adriansanz commited on
Commit
ec1621a
1 Parent(s): 1ed5db9

Add new SentenceTransformer model.

Browse files
.gitattributes CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ tokenizer.json filter=lfs diff=lfs merge=lfs -text
1_Pooling/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 1024,
3
+ "pooling_mode_cls_token": true,
4
+ "pooling_mode_mean_tokens": false,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true
10
+ }
README.md ADDED
@@ -0,0 +1,893 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: BAAI/bge-m3
3
+ library_name: sentence-transformers
4
+ metrics:
5
+ - cosine_accuracy@1
6
+ - cosine_accuracy@3
7
+ - cosine_accuracy@5
8
+ - cosine_accuracy@10
9
+ - cosine_precision@1
10
+ - cosine_precision@3
11
+ - cosine_precision@5
12
+ - cosine_precision@10
13
+ - cosine_recall@1
14
+ - cosine_recall@3
15
+ - cosine_recall@5
16
+ - cosine_recall@10
17
+ - cosine_ndcg@10
18
+ - cosine_mrr@10
19
+ - cosine_map@100
20
+ pipeline_tag: sentence-similarity
21
+ tags:
22
+ - sentence-transformers
23
+ - sentence-similarity
24
+ - feature-extraction
25
+ - generated_from_trainer
26
+ - dataset_size:6692
27
+ - loss:MatryoshkaLoss
28
+ - loss:MultipleNegativesRankingLoss
29
+ widget:
30
+ - source_sentence: La inscripció en aquest registre caduca en el termini d'un any,
31
+ llevat que sigui renovada abans del transcurs d'aquest termini mitjançant la presentació
32
+ d'una declaració responsable sobre el compliment dels requisits exigits.
33
+ sentences:
34
+ - Quin és el requisit per a la sol·licitud del volant d'empadronament?
35
+ - Què passa si no es renova la inscripció en el Registre municipal de sol·licitants?
36
+ - Quin és el segon objectiu que han de tenir els projectes/activitats per a rebre
37
+ aquesta subvenció?
38
+ - source_sentence: 'AVÍS: Places exhaurides de l''activitat de psicomotricitat fins
39
+ nou avís. Les persones interessades poden contactar amb el Departament d''Esports,
40
+ el qual obrirà un llistat d''espera, si escau.'
41
+ sentences:
42
+ - Què passa si les places de Psicomotricitat estan exhaurides?
43
+ - Quin és el paper del tractament en la declaració?
44
+ - Quin és el període de temps que es requereix per a la venda d'articles d'artesania?
45
+ - source_sentence: El registre de noves patents en relació a les noves línies d’actuació
46
+ és una despesa subvencionable per a la reactivació i adaptació del negoci post
47
+ COVID19.
48
+ sentences:
49
+ - Quins són els tipus de despeses que es poden finançar amb les subvencions?
50
+ - Quin és el paper de les organitzacions membres del Consell de Cooperació en els
51
+ projectes de cooperació internacional?
52
+ - Quin és el propòsit del registre de noves patents en relació a les noves línies
53
+ d’actuació?
54
+ - source_sentence: 'Justificació de les subvencions atorgades per l''Ajuntament de
55
+ Sitges per les activitats culturals incloses dins els següents tipus: Activitats
56
+ de difusió cultural. Iniciatives de recuperació i difusió del patrimoni cultural,
57
+ tradicional i popular. Activitats de formació no reglada i de recerca. Activitats
58
+ d''animació socio-cultural.'
59
+ sentences:
60
+ - Quins són els residus que es recullen en el servei municipal complementari?
61
+ - Quin és el paper de l'expedient d'ajut a la contractació laboral de persones en
62
+ la contractació laboral?
63
+ - Quin és el paper de les activitats d'animació socio-cultural?
64
+ - source_sentence: La comunicació és un element important en la cura dels gats, ja
65
+ que implica la capacitat per a comunicar-se de manera efectiva amb les autoritats
66
+ competents i amb els altres implicats en la cura dels animals.
67
+ sentences:
68
+ - Qui són considerats titulars o nous exercents en el cas dels espectacles, establiments
69
+ oberts al públic i les activitats recreatives?
70
+ - Quin és el paper de la comunicació en la cura dels gats?
71
+ - Quin és el benefici de la llicència de gual per a la persona titular?
72
+ model-index:
73
+ - name: SentenceTransformer based on BAAI/bge-m3
74
+ results:
75
+ - task:
76
+ type: information-retrieval
77
+ name: Information Retrieval
78
+ dataset:
79
+ name: dim 1024
80
+ type: dim_1024
81
+ metrics:
82
+ - type: cosine_accuracy@1
83
+ value: 0.1589958158995816
84
+ name: Cosine Accuracy@1
85
+ - type: cosine_accuracy@3
86
+ value: 0.303347280334728
87
+ name: Cosine Accuracy@3
88
+ - type: cosine_accuracy@5
89
+ value: 0.3723849372384937
90
+ name: Cosine Accuracy@5
91
+ - type: cosine_accuracy@10
92
+ value: 0.5188284518828452
93
+ name: Cosine Accuracy@10
94
+ - type: cosine_precision@1
95
+ value: 0.1589958158995816
96
+ name: Cosine Precision@1
97
+ - type: cosine_precision@3
98
+ value: 0.101115760111576
99
+ name: Cosine Precision@3
100
+ - type: cosine_precision@5
101
+ value: 0.07447698744769873
102
+ name: Cosine Precision@5
103
+ - type: cosine_precision@10
104
+ value: 0.05188284518828451
105
+ name: Cosine Precision@10
106
+ - type: cosine_recall@1
107
+ value: 0.1589958158995816
108
+ name: Cosine Recall@1
109
+ - type: cosine_recall@3
110
+ value: 0.303347280334728
111
+ name: Cosine Recall@3
112
+ - type: cosine_recall@5
113
+ value: 0.3723849372384937
114
+ name: Cosine Recall@5
115
+ - type: cosine_recall@10
116
+ value: 0.5188284518828452
117
+ name: Cosine Recall@10
118
+ - type: cosine_ndcg@10
119
+ value: 0.31740141154907076
120
+ name: Cosine Ndcg@10
121
+ - type: cosine_mrr@10
122
+ value: 0.2560196254233912
123
+ name: Cosine Mrr@10
124
+ - type: cosine_map@100
125
+ value: 0.27634436521904066
126
+ name: Cosine Map@100
127
+ - task:
128
+ type: information-retrieval
129
+ name: Information Retrieval
130
+ dataset:
131
+ name: dim 768
132
+ type: dim_768
133
+ metrics:
134
+ - type: cosine_accuracy@1
135
+ value: 0.15690376569037656
136
+ name: Cosine Accuracy@1
137
+ - type: cosine_accuracy@3
138
+ value: 0.29707112970711297
139
+ name: Cosine Accuracy@3
140
+ - type: cosine_accuracy@5
141
+ value: 0.3807531380753138
142
+ name: Cosine Accuracy@5
143
+ - type: cosine_accuracy@10
144
+ value: 0.5083682008368201
145
+ name: Cosine Accuracy@10
146
+ - type: cosine_precision@1
147
+ value: 0.15690376569037656
148
+ name: Cosine Precision@1
149
+ - type: cosine_precision@3
150
+ value: 0.09902370990237098
151
+ name: Cosine Precision@3
152
+ - type: cosine_precision@5
153
+ value: 0.07615062761506276
154
+ name: Cosine Precision@5
155
+ - type: cosine_precision@10
156
+ value: 0.050836820083682004
157
+ name: Cosine Precision@10
158
+ - type: cosine_recall@1
159
+ value: 0.15690376569037656
160
+ name: Cosine Recall@1
161
+ - type: cosine_recall@3
162
+ value: 0.29707112970711297
163
+ name: Cosine Recall@3
164
+ - type: cosine_recall@5
165
+ value: 0.3807531380753138
166
+ name: Cosine Recall@5
167
+ - type: cosine_recall@10
168
+ value: 0.5083682008368201
169
+ name: Cosine Recall@10
170
+ - type: cosine_ndcg@10
171
+ value: 0.3138709871801379
172
+ name: Cosine Ndcg@10
173
+ - type: cosine_mrr@10
174
+ value: 0.25412432755528996
175
+ name: Cosine Mrr@10
176
+ - type: cosine_map@100
177
+ value: 0.27566053318396105
178
+ name: Cosine Map@100
179
+ - task:
180
+ type: information-retrieval
181
+ name: Information Retrieval
182
+ dataset:
183
+ name: dim 512
184
+ type: dim_512
185
+ metrics:
186
+ - type: cosine_accuracy@1
187
+ value: 0.17364016736401675
188
+ name: Cosine Accuracy@1
189
+ - type: cosine_accuracy@3
190
+ value: 0.3138075313807531
191
+ name: Cosine Accuracy@3
192
+ - type: cosine_accuracy@5
193
+ value: 0.39539748953974896
194
+ name: Cosine Accuracy@5
195
+ - type: cosine_accuracy@10
196
+ value: 0.5376569037656904
197
+ name: Cosine Accuracy@10
198
+ - type: cosine_precision@1
199
+ value: 0.17364016736401675
200
+ name: Cosine Precision@1
201
+ - type: cosine_precision@3
202
+ value: 0.10460251046025104
203
+ name: Cosine Precision@3
204
+ - type: cosine_precision@5
205
+ value: 0.07907949790794978
206
+ name: Cosine Precision@5
207
+ - type: cosine_precision@10
208
+ value: 0.05376569037656903
209
+ name: Cosine Precision@10
210
+ - type: cosine_recall@1
211
+ value: 0.17364016736401675
212
+ name: Cosine Recall@1
213
+ - type: cosine_recall@3
214
+ value: 0.3138075313807531
215
+ name: Cosine Recall@3
216
+ - type: cosine_recall@5
217
+ value: 0.39539748953974896
218
+ name: Cosine Recall@5
219
+ - type: cosine_recall@10
220
+ value: 0.5376569037656904
221
+ name: Cosine Recall@10
222
+ - type: cosine_ndcg@10
223
+ value: 0.33244445391299926
224
+ name: Cosine Ndcg@10
225
+ - type: cosine_mrr@10
226
+ value: 0.2700023245002324
227
+ name: Cosine Mrr@10
228
+ - type: cosine_map@100
229
+ value: 0.29010151423672403
230
+ name: Cosine Map@100
231
+ - task:
232
+ type: information-retrieval
233
+ name: Information Retrieval
234
+ dataset:
235
+ name: dim 256
236
+ type: dim_256
237
+ metrics:
238
+ - type: cosine_accuracy@1
239
+ value: 0.1506276150627615
240
+ name: Cosine Accuracy@1
241
+ - type: cosine_accuracy@3
242
+ value: 0.2907949790794979
243
+ name: Cosine Accuracy@3
244
+ - type: cosine_accuracy@5
245
+ value: 0.401673640167364
246
+ name: Cosine Accuracy@5
247
+ - type: cosine_accuracy@10
248
+ value: 0.5355648535564853
249
+ name: Cosine Accuracy@10
250
+ - type: cosine_precision@1
251
+ value: 0.1506276150627615
252
+ name: Cosine Precision@1
253
+ - type: cosine_precision@3
254
+ value: 0.09693165969316596
255
+ name: Cosine Precision@3
256
+ - type: cosine_precision@5
257
+ value: 0.0803347280334728
258
+ name: Cosine Precision@5
259
+ - type: cosine_precision@10
260
+ value: 0.05355648535564853
261
+ name: Cosine Precision@10
262
+ - type: cosine_recall@1
263
+ value: 0.1506276150627615
264
+ name: Cosine Recall@1
265
+ - type: cosine_recall@3
266
+ value: 0.2907949790794979
267
+ name: Cosine Recall@3
268
+ - type: cosine_recall@5
269
+ value: 0.401673640167364
270
+ name: Cosine Recall@5
271
+ - type: cosine_recall@10
272
+ value: 0.5355648535564853
273
+ name: Cosine Recall@10
274
+ - type: cosine_ndcg@10
275
+ value: 0.3189819772344188
276
+ name: Cosine Ndcg@10
277
+ - type: cosine_mrr@10
278
+ value: 0.25269392973367877
279
+ name: Cosine Mrr@10
280
+ - type: cosine_map@100
281
+ value: 0.2728848917988661
282
+ name: Cosine Map@100
283
+ - task:
284
+ type: information-retrieval
285
+ name: Information Retrieval
286
+ dataset:
287
+ name: dim 128
288
+ type: dim_128
289
+ metrics:
290
+ - type: cosine_accuracy@1
291
+ value: 0.16736401673640167
292
+ name: Cosine Accuracy@1
293
+ - type: cosine_accuracy@3
294
+ value: 0.3200836820083682
295
+ name: Cosine Accuracy@3
296
+ - type: cosine_accuracy@5
297
+ value: 0.41631799163179917
298
+ name: Cosine Accuracy@5
299
+ - type: cosine_accuracy@10
300
+ value: 0.5481171548117155
301
+ name: Cosine Accuracy@10
302
+ - type: cosine_precision@1
303
+ value: 0.16736401673640167
304
+ name: Cosine Precision@1
305
+ - type: cosine_precision@3
306
+ value: 0.10669456066945607
307
+ name: Cosine Precision@3
308
+ - type: cosine_precision@5
309
+ value: 0.08326359832635982
310
+ name: Cosine Precision@5
311
+ - type: cosine_precision@10
312
+ value: 0.05481171548117154
313
+ name: Cosine Precision@10
314
+ - type: cosine_recall@1
315
+ value: 0.16736401673640167
316
+ name: Cosine Recall@1
317
+ - type: cosine_recall@3
318
+ value: 0.3200836820083682
319
+ name: Cosine Recall@3
320
+ - type: cosine_recall@5
321
+ value: 0.41631799163179917
322
+ name: Cosine Recall@5
323
+ - type: cosine_recall@10
324
+ value: 0.5481171548117155
325
+ name: Cosine Recall@10
326
+ - type: cosine_ndcg@10
327
+ value: 0.3353691502747181
328
+ name: Cosine Ndcg@10
329
+ - type: cosine_mrr@10
330
+ value: 0.26997077771136346
331
+ name: Cosine Mrr@10
332
+ - type: cosine_map@100
333
+ value: 0.2891803614784421
334
+ name: Cosine Map@100
335
+ - task:
336
+ type: information-retrieval
337
+ name: Information Retrieval
338
+ dataset:
339
+ name: dim 64
340
+ type: dim_64
341
+ metrics:
342
+ - type: cosine_accuracy@1
343
+ value: 0.15481171548117154
344
+ name: Cosine Accuracy@1
345
+ - type: cosine_accuracy@3
346
+ value: 0.28451882845188287
347
+ name: Cosine Accuracy@3
348
+ - type: cosine_accuracy@5
349
+ value: 0.3514644351464435
350
+ name: Cosine Accuracy@5
351
+ - type: cosine_accuracy@10
352
+ value: 0.5209205020920502
353
+ name: Cosine Accuracy@10
354
+ - type: cosine_precision@1
355
+ value: 0.15481171548117154
356
+ name: Cosine Precision@1
357
+ - type: cosine_precision@3
358
+ value: 0.09483960948396093
359
+ name: Cosine Precision@3
360
+ - type: cosine_precision@5
361
+ value: 0.07029288702928871
362
+ name: Cosine Precision@5
363
+ - type: cosine_precision@10
364
+ value: 0.052092050209205015
365
+ name: Cosine Precision@10
366
+ - type: cosine_recall@1
367
+ value: 0.15481171548117154
368
+ name: Cosine Recall@1
369
+ - type: cosine_recall@3
370
+ value: 0.28451882845188287
371
+ name: Cosine Recall@3
372
+ - type: cosine_recall@5
373
+ value: 0.3514644351464435
374
+ name: Cosine Recall@5
375
+ - type: cosine_recall@10
376
+ value: 0.5209205020920502
377
+ name: Cosine Recall@10
378
+ - type: cosine_ndcg@10
379
+ value: 0.3116868900381799
380
+ name: Cosine Ndcg@10
381
+ - type: cosine_mrr@10
382
+ value: 0.2481885501759978
383
+ name: Cosine Mrr@10
384
+ - type: cosine_map@100
385
+ value: 0.2685744617473963
386
+ name: Cosine Map@100
387
+ ---
388
+
389
+ # SentenceTransformer based on BAAI/bge-m3
390
+
391
+ This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [BAAI/bge-m3](https://huggingface.co/BAAI/bge-m3) on the json dataset. It maps sentences & paragraphs to a 1024-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
392
+
393
+ ## Model Details
394
+
395
+ ### Model Description
396
+ - **Model Type:** Sentence Transformer
397
+ - **Base model:** [BAAI/bge-m3](https://huggingface.co/BAAI/bge-m3) <!-- at revision 5617a9f61b028005a4858fdac845db406aefb181 -->
398
+ - **Maximum Sequence Length:** 8192 tokens
399
+ - **Output Dimensionality:** 1024 tokens
400
+ - **Similarity Function:** Cosine Similarity
401
+ - **Training Dataset:**
402
+ - json
403
+ <!-- - **Language:** Unknown -->
404
+ <!-- - **License:** Unknown -->
405
+
406
+ ### Model Sources
407
+
408
+ - **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
409
+ - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
410
+ - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
411
+
412
+ ### Full Model Architecture
413
+
414
+ ```
415
+ SentenceTransformer(
416
+ (0): Transformer({'max_seq_length': 8192, 'do_lower_case': False}) with Transformer model: XLMRobertaModel
417
+ (1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
418
+ (2): Normalize()
419
+ )
420
+ ```
421
+
422
+ ## Usage
423
+
424
+ ### Direct Usage (Sentence Transformers)
425
+
426
+ First install the Sentence Transformers library:
427
+
428
+ ```bash
429
+ pip install -U sentence-transformers
430
+ ```
431
+
432
+ Then you can load this model and run inference.
433
+ ```python
434
+ from sentence_transformers import SentenceTransformer
435
+
436
+ # Download from the 🤗 Hub
437
+ model = SentenceTransformer("adriansanz/ST-tramits-SITGES-007-5ep")
438
+ # Run inference
439
+ sentences = [
440
+ 'La comunicació és un element important en la cura dels gats, ja que implica la capacitat per a comunicar-se de manera efectiva amb les autoritats competents i amb els altres implicats en la cura dels animals.',
441
+ 'Quin és el paper de la comunicació en la cura dels gats?',
442
+ 'Qui són considerats titulars o nous exercents en el cas dels espectacles, establiments oberts al públic i les activitats recreatives?',
443
+ ]
444
+ embeddings = model.encode(sentences)
445
+ print(embeddings.shape)
446
+ # [3, 1024]
447
+
448
+ # Get the similarity scores for the embeddings
449
+ similarities = model.similarity(embeddings, embeddings)
450
+ print(similarities.shape)
451
+ # [3, 3]
452
+ ```
453
+
454
+ <!--
455
+ ### Direct Usage (Transformers)
456
+
457
+ <details><summary>Click to see the direct usage in Transformers</summary>
458
+
459
+ </details>
460
+ -->
461
+
462
+ <!--
463
+ ### Downstream Usage (Sentence Transformers)
464
+
465
+ You can finetune this model on your own dataset.
466
+
467
+ <details><summary>Click to expand</summary>
468
+
469
+ </details>
470
+ -->
471
+
472
+ <!--
473
+ ### Out-of-Scope Use
474
+
475
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
476
+ -->
477
+
478
+ ## Evaluation
479
+
480
+ ### Metrics
481
+
482
+ #### Information Retrieval
483
+ * Dataset: `dim_1024`
484
+ * Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
485
+
486
+ | Metric | Value |
487
+ |:--------------------|:-----------|
488
+ | cosine_accuracy@1 | 0.159 |
489
+ | cosine_accuracy@3 | 0.3033 |
490
+ | cosine_accuracy@5 | 0.3724 |
491
+ | cosine_accuracy@10 | 0.5188 |
492
+ | cosine_precision@1 | 0.159 |
493
+ | cosine_precision@3 | 0.1011 |
494
+ | cosine_precision@5 | 0.0745 |
495
+ | cosine_precision@10 | 0.0519 |
496
+ | cosine_recall@1 | 0.159 |
497
+ | cosine_recall@3 | 0.3033 |
498
+ | cosine_recall@5 | 0.3724 |
499
+ | cosine_recall@10 | 0.5188 |
500
+ | cosine_ndcg@10 | 0.3174 |
501
+ | cosine_mrr@10 | 0.256 |
502
+ | **cosine_map@100** | **0.2763** |
503
+
504
+ #### Information Retrieval
505
+ * Dataset: `dim_768`
506
+ * Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
507
+
508
+ | Metric | Value |
509
+ |:--------------------|:-----------|
510
+ | cosine_accuracy@1 | 0.1569 |
511
+ | cosine_accuracy@3 | 0.2971 |
512
+ | cosine_accuracy@5 | 0.3808 |
513
+ | cosine_accuracy@10 | 0.5084 |
514
+ | cosine_precision@1 | 0.1569 |
515
+ | cosine_precision@3 | 0.099 |
516
+ | cosine_precision@5 | 0.0762 |
517
+ | cosine_precision@10 | 0.0508 |
518
+ | cosine_recall@1 | 0.1569 |
519
+ | cosine_recall@3 | 0.2971 |
520
+ | cosine_recall@5 | 0.3808 |
521
+ | cosine_recall@10 | 0.5084 |
522
+ | cosine_ndcg@10 | 0.3139 |
523
+ | cosine_mrr@10 | 0.2541 |
524
+ | **cosine_map@100** | **0.2757** |
525
+
526
+ #### Information Retrieval
527
+ * Dataset: `dim_512`
528
+ * Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
529
+
530
+ | Metric | Value |
531
+ |:--------------------|:-----------|
532
+ | cosine_accuracy@1 | 0.1736 |
533
+ | cosine_accuracy@3 | 0.3138 |
534
+ | cosine_accuracy@5 | 0.3954 |
535
+ | cosine_accuracy@10 | 0.5377 |
536
+ | cosine_precision@1 | 0.1736 |
537
+ | cosine_precision@3 | 0.1046 |
538
+ | cosine_precision@5 | 0.0791 |
539
+ | cosine_precision@10 | 0.0538 |
540
+ | cosine_recall@1 | 0.1736 |
541
+ | cosine_recall@3 | 0.3138 |
542
+ | cosine_recall@5 | 0.3954 |
543
+ | cosine_recall@10 | 0.5377 |
544
+ | cosine_ndcg@10 | 0.3324 |
545
+ | cosine_mrr@10 | 0.27 |
546
+ | **cosine_map@100** | **0.2901** |
547
+
548
+ #### Information Retrieval
549
+ * Dataset: `dim_256`
550
+ * Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
551
+
552
+ | Metric | Value |
553
+ |:--------------------|:-----------|
554
+ | cosine_accuracy@1 | 0.1506 |
555
+ | cosine_accuracy@3 | 0.2908 |
556
+ | cosine_accuracy@5 | 0.4017 |
557
+ | cosine_accuracy@10 | 0.5356 |
558
+ | cosine_precision@1 | 0.1506 |
559
+ | cosine_precision@3 | 0.0969 |
560
+ | cosine_precision@5 | 0.0803 |
561
+ | cosine_precision@10 | 0.0536 |
562
+ | cosine_recall@1 | 0.1506 |
563
+ | cosine_recall@3 | 0.2908 |
564
+ | cosine_recall@5 | 0.4017 |
565
+ | cosine_recall@10 | 0.5356 |
566
+ | cosine_ndcg@10 | 0.319 |
567
+ | cosine_mrr@10 | 0.2527 |
568
+ | **cosine_map@100** | **0.2729** |
569
+
570
+ #### Information Retrieval
571
+ * Dataset: `dim_128`
572
+ * Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
573
+
574
+ | Metric | Value |
575
+ |:--------------------|:-----------|
576
+ | cosine_accuracy@1 | 0.1674 |
577
+ | cosine_accuracy@3 | 0.3201 |
578
+ | cosine_accuracy@5 | 0.4163 |
579
+ | cosine_accuracy@10 | 0.5481 |
580
+ | cosine_precision@1 | 0.1674 |
581
+ | cosine_precision@3 | 0.1067 |
582
+ | cosine_precision@5 | 0.0833 |
583
+ | cosine_precision@10 | 0.0548 |
584
+ | cosine_recall@1 | 0.1674 |
585
+ | cosine_recall@3 | 0.3201 |
586
+ | cosine_recall@5 | 0.4163 |
587
+ | cosine_recall@10 | 0.5481 |
588
+ | cosine_ndcg@10 | 0.3354 |
589
+ | cosine_mrr@10 | 0.27 |
590
+ | **cosine_map@100** | **0.2892** |
591
+
592
+ #### Information Retrieval
593
+ * Dataset: `dim_64`
594
+ * Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
595
+
596
+ | Metric | Value |
597
+ |:--------------------|:-----------|
598
+ | cosine_accuracy@1 | 0.1548 |
599
+ | cosine_accuracy@3 | 0.2845 |
600
+ | cosine_accuracy@5 | 0.3515 |
601
+ | cosine_accuracy@10 | 0.5209 |
602
+ | cosine_precision@1 | 0.1548 |
603
+ | cosine_precision@3 | 0.0948 |
604
+ | cosine_precision@5 | 0.0703 |
605
+ | cosine_precision@10 | 0.0521 |
606
+ | cosine_recall@1 | 0.1548 |
607
+ | cosine_recall@3 | 0.2845 |
608
+ | cosine_recall@5 | 0.3515 |
609
+ | cosine_recall@10 | 0.5209 |
610
+ | cosine_ndcg@10 | 0.3117 |
611
+ | cosine_mrr@10 | 0.2482 |
612
+ | **cosine_map@100** | **0.2686** |
613
+
614
+ <!--
615
+ ## Bias, Risks and Limitations
616
+
617
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
618
+ -->
619
+
620
+ <!--
621
+ ### Recommendations
622
+
623
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
624
+ -->
625
+
626
+ ## Training Details
627
+
628
+ ### Training Dataset
629
+
630
+ #### json
631
+
632
+ * Dataset: json
633
+ * Size: 6,692 training samples
634
+ * Columns: <code>positive</code> and <code>anchor</code>
635
+ * Approximate statistics based on the first 1000 samples:
636
+ | | positive | anchor |
637
+ |:--------|:-----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|
638
+ | type | string | string |
639
+ | details | <ul><li>min: 6 tokens</li><li>mean: 44.83 tokens</li><li>max: 185 tokens</li></ul> | <ul><li>min: 10 tokens</li><li>mean: 20.89 tokens</li><li>max: 49 tokens</li></ul> |
640
+ * Samples:
641
+ | positive | anchor |
642
+ |:--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:------------------------------------------------------------------------------------------------------------|
643
+ | <code>Els residus comercials o industrials assimilables als municipals que hauran d'acreditar si disposen d'un gestor autoritzat per a la gestió dels residus.</code> | <code>Quins són els residus que es recullen en el servei municipal complementari?</code> |
644
+ | <code>L'Ajuntament de Sitges ofereix ajuts econòmics a famílies amb recursos insuficients per accedir a la realització d'activitats de lleure...</code> | <code>Quin és el paper de l'Ajuntament de Sitges en la promoció de l'educació no formal i de lleure?</code> |
645
+ | <code>Permet comunicar les intervencions necessàries per executar una instal·lació/remodelació d’autoconsum amb energia solar fotovoltaica amb una potència instal·lada inferior a 100 kWp en sòl urbà consolidat.</code> | <code>Quin és el propòsit de la remodelació d'una instal·lació d'autoconsum?</code> |
646
+ * Loss: [<code>MatryoshkaLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#matryoshkaloss) with these parameters:
647
+ ```json
648
+ {
649
+ "loss": "MultipleNegativesRankingLoss",
650
+ "matryoshka_dims": [
651
+ 1024,
652
+ 768,
653
+ 512,
654
+ 256,
655
+ 128,
656
+ 64
657
+ ],
658
+ "matryoshka_weights": [
659
+ 1,
660
+ 1,
661
+ 1,
662
+ 1,
663
+ 1,
664
+ 1
665
+ ],
666
+ "n_dims_per_step": -1
667
+ }
668
+ ```
669
+
670
+ ### Training Hyperparameters
671
+ #### Non-Default Hyperparameters
672
+
673
+ - `eval_strategy`: epoch
674
+ - `per_device_train_batch_size`: 16
675
+ - `per_device_eval_batch_size`: 16
676
+ - `gradient_accumulation_steps`: 16
677
+ - `learning_rate`: 2e-05
678
+ - `num_train_epochs`: 5
679
+ - `lr_scheduler_type`: cosine
680
+ - `warmup_ratio`: 0.2
681
+ - `bf16`: True
682
+ - `tf32`: True
683
+ - `load_best_model_at_end`: True
684
+ - `optim`: adamw_torch_fused
685
+ - `batch_sampler`: no_duplicates
686
+
687
+ #### All Hyperparameters
688
+ <details><summary>Click to expand</summary>
689
+
690
+ - `overwrite_output_dir`: False
691
+ - `do_predict`: False
692
+ - `eval_strategy`: epoch
693
+ - `prediction_loss_only`: True
694
+ - `per_device_train_batch_size`: 16
695
+ - `per_device_eval_batch_size`: 16
696
+ - `per_gpu_train_batch_size`: None
697
+ - `per_gpu_eval_batch_size`: None
698
+ - `gradient_accumulation_steps`: 16
699
+ - `eval_accumulation_steps`: None
700
+ - `torch_empty_cache_steps`: None
701
+ - `learning_rate`: 2e-05
702
+ - `weight_decay`: 0.0
703
+ - `adam_beta1`: 0.9
704
+ - `adam_beta2`: 0.999
705
+ - `adam_epsilon`: 1e-08
706
+ - `max_grad_norm`: 1.0
707
+ - `num_train_epochs`: 5
708
+ - `max_steps`: -1
709
+ - `lr_scheduler_type`: cosine
710
+ - `lr_scheduler_kwargs`: {}
711
+ - `warmup_ratio`: 0.2
712
+ - `warmup_steps`: 0
713
+ - `log_level`: passive
714
+ - `log_level_replica`: warning
715
+ - `log_on_each_node`: True
716
+ - `logging_nan_inf_filter`: True
717
+ - `save_safetensors`: True
718
+ - `save_on_each_node`: False
719
+ - `save_only_model`: False
720
+ - `restore_callback_states_from_checkpoint`: False
721
+ - `no_cuda`: False
722
+ - `use_cpu`: False
723
+ - `use_mps_device`: False
724
+ - `seed`: 42
725
+ - `data_seed`: None
726
+ - `jit_mode_eval`: False
727
+ - `use_ipex`: False
728
+ - `bf16`: True
729
+ - `fp16`: False
730
+ - `fp16_opt_level`: O1
731
+ - `half_precision_backend`: auto
732
+ - `bf16_full_eval`: False
733
+ - `fp16_full_eval`: False
734
+ - `tf32`: True
735
+ - `local_rank`: 0
736
+ - `ddp_backend`: None
737
+ - `tpu_num_cores`: None
738
+ - `tpu_metrics_debug`: False
739
+ - `debug`: []
740
+ - `dataloader_drop_last`: False
741
+ - `dataloader_num_workers`: 0
742
+ - `dataloader_prefetch_factor`: None
743
+ - `past_index`: -1
744
+ - `disable_tqdm`: False
745
+ - `remove_unused_columns`: True
746
+ - `label_names`: None
747
+ - `load_best_model_at_end`: True
748
+ - `ignore_data_skip`: False
749
+ - `fsdp`: []
750
+ - `fsdp_min_num_params`: 0
751
+ - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
752
+ - `fsdp_transformer_layer_cls_to_wrap`: None
753
+ - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
754
+ - `deepspeed`: None
755
+ - `label_smoothing_factor`: 0.0
756
+ - `optim`: adamw_torch_fused
757
+ - `optim_args`: None
758
+ - `adafactor`: False
759
+ - `group_by_length`: False
760
+ - `length_column_name`: length
761
+ - `ddp_find_unused_parameters`: None
762
+ - `ddp_bucket_cap_mb`: None
763
+ - `ddp_broadcast_buffers`: False
764
+ - `dataloader_pin_memory`: True
765
+ - `dataloader_persistent_workers`: False
766
+ - `skip_memory_metrics`: True
767
+ - `use_legacy_prediction_loop`: False
768
+ - `push_to_hub`: False
769
+ - `resume_from_checkpoint`: None
770
+ - `hub_model_id`: None
771
+ - `hub_strategy`: every_save
772
+ - `hub_private_repo`: False
773
+ - `hub_always_push`: False
774
+ - `gradient_checkpointing`: False
775
+ - `gradient_checkpointing_kwargs`: None
776
+ - `include_inputs_for_metrics`: False
777
+ - `eval_do_concat_batches`: True
778
+ - `fp16_backend`: auto
779
+ - `push_to_hub_model_id`: None
780
+ - `push_to_hub_organization`: None
781
+ - `mp_parameters`:
782
+ - `auto_find_batch_size`: False
783
+ - `full_determinism`: False
784
+ - `torchdynamo`: None
785
+ - `ray_scope`: last
786
+ - `ddp_timeout`: 1800
787
+ - `torch_compile`: False
788
+ - `torch_compile_backend`: None
789
+ - `torch_compile_mode`: None
790
+ - `dispatch_batches`: None
791
+ - `split_batches`: None
792
+ - `include_tokens_per_second`: False
793
+ - `include_num_input_tokens_seen`: False
794
+ - `neftune_noise_alpha`: None
795
+ - `optim_target_modules`: None
796
+ - `batch_eval_metrics`: False
797
+ - `eval_on_start`: False
798
+ - `eval_use_gather_object`: False
799
+ - `batch_sampler`: no_duplicates
800
+ - `multi_dataset_batch_sampler`: proportional
801
+
802
+ </details>
803
+
804
+ ### Training Logs
805
+ | Epoch | Step | Training Loss | dim_1024_cosine_map@100 | dim_128_cosine_map@100 | dim_256_cosine_map@100 | dim_512_cosine_map@100 | dim_64_cosine_map@100 | dim_768_cosine_map@100 |
806
+ |:----------:|:-------:|:-------------:|:-----------------------:|:----------------------:|:----------------------:|:----------------------:|:---------------------:|:----------------------:|
807
+ | 0.3819 | 10 | 3.3449 | - | - | - | - | - | - |
808
+ | 0.7637 | 20 | 2.0557 | - | - | - | - | - | - |
809
+ | 0.9928 | 26 | - | 0.2440 | 0.2408 | 0.2590 | 0.2439 | 0.2379 | 0.2512 |
810
+ | 1.1456 | 30 | 1.4634 | - | - | - | - | - | - |
811
+ | 1.5274 | 40 | 0.8163 | - | - | - | - | - | - |
812
+ | 1.9093 | 50 | 0.6103 | - | - | - | - | - | - |
813
+ | 1.9857 | 52 | - | 0.2621 | 0.2683 | 0.2483 | 0.2629 | 0.2404 | 0.2472 |
814
+ | 2.2912 | 60 | 0.4854 | - | - | - | - | - | - |
815
+ | 2.6730 | 70 | 0.2796 | - | - | - | - | - | - |
816
+ | 2.9785 | 78 | - | 0.2701 | 0.2697 | 0.2761 | 0.2845 | 0.2673 | 0.2709 |
817
+ | 3.0549 | 80 | 0.2458 | - | - | - | - | - | - |
818
+ | 3.4368 | 90 | 0.2616 | - | - | - | - | - | - |
819
+ | 3.8186 | 100 | 0.174 | - | - | - | - | - | - |
820
+ | 3.9714 | 104 | - | 0.2729 | 0.2863 | 0.2858 | 0.2853 | 0.2656 | 0.2752 |
821
+ | 4.2005 | 110 | 0.1841 | - | - | - | - | - | - |
822
+ | 4.5823 | 120 | 0.1668 | - | - | - | - | - | - |
823
+ | **4.9642** | **130** | **0.1484** | **0.2763** | **0.2892** | **0.2729** | **0.2901** | **0.2686** | **0.2757** |
824
+
825
+ * The bold row denotes the saved checkpoint.
826
+
827
+ ### Framework Versions
828
+ - Python: 3.10.12
829
+ - Sentence Transformers: 3.1.1
830
+ - Transformers: 4.44.2
831
+ - PyTorch: 2.4.1+cu121
832
+ - Accelerate: 0.35.0.dev0
833
+ - Datasets: 3.0.1
834
+ - Tokenizers: 0.19.1
835
+
836
+ ## Citation
837
+
838
+ ### BibTeX
839
+
840
+ #### Sentence Transformers
841
+ ```bibtex
842
+ @inproceedings{reimers-2019-sentence-bert,
843
+ title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
844
+ author = "Reimers, Nils and Gurevych, Iryna",
845
+ booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
846
+ month = "11",
847
+ year = "2019",
848
+ publisher = "Association for Computational Linguistics",
849
+ url = "https://arxiv.org/abs/1908.10084",
850
+ }
851
+ ```
852
+
853
+ #### MatryoshkaLoss
854
+ ```bibtex
855
+ @misc{kusupati2024matryoshka,
856
+ title={Matryoshka Representation Learning},
857
+ author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
858
+ year={2024},
859
+ eprint={2205.13147},
860
+ archivePrefix={arXiv},
861
+ primaryClass={cs.LG}
862
+ }
863
+ ```
864
+
865
+ #### MultipleNegativesRankingLoss
866
+ ```bibtex
867
+ @misc{henderson2017efficient,
868
+ title={Efficient Natural Language Response Suggestion for Smart Reply},
869
+ author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
870
+ year={2017},
871
+ eprint={1705.00652},
872
+ archivePrefix={arXiv},
873
+ primaryClass={cs.CL}
874
+ }
875
+ ```
876
+
877
+ <!--
878
+ ## Glossary
879
+
880
+ *Clearly define terms in order to be accessible across audiences.*
881
+ -->
882
+
883
+ <!--
884
+ ## Model Card Authors
885
+
886
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
887
+ -->
888
+
889
+ <!--
890
+ ## Model Card Contact
891
+
892
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
893
+ -->
config.json ADDED
@@ -0,0 +1,28 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "BAAI/bge-m3",
3
+ "architectures": [
4
+ "XLMRobertaModel"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "bos_token_id": 0,
8
+ "classifier_dropout": null,
9
+ "eos_token_id": 2,
10
+ "hidden_act": "gelu",
11
+ "hidden_dropout_prob": 0.1,
12
+ "hidden_size": 1024,
13
+ "initializer_range": 0.02,
14
+ "intermediate_size": 4096,
15
+ "layer_norm_eps": 1e-05,
16
+ "max_position_embeddings": 8194,
17
+ "model_type": "xlm-roberta",
18
+ "num_attention_heads": 16,
19
+ "num_hidden_layers": 24,
20
+ "output_past": true,
21
+ "pad_token_id": 1,
22
+ "position_embedding_type": "absolute",
23
+ "torch_dtype": "float32",
24
+ "transformers_version": "4.44.2",
25
+ "type_vocab_size": 1,
26
+ "use_cache": true,
27
+ "vocab_size": 250002
28
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "3.1.1",
4
+ "transformers": "4.44.2",
5
+ "pytorch": "2.4.1+cu121"
6
+ },
7
+ "prompts": {},
8
+ "default_prompt_name": null,
9
+ "similarity_fn_name": null
10
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b8c03a46f61d19daa78b6fdbb6955bbc76e7a8733489bb28f63521b4d2bd34e7
3
+ size 2271064456
modules.json ADDED
@@ -0,0 +1,20 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ },
14
+ {
15
+ "idx": 2,
16
+ "name": "2",
17
+ "path": "2_Normalize",
18
+ "type": "sentence_transformers.models.Normalize"
19
+ }
20
+ ]
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 8192,
3
+ "do_lower_case": false
4
+ }
sentencepiece.bpe.model ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:cfc8146abe2a0488e9e2a0c56de7952f7c11ab059eca145a0a727afce0db2865
3
+ size 5069051
special_tokens_map.json ADDED
@@ -0,0 +1,51 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "<s>",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "cls_token": {
10
+ "content": "<s>",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "eos_token": {
17
+ "content": "</s>",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "mask_token": {
24
+ "content": "<mask>",
25
+ "lstrip": true,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "pad_token": {
31
+ "content": "<pad>",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ },
37
+ "sep_token": {
38
+ "content": "</s>",
39
+ "lstrip": false,
40
+ "normalized": false,
41
+ "rstrip": false,
42
+ "single_word": false
43
+ },
44
+ "unk_token": {
45
+ "content": "<unk>",
46
+ "lstrip": false,
47
+ "normalized": false,
48
+ "rstrip": false,
49
+ "single_word": false
50
+ }
51
+ }
tokenizer.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e4f7e21bec3fb0044ca0bb2d50eb5d4d8c596273c422baef84466d2c73748b9c
3
+ size 17083053
tokenizer_config.json ADDED
@@ -0,0 +1,55 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "<s>",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "1": {
12
+ "content": "<pad>",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "2": {
20
+ "content": "</s>",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "3": {
28
+ "content": "<unk>",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "250001": {
36
+ "content": "<mask>",
37
+ "lstrip": true,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "bos_token": "<s>",
45
+ "clean_up_tokenization_spaces": true,
46
+ "cls_token": "<s>",
47
+ "eos_token": "</s>",
48
+ "mask_token": "<mask>",
49
+ "model_max_length": 8192,
50
+ "pad_token": "<pad>",
51
+ "sep_token": "</s>",
52
+ "sp_model_kwargs": {},
53
+ "tokenizer_class": "XLMRobertaTokenizer",
54
+ "unk_token": "<unk>"
55
+ }