514
+ | cosine_recall@1 | 0.0557 |
515
+ | cosine_recall@3 | 0.16 |
516
+ | cosine_recall@5 | 0.24 |
517
+ | cosine_recall@10 | 0.407 |
518
+ | cosine_ndcg@10 | 0.2016 |
519
+ | cosine_mrr@10 | 0.1396 |
520
+ | **cosine_map@100** | **0.1638** |
521
+
522
+ #### Information Retrieval
523
+ * Dataset: `dim_512`
524
+ * Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
525
+
526
+ | Metric | Value |
527
+ |:--------------------|:-----------|
528
+ | cosine_accuracy@1 | 0.0696 |
529
+ | cosine_accuracy@3 | 0.167 |
530
+ | cosine_accuracy@5 | 0.2487 |
531
+ | cosine_accuracy@10 | 0.4261 |
532
+ | cosine_precision@1 | 0.0696 |
533
+ | cosine_precision@3 | 0.0557 |
534
+ | cosine_precision@5 | 0.0497 |
535
+ | cosine_precision@10 | 0.0426 |
536
+ | cosine_recall@1 | 0.0696 |
537
+ | cosine_recall@3 | 0.167 |
538
+ | cosine_recall@5 | 0.2487 |
539
+ | cosine_recall@10 | 0.4261 |
540
+ | cosine_ndcg@10 | 0.2158 |
541
+ | cosine_mrr@10 | 0.1526 |
542
+ | **cosine_map@100** | **0.1755** |
543
+
544
+ #### Information Retrieval
545
+ * Dataset: `dim_256`
546
+ * Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
547
+
548
+ | Metric | Value |
549
+ |:--------------------|:-----------|
550
+ | cosine_accuracy@1 | 0.0557 |
551
+ | cosine_accuracy@3 | 0.167 |
552
+ | cosine_accuracy@5 | 0.2522 |
553
+ | cosine_accuracy@10 | 0.4243 |
554
+ | cosine_precision@1 | 0.0557 |
555
+ | cosine_precision@3 | 0.0557 |
556
+ | cosine_precision@5 | 0.0504 |
557
+ | cosine_precision@10 | 0.0424 |
558
+ | cosine_recall@1 | 0.0557 |
559
+ | cosine_recall@3 | 0.167 |
560
+ | cosine_recall@5 | 0.2522 |
561
+ | cosine_recall@10 | 0.4243 |
562
+ | cosine_ndcg@10 | 0.21 |
563
+ | cosine_mrr@10 | 0.1453 |
564
+ | **cosine_map@100** | **0.1685** |
565
+
566
+ #### Information Retrieval
567
+ * Dataset: `dim_128`
568
+ * Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
569
+
570
+ | Metric | Value |
571
+ |:--------------------|:-----------|
572
+ | cosine_accuracy@1 | 0.0609 |
573
+ | cosine_accuracy@3 | 0.1617 |
574
+ | cosine_accuracy@5 | 0.2609 |
575
+ | cosine_accuracy@10 | 0.4435 |
576
+ | cosine_precision@1 | 0.0609 |
577
+ | cosine_precision@3 | 0.0539 |
578
+ | cosine_precision@5 | 0.0522 |
579
+ | cosine_precision@10 | 0.0443 |
580
+ | cosine_recall@1 | 0.0609 |
581
+ | cosine_recall@3 | 0.1617 |
582
+ | cosine_recall@5 | 0.2609 |
583
+ | cosine_recall@10 | 0.4435 |
584
+ | cosine_ndcg@10 | 0.2181 |
585
+ | cosine_mrr@10 | 0.1502 |
586
+ | **cosine_map@100** | **0.1722** |
587
+
588
+ #### Information Retrieval
589
+ * Dataset: `dim_64`
590
+ * Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
591
+
592
+ | Metric | Value |
593
+ |:--------------------|:-----------|
594
+ | cosine_accuracy@1 | 0.0609 |
595
+ | cosine_accuracy@3 | 0.1548 |
596
+ | cosine_accuracy@5 | 0.2452 |
597
+ | cosine_accuracy@10 | 0.4278 |
598
+ | cosine_precision@1 | 0.0609 |
599
+ | cosine_precision@3 | 0.0516 |
600
+ | cosine_precision@5 | 0.049 |
601
+ | cosine_precision@10 | 0.0428 |
602
+ | cosine_recall@1 | 0.0609 |
603
+ | cosine_recall@3 | 0.1548 |
604
+ | cosine_recall@5 | 0.2452 |
605
+ | cosine_recall@10 | 0.4278 |
606
+ | cosine_ndcg@10 | 0.2108 |
607
+ | cosine_mrr@10 | 0.1457 |
608
+ | **cosine_map@100** | **0.1676** |
609
+
610
+ <!--
611
+ ## Bias, Risks and Limitations
612
+
613
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
614
+ -->
615
+
616
+ <!--
617
+ ### Recommendations
618
+
619
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
620
+ -->
621
+
622
+ ## Training Details
623
+
624
+ ### Training Dataset
625
+
626
+ #### json
627
+
628
+ * Dataset: json
629
+ * Size: 5,175 training samples
630
+ * Columns: <code>positive</code> and <code>anchor</code>
631
+ * Approximate statistics based on the first 1000 samples:
632
+ | | positive | anchor |
633
+ |:--------|:-----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|
634
+ | type | string | string |
635
+ | details | <ul><li>min: 5 tokens</li><li>mean: 43.23 tokens</li><li>max: 117 tokens</li></ul> | <ul><li>min: 10 tokens</li><li>mean: 20.25 tokens</li><li>max: 46 tokens</li></ul> |
636
+ * Samples:
637
+ | positive | anchor |
638
+ |:----------------------------------------------------------------------------------------------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------------------|
639
+ | <code>Aquest tràmit us permet consultar informació de les anotacions d'entrada i sortida que hi consten al registre de l'Ajuntament de Sant Quirze del Vallès.</code> | <code>Quin és el format de les dades de sortida del tràmit?</code> |
640
+ | <code>Tràmit a través del qual la persona interessada posa en coneixement de l’Ajuntament la voluntat de: ... Renunciar a una llicència prèviament atorgada.</code> | <code>Quin és el resultat de la renúncia a una llicència urbanística prèviament atorgada?</code> |
641
+ | <code>D’acord amb el plànol d'ubicació de parades: Mercat de diumenges a Les Fonts</code> | <code>Quin és el plànol d'ubicació de parades del mercat de diumenges a Les Fonts?</code> |
642
+ * Loss: [<code>MatryoshkaLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#matryoshkaloss) with these parameters:
643
+ ```json
644
+ {
645
+ "loss": "MultipleNegativesRankingLoss",
646
+ "matryoshka_dims": [
647
+ 1024,
648
+ 768,
649
+ 512,
650
+ 256,
651
+ 128,
652
+ 64
653
+ ],
654
+ "matryoshka_weights": [
655
+ 1,
656
+ 1,
657
+ 1,
658
+ 1,
659
+ 1,
660
+ 1
661
+ ],
662
+ "n_dims_per_step": -1
663
+ }
664
+ ```
665
+
666
+ ### Training Hyperparameters
667
+ #### Non-Default Hyperparameters
668
+
669
+ - `eval_strategy`: epoch
670
+ - `per_device_train_batch_size`: 16
671
+ - `per_device_eval_batch_size`: 16
672
+ - `gradient_accumulation_steps`: 16
673
+ - `learning_rate`: 2e-05
674
+ - `num_train_epochs`: 10
675
+ - `lr_scheduler_type`: cosine
676
+ - `warmup_ratio`: 0.2
677
+ - `bf16`: True
678
+ - `tf32`: True
679
+ - `load_best_model_at_end`: True
680
+ - `optim`: adamw_torch_fused
681
+ - `batch_sampler`: no_duplicates
682
+
683
+ #### All Hyperparameters
684
+ <details><summary>Click to expand</summary>
685
+
686
+ - `overwrite_output_dir`: False
687
+ - `do_predict`: False
688
+ - `eval_strategy`: epoch
689
+ - `prediction_loss_only`: True
690
+ - `per_device_train_batch_size`: 16
691
+ - `per_device_eval_batch_size`: 16
692
+ - `per_gpu_train_batch_size`: None
693
+ - `per_gpu_eval_batch_size`: None
694
+ - `gradient_accumulation_steps`: 16
695
+ - `eval_accumulation_steps`: None
696
+ - `torch_empty_cache_steps`: None
697
+ - `learning_rate`: 2e-05
698
+ - `weight_decay`: 0.0
699
+ - `adam_beta1`: 0.9
700
+ - `adam_beta2`: 0.999
701
+ - `adam_epsilon`: 1e-08
702
+ - `max_grad_norm`: 1.0
703
+ - `num_train_epochs`: 10
704
+ - `max_steps`: -1
705
+ - `lr_scheduler_type`: cosine
706
+ - `lr_scheduler_kwargs`: {}
707
+ - `warmup_ratio`: 0.2
708
+ - `warmup_steps`: 0
709
+ - `log_level`: passive
710
+ - `log_level_replica`: warning
711
+ - `log_on_each_node`: True
712
+ - `logging_nan_inf_filter`: True
713
+ - `save_safetensors`: True
714
+ - `save_on_each_node`: False
715
+ - `save_only_model`: False
716
+ - `restore_callback_states_from_checkpoint`: False
717
+ - `no_cuda`: False
718
+ - `use_cpu`: False
719
+ - `use_mps_device`: False
720
+ - `seed`: 42
721
+ - `data_seed`: None
722
+ - `jit_mode_eval`: False
723
+ - `use_ipex`: False
724
+ - `bf16`: True
725
+ - `fp16`: False
726
+ - `fp16_opt_level`: O1
727
+ - `half_precision_backend`: auto
728
+ - `bf16_full_eval`: False
729
+ - `fp16_full_eval`: False
730
+ - `tf32`: True
731
+ - `local_rank`: 0
732
+ - `ddp_backend`: None
733
+ - `tpu_num_cores`: None
734
+ - `tpu_metrics_debug`: False
735
+ - `debug`: []
736
+ - `dataloader_drop_last`: False
737
+ - `dataloader_num_workers`: 0
738
+ - `dataloader_prefetch_factor`: None
739
+ - `past_index`: -1
740
+ - `disable_tqdm`: False
741
+ - `remove_unused_columns`: True
742
+ - `label_names`: None
743
+ - `load_best_model_at_end`: True
744
+ - `ignore_data_skip`: False
745
+ - `fsdp`: []
746
+ - `fsdp_min_num_params`: 0
747
+ - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
748
+ - `fsdp_transformer_layer_cls_to_wrap`: None
749
+ - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
750
+ - `deepspeed`: None
751
+ - `label_smoothing_factor`: 0.0
752
+ - `optim`: adamw_torch_fused
753
+ - `optim_args`: None
754
+ - `adafactor`: False
755
+ - `group_by_length`: False
756
+ - `length_column_name`: length
757
+ - `ddp_find_unused_parameters`: None
758
+ - `ddp_bucket_cap_mb`: None
759
+ - `ddp_broadcast_buffers`: False
760
+ - `dataloader_pin_memory`: True
761
+ - `dataloader_persistent_workers`: False
762
+ - `skip_memory_metrics`: True
763
+ - `use_legacy_prediction_loop`: False
764
+ - `push_to_hub`: False
765
+ - `resume_from_checkpoint`: None
766
+ - `hub_model_id`: None
767
+ - `hub_strategy`: every_save
768
+ - `hub_private_repo`: False
769
+ - `hub_always_push`: False
770
+ - `gradient_checkpointing`: False
771
+ - `gradient_checkpointing_kwargs`: None
772
+ - `include_inputs_for_metrics`: False
773
+ - `eval_do_concat_batches`: True
774
+ - `fp16_backend`: auto
775
+ - `push_to_hub_model_id`: None
776
+ - `push_to_hub_organization`: None
777
+ - `mp_parameters`:
778
+ - `auto_find_batch_size`: False
779
+ - `full_determinism`: False
780
+ - `torchdynamo`: None
781
+ - `ray_scope`: last
782
+ - `ddp_timeout`: 1800
783
+ - `torch_compile`: False
784
+ - `torch_compile_backend`: None
785
+ - `torch_compile_mode`: None
786
+ - `dispatch_batches`: None
787
+ - `split_batches`: None
788
+ - `include_tokens_per_second`: False
789
+ - `include_num_input_tokens_seen`: False
790
+ - `neftune_noise_alpha`: None
791
+ - `optim_target_modules`: None
792
+ - `batch_eval_metrics`: False
793
+ - `eval_on_start`: False
794
+ - `eval_use_gather_object`: False
795
+ - `batch_sampler`: no_duplicates
796
+ - `multi_dataset_batch_sampler`: proportional
797
+
798
+ </details>
799
+
800
+ ### Training Logs
801
+ | Epoch | Step | Training Loss | dim_1024_cosine_map@100 | dim_128_cosine_map@100 | dim_256_cosine_map@100 | dim_512_cosine_map@100 | dim_64_cosine_map@100 | dim_768_cosine_map@100 |
802
+ |:---------:|:-------:|:-------------:|:-----------------------:|:----------------------:|:----------------------:|:----------------------:|:---------------------:|:----------------------:|
803
+ | 0.4938 | 10 | 4.1082 | - | - | - | - | - | - |
804
+ | 0.9877 | 20 | 3.2445 | 0.1490 | 0.1440 | 0.1466 | 0.1546 | 0.1249 | 0.1521 |
805
+ | 1.4815 | 30 | 1.9296 | - | - | - | - | - | - |
806
+ | 1.9753 | 40 | 1.7067 | 0.1607 | 0.1548 | 0.1567 | 0.1648 | 0.1448 | 0.1593 |
807
+ | 2.4691 | 50 | 0.9578 | - | - | - | - | - | - |
808
+ | 2.9630 | 60 | 1.003 | 0.1640 | 0.1699 | 0.1660 | 0.1695 | 0.1568 | 0.1592 |
809
+ | 3.4568 | 70 | 0.6298 | - | - | - | - | - | - |
810
+ | 3.9506 | 80 | 0.7035 | - | - | - | - | - | - |
811
+ | 4.0 | 81 | - | 0.1707 | 0.1657 | 0.1769 | 0.1690 | 0.1610 | 0.1719 |
812
+ | 4.4444 | 90 | 0.4606 | - | - | - | - | - | - |
813
+ | 4.9383 | 100 | 0.5131 | - | - | - | - | - | - |
814
+ | 4.9877 | 101 | - | 0.1645 | 0.1686 | 0.1669 | 0.1620 | 0.1580 | 0.1722 |
815
+ | 5.4321 | 110 | 0.3748 | - | - | - | - | - | - |
816
+ | 5.9259 | 120 | 0.4799 | - | - | - | - | - | - |
817
+ | 5.9753 | 121 | - | 0.1670 | 0.1670 | 0.1725 | 0.1711 | 0.1628 | 0.1715 |
818
+ | 6.4198 | 130 | 0.3237 | - | - | - | - | - | - |
819
+ | 6.9136 | 140 | 0.4132 | - | - | - | - | - | - |
820
+ | **6.963** | **141** | **-** | **0.1746** | **0.1757** | **0.1697** | **0.1746** | **0.1655** | **0.1746** |
821
+ | 7.4074 | 150 | 0.3169 | - | - | - | - | - | - |
822
+ | 7.9012 | 160 | 0.3438 | - | - | - | - | - | - |
823
+ | 8.0 | 162 | - | 0.1692 | 0.1698 | 0.1718 | 0.1735 | 0.1707 | 0.1656 |
824
+ | 8.3951 | 170 | 0.2987 | - | - | - | - | - | - |
825
+ | 8.8889 | 180 | 0.3193 | - | - | - | - | - | - |
826
+ | 8.9877 | 182 | - | 0.1703 | 0.1703 | 0.1695 | 0.1710 | 0.1619 | 0.1666 |
827
+ | 9.3827 | 190 | 0.2883 | - | - | - | - | - | - |
828
+ | 9.8765 | 200 | 0.3098 | 0.1652 | 0.1722 | 0.1685 | 0.1755 | 0.1676 | 0.1638 |
829
+
830
+ * The bold row denotes the saved checkpoint.
831
+
832
+ ### Framework Versions
833
+ - Python: 3.10.12
834
+ - Sentence Transformers: 3.1.1
835
+ - Transformers: 4.44.2
836
+ - PyTorch: 2.4.1+cu121
837
+ - Accelerate: 0.35.0.dev0
838
+ - Datasets: 3.0.1
839
+ - Tokenizers: 0.19.1
840
+
841
+ ## Citation
842
+
843
+ ### BibTeX
844
+
845
+ #### Sentence Transformers
846
+ ```bibtex
847
+ @inproceedings{reimers-2019-sentence-bert,
848
+ title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
849
+ author = "Reimers, Nils and Gurevych, Iryna",
850
+ booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
851
+ month = "11",
852
+ year = "2019",
853
+ publisher = "Association for Computational Linguistics",
854
+ url = "https://arxiv.org/abs/1908.10084",
855
+ }
856
+ ```
857
+
858
+ #### MatryoshkaLoss
859
+ ```bibtex
860
+ @misc{kusupati2024matryoshka,
861
+ title={Matryoshka Representation Learning},
862
+ author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
863
+ year={2024},
864
+ eprint={2205.13147},
865
+ archivePrefix={arXiv},
866
+ primaryClass={cs.LG}
867
+ }
868
+ ```
869
+
870
+ #### MultipleNegativesRankingLoss
871
+ ```bibtex
872
+ @misc{henderson2017efficient,
873
+ title={Efficient Natural Language Response Suggestion for Smart Reply},
874
+ author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
875
+ year={2017},
876
+ eprint={1705.00652},
877
+ archivePrefix={arXiv},
878
+ primaryClass={cs.CL}
879
+ }
880
+ ```
881
+
882
+ <!--
883
+ ## Glossary
884
+
885
+ *Clearly define terms in order to be accessible across audiences.*
886
+ -->
887
+
888
+ <!--
889
+ ## Model Card Authors
890
+
891
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
892
+ -->
893
+
894
+ <!--
895
+ ## Model Card Contact
896
+
897
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
898
+ -->
config.json ADDED
@@ -0,0 +1,28 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "BAAI/bge-m3",
3
+ "architectures": [
4
+ "XLMRobertaModel"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "bos_token_id": 0,
8
+ "classifier_dropout": null,
9
+ "eos_token_id": 2,
10
+ "hidden_act": "gelu",
11
+ "hidden_dropout_prob": 0.1,
12
+ "hidden_size": 1024,
13
+ "initializer_range": 0.02,
14
+ "intermediate_size": 4096,
15
+ "layer_norm_eps": 1e-05,
16
+ "max_position_embeddings": 8194,
17
+ "model_type": "xlm-roberta",
18
+ "num_attention_heads": 16,
19
+ "num_hidden_layers": 24,
20
+ "output_past": true,
21
+ "pad_token_id": 1,
22
+ "position_embedding_type": "absolute",
23
+ "torch_dtype": "float32",
24
+ "transformers_version": "4.44.2",
25
+ "type_vocab_size": 1,
26
+ "use_cache": true,
27
+ "vocab_size": 250002
28
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "3.1.1",
4
+ "transformers": "4.44.2",
5
+ "pytorch": "2.4.1+cu121"
6
+ },
7
+ "prompts": {},
8
+ "default_prompt_name": null,
9
+ "similarity_fn_name": null
10
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5b26608d79632d1bb38f991ebb0d70f8674574712fb97922c01d43d1e9c4d635
3
+ size 2271064456
modules.json ADDED
@@ -0,0 +1,20 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ },
14
+ {
15
+ "idx": 2,
16
+ "name": "2",
17
+ "path": "2_Normalize",
18
+ "type": "sentence_transformers.models.Normalize"
19
+ }
20
+ ]
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 8192,
3
+ "do_lower_case": false
4
+ }
sentencepiece.bpe.model ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:cfc8146abe2a0488e9e2a0c56de7952f7c11ab059eca145a0a727afce0db2865
3
+ size 5069051
special_tokens_map.json ADDED
@@ -0,0 +1,51 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "<s>",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "cls_token": {
10
+ "content": "<s>",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "eos_token": {
17
+ "content": "</s>",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "mask_token": {
24
+ "content": "<mask>",
25
+ "lstrip": true,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "pad_token": {
31
+ "content": "<pad>",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ },
37
+ "sep_token": {
38
+ "content": "</s>",
39
+ "lstrip": false,
40
+ "normalized": false,
41
+ "rstrip": false,
42
+ "single_word": false
43
+ },
44
+ "unk_token": {
45
+ "content": "<unk>",
46
+ "lstrip": false,
47
+ "normalized": false,
48
+ "rstrip": false,
49
+ "single_word": false
50
+ }
51
+ }
tokenizer.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e4f7e21bec3fb0044ca0bb2d50eb5d4d8c596273c422baef84466d2c73748b9c
3
+ size 17083053
tokenizer_config.json ADDED
@@ -0,0 +1,55 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "<s>",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "1": {
12
+ "content": "<pad>",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "2": {
20
+ "content": "</s>",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "3": {
28
+ "content": "<unk>",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "250001": {
36
+ "content": "<mask>",
37
+ "lstrip": true,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "bos_token": "<s>",
45
+ "clean_up_tokenization_spaces": true,
46
+ "cls_token": "<s>",
47
+ "eos_token": "</s>",
48
+ "mask_token": "<mask>",
49
+ "model_max_length": 8192,
50
+ "pad_token": "<pad>",
51
+ "sep_token": "</s>",
52
+ "sp_model_kwargs": {},
53
+ "tokenizer_class": "XLMRobertaTokenizer",
54
+ "unk_token": "<unk>"
55
+ }