adriansanz commited on
Commit
de7a46f
1 Parent(s): af83fb6

Add new SentenceTransformer model

Browse files
.gitattributes CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ tokenizer.json filter=lfs diff=lfs merge=lfs -text
1_Pooling/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 1024,
3
+ "pooling_mode_cls_token": true,
4
+ "pooling_mode_mean_tokens": false,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true
10
+ }
README.md ADDED
@@ -0,0 +1,883 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: BAAI/bge-m3
3
+ library_name: sentence-transformers
4
+ metrics:
5
+ - cosine_accuracy@1
6
+ - cosine_accuracy@3
7
+ - cosine_accuracy@5
8
+ - cosine_accuracy@10
9
+ - cosine_precision@1
10
+ - cosine_precision@3
11
+ - cosine_precision@5
12
+ - cosine_precision@10
13
+ - cosine_recall@1
14
+ - cosine_recall@3
15
+ - cosine_recall@5
16
+ - cosine_recall@10
17
+ - cosine_ndcg@10
18
+ - cosine_mrr@10
19
+ - cosine_map@100
20
+ pipeline_tag: sentence-similarity
21
+ tags:
22
+ - sentence-transformers
23
+ - sentence-similarity
24
+ - feature-extraction
25
+ - generated_from_trainer
26
+ - dataset_size:2884
27
+ - loss:MatryoshkaLoss
28
+ - loss:MultipleNegativesRankingLoss
29
+ widget:
30
+ - source_sentence: 'P.2 El contingut mínim del projecte és: a) Memòria justificativa,
31
+ amb: - La descripció de la finca o finques d''origen amb indicació de les seves
32
+ superfícies i llindars. - La descripció de les finques resultants, la seva superfície
33
+ i els seus llindars...'
34
+ sentences:
35
+ - Quin és el format de sortida de la informació sobre aquesta ciutat?
36
+ - Quins són els requisits bàsics per sol·licitar la subvenció?
37
+ - Quin és el contingut mínim del projecte de parcel·lació?
38
+ - source_sentence: 'La Comissió de Garanties té dues funcions: aclarir els dubtes
39
+ interpretatius que es plantegin en l''aplicació del mateix.'
40
+ sentences:
41
+ - Quines són les dues funcions de la Comissió de Garanties?
42
+ - Quin és el propòsit d'una llicència d'obres mitjanes en relació amb els moviments
43
+ de terres?
44
+ - Quin és el nom del conjunt d'habitatges que es troba al terme municipal de Viladecans?
45
+ - source_sentence: 'No cal presentar al·legacions en els següents casos: En el cas
46
+ que la baixa s’hagués iniciat per manca de confirmació bastarà amb realitzar el
47
+ tràmit de confirmació per que l’expedient de baixa s’arxivi, sempre i quan continuï
48
+ residint al mateix domicili.'
49
+ sentences:
50
+ - És necessari que una persona tècnica professional empleni els documents d'autocontrol?
51
+ - Quin és el tema principal de la secció d'horari d'obertura i tancament?
52
+ - Quan no cal presentar al·legacions en un expedient de baixa d'ofici?
53
+ - source_sentence: L'Ajuntament de Sant Boi obre convocatòria de concessió de beques
54
+ per col·laborar en el finançament de projectes i activitats dels i de les joves
55
+ del municipi en diferents àmbits i promoure i facilitar els processos d'emancipació
56
+ juvenils i garantir la igualtat d'oportunitats i la cohesió social entre la població
57
+ jove.
58
+ sentences:
59
+ - Quin és el propòsit del servei de llista d'espera?
60
+ - Quin és el problema que es tracta en aquest apartat?
61
+ - Quin és l'objectiu de les beques per a joves 2024 de l'Ajuntament de Sant Boi?
62
+ - source_sentence: Empadronament d'un/a menor en un domicili diferent al domicili
63
+ dels progenitors - Amb autorització de les persones progenitores
64
+ sentences:
65
+ - Quin és el límit de temps màxim per al període de funcionament en proves?
66
+ - Què es necessita per participar en aquest procediment de selecció?
67
+ - Quin és el resultat de l'empadronament d'un/a menor en un domicili diferent al
68
+ dels progenitors amb autorització?
69
+ model-index:
70
+ - name: SentenceTransformer based on BAAI/bge-m3
71
+ results:
72
+ - task:
73
+ type: information-retrieval
74
+ name: Information Retrieval
75
+ dataset:
76
+ name: dim 1024
77
+ type: dim_1024
78
+ metrics:
79
+ - type: cosine_accuracy@1
80
+ value: 0.3883495145631068
81
+ name: Cosine Accuracy@1
82
+ - type: cosine_accuracy@3
83
+ value: 0.6310679611650486
84
+ name: Cosine Accuracy@3
85
+ - type: cosine_accuracy@5
86
+ value: 0.7198335644937587
87
+ name: Cosine Accuracy@5
88
+ - type: cosine_accuracy@10
89
+ value: 0.8183079056865464
90
+ name: Cosine Accuracy@10
91
+ - type: cosine_precision@1
92
+ value: 0.3883495145631068
93
+ name: Cosine Precision@1
94
+ - type: cosine_precision@3
95
+ value: 0.21035598705501618
96
+ name: Cosine Precision@3
97
+ - type: cosine_precision@5
98
+ value: 0.1439667128987517
99
+ name: Cosine Precision@5
100
+ - type: cosine_precision@10
101
+ value: 0.08183079056865464
102
+ name: Cosine Precision@10
103
+ - type: cosine_recall@1
104
+ value: 0.3883495145631068
105
+ name: Cosine Recall@1
106
+ - type: cosine_recall@3
107
+ value: 0.6310679611650486
108
+ name: Cosine Recall@3
109
+ - type: cosine_recall@5
110
+ value: 0.7198335644937587
111
+ name: Cosine Recall@5
112
+ - type: cosine_recall@10
113
+ value: 0.8183079056865464
114
+ name: Cosine Recall@10
115
+ - type: cosine_ndcg@10
116
+ value: 0.596832375022475
117
+ name: Cosine Ndcg@10
118
+ - type: cosine_mrr@10
119
+ value: 0.5265262091891769
120
+ name: Cosine Mrr@10
121
+ - type: cosine_map@100
122
+ value: 0.5337741877067146
123
+ name: Cosine Map@100
124
+ - task:
125
+ type: information-retrieval
126
+ name: Information Retrieval
127
+ dataset:
128
+ name: dim 768
129
+ type: dim_768
130
+ metrics:
131
+ - type: cosine_accuracy@1
132
+ value: 0.37447988904299584
133
+ name: Cosine Accuracy@1
134
+ - type: cosine_accuracy@3
135
+ value: 0.6227461858529819
136
+ name: Cosine Accuracy@3
137
+ - type: cosine_accuracy@5
138
+ value: 0.723994452149792
139
+ name: Cosine Accuracy@5
140
+ - type: cosine_accuracy@10
141
+ value: 0.8210818307905686
142
+ name: Cosine Accuracy@10
143
+ - type: cosine_precision@1
144
+ value: 0.37447988904299584
145
+ name: Cosine Precision@1
146
+ - type: cosine_precision@3
147
+ value: 0.207582061950994
148
+ name: Cosine Precision@3
149
+ - type: cosine_precision@5
150
+ value: 0.1447988904299584
151
+ name: Cosine Precision@5
152
+ - type: cosine_precision@10
153
+ value: 0.08210818307905685
154
+ name: Cosine Precision@10
155
+ - type: cosine_recall@1
156
+ value: 0.37447988904299584
157
+ name: Cosine Recall@1
158
+ - type: cosine_recall@3
159
+ value: 0.6227461858529819
160
+ name: Cosine Recall@3
161
+ - type: cosine_recall@5
162
+ value: 0.723994452149792
163
+ name: Cosine Recall@5
164
+ - type: cosine_recall@10
165
+ value: 0.8210818307905686
166
+ name: Cosine Recall@10
167
+ - type: cosine_ndcg@10
168
+ value: 0.5927947036265483
169
+ name: Cosine Ndcg@10
170
+ - type: cosine_mrr@10
171
+ value: 0.5201010501287889
172
+ name: Cosine Mrr@10
173
+ - type: cosine_map@100
174
+ value: 0.5274048711370899
175
+ name: Cosine Map@100
176
+ - task:
177
+ type: information-retrieval
178
+ name: Information Retrieval
179
+ dataset:
180
+ name: dim 512
181
+ type: dim_512
182
+ metrics:
183
+ - type: cosine_accuracy@1
184
+ value: 0.37309292649098474
185
+ name: Cosine Accuracy@1
186
+ - type: cosine_accuracy@3
187
+ value: 0.6213592233009708
188
+ name: Cosine Accuracy@3
189
+ - type: cosine_accuracy@5
190
+ value: 0.7184466019417476
191
+ name: Cosine Accuracy@5
192
+ - type: cosine_accuracy@10
193
+ value: 0.826629680998613
194
+ name: Cosine Accuracy@10
195
+ - type: cosine_precision@1
196
+ value: 0.37309292649098474
197
+ name: Cosine Precision@1
198
+ - type: cosine_precision@3
199
+ value: 0.2071197411003236
200
+ name: Cosine Precision@3
201
+ - type: cosine_precision@5
202
+ value: 0.1436893203883495
203
+ name: Cosine Precision@5
204
+ - type: cosine_precision@10
205
+ value: 0.08266296809986129
206
+ name: Cosine Precision@10
207
+ - type: cosine_recall@1
208
+ value: 0.37309292649098474
209
+ name: Cosine Recall@1
210
+ - type: cosine_recall@3
211
+ value: 0.6213592233009708
212
+ name: Cosine Recall@3
213
+ - type: cosine_recall@5
214
+ value: 0.7184466019417476
215
+ name: Cosine Recall@5
216
+ - type: cosine_recall@10
217
+ value: 0.826629680998613
218
+ name: Cosine Recall@10
219
+ - type: cosine_ndcg@10
220
+ value: 0.5933965794382484
221
+ name: Cosine Ndcg@10
222
+ - type: cosine_mrr@10
223
+ value: 0.5193294146137418
224
+ name: Cosine Mrr@10
225
+ - type: cosine_map@100
226
+ value: 0.5262147141098168
227
+ name: Cosine Map@100
228
+ - task:
229
+ type: information-retrieval
230
+ name: Information Retrieval
231
+ dataset:
232
+ name: dim 256
233
+ type: dim_256
234
+ metrics:
235
+ - type: cosine_accuracy@1
236
+ value: 0.39528432732316227
237
+ name: Cosine Accuracy@1
238
+ - type: cosine_accuracy@3
239
+ value: 0.6185852981969486
240
+ name: Cosine Accuracy@3
241
+ - type: cosine_accuracy@5
242
+ value: 0.6962552011095701
243
+ name: Cosine Accuracy@5
244
+ - type: cosine_accuracy@10
245
+ value: 0.8252427184466019
246
+ name: Cosine Accuracy@10
247
+ - type: cosine_precision@1
248
+ value: 0.39528432732316227
249
+ name: Cosine Precision@1
250
+ - type: cosine_precision@3
251
+ value: 0.20619509939898292
252
+ name: Cosine Precision@3
253
+ - type: cosine_precision@5
254
+ value: 0.139251040221914
255
+ name: Cosine Precision@5
256
+ - type: cosine_precision@10
257
+ value: 0.0825242718446602
258
+ name: Cosine Precision@10
259
+ - type: cosine_recall@1
260
+ value: 0.39528432732316227
261
+ name: Cosine Recall@1
262
+ - type: cosine_recall@3
263
+ value: 0.6185852981969486
264
+ name: Cosine Recall@3
265
+ - type: cosine_recall@5
266
+ value: 0.6962552011095701
267
+ name: Cosine Recall@5
268
+ - type: cosine_recall@10
269
+ value: 0.8252427184466019
270
+ name: Cosine Recall@10
271
+ - type: cosine_ndcg@10
272
+ value: 0.5982896106972676
273
+ name: Cosine Ndcg@10
274
+ - type: cosine_mrr@10
275
+ value: 0.5270165995200669
276
+ name: Cosine Mrr@10
277
+ - type: cosine_map@100
278
+ value: 0.533875073833905
279
+ name: Cosine Map@100
280
+ - task:
281
+ type: information-retrieval
282
+ name: Information Retrieval
283
+ dataset:
284
+ name: dim 128
285
+ type: dim_128
286
+ metrics:
287
+ - type: cosine_accuracy@1
288
+ value: 0.3828016643550624
289
+ name: Cosine Accuracy@1
290
+ - type: cosine_accuracy@3
291
+ value: 0.6033287101248266
292
+ name: Cosine Accuracy@3
293
+ - type: cosine_accuracy@5
294
+ value: 0.7059639389736477
295
+ name: Cosine Accuracy@5
296
+ - type: cosine_accuracy@10
297
+ value: 0.8155339805825242
298
+ name: Cosine Accuracy@10
299
+ - type: cosine_precision@1
300
+ value: 0.3828016643550624
301
+ name: Cosine Precision@1
302
+ - type: cosine_precision@3
303
+ value: 0.20110957004160887
304
+ name: Cosine Precision@3
305
+ - type: cosine_precision@5
306
+ value: 0.14119278779472955
307
+ name: Cosine Precision@5
308
+ - type: cosine_precision@10
309
+ value: 0.08155339805825243
310
+ name: Cosine Precision@10
311
+ - type: cosine_recall@1
312
+ value: 0.3828016643550624
313
+ name: Cosine Recall@1
314
+ - type: cosine_recall@3
315
+ value: 0.6033287101248266
316
+ name: Cosine Recall@3
317
+ - type: cosine_recall@5
318
+ value: 0.7059639389736477
319
+ name: Cosine Recall@5
320
+ - type: cosine_recall@10
321
+ value: 0.8155339805825242
322
+ name: Cosine Recall@10
323
+ - type: cosine_ndcg@10
324
+ value: 0.589596475804869
325
+ name: Cosine Ndcg@10
326
+ - type: cosine_mrr@10
327
+ value: 0.5181840697444022
328
+ name: Cosine Mrr@10
329
+ - type: cosine_map@100
330
+ value: 0.5258716600846131
331
+ name: Cosine Map@100
332
+ - task:
333
+ type: information-retrieval
334
+ name: Information Retrieval
335
+ dataset:
336
+ name: dim 64
337
+ type: dim_64
338
+ metrics:
339
+ - type: cosine_accuracy@1
340
+ value: 0.37031900138696255
341
+ name: Cosine Accuracy@1
342
+ - type: cosine_accuracy@3
343
+ value: 0.5686546463245492
344
+ name: Cosine Accuracy@3
345
+ - type: cosine_accuracy@5
346
+ value: 0.6851595006934813
347
+ name: Cosine Accuracy@5
348
+ - type: cosine_accuracy@10
349
+ value: 0.7891816920943134
350
+ name: Cosine Accuracy@10
351
+ - type: cosine_precision@1
352
+ value: 0.37031900138696255
353
+ name: Cosine Precision@1
354
+ - type: cosine_precision@3
355
+ value: 0.18955154877484973
356
+ name: Cosine Precision@3
357
+ - type: cosine_precision@5
358
+ value: 0.13703190013869623
359
+ name: Cosine Precision@5
360
+ - type: cosine_precision@10
361
+ value: 0.07891816920943133
362
+ name: Cosine Precision@10
363
+ - type: cosine_recall@1
364
+ value: 0.37031900138696255
365
+ name: Cosine Recall@1
366
+ - type: cosine_recall@3
367
+ value: 0.5686546463245492
368
+ name: Cosine Recall@3
369
+ - type: cosine_recall@5
370
+ value: 0.6851595006934813
371
+ name: Cosine Recall@5
372
+ - type: cosine_recall@10
373
+ value: 0.7891816920943134
374
+ name: Cosine Recall@10
375
+ - type: cosine_ndcg@10
376
+ value: 0.5679462834016797
377
+ name: Cosine Ndcg@10
378
+ - type: cosine_mrr@10
379
+ value: 0.49845397706007927
380
+ name: Cosine Mrr@10
381
+ - type: cosine_map@100
382
+ value: 0.5067836651151116
383
+ name: Cosine Map@100
384
+ ---
385
+
386
+ # SentenceTransformer based on BAAI/bge-m3
387
+
388
+ This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [BAAI/bge-m3](https://huggingface.co/BAAI/bge-m3) on the json dataset. It maps sentences & paragraphs to a 1024-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
389
+
390
+ ## Model Details
391
+
392
+ ### Model Description
393
+ - **Model Type:** Sentence Transformer
394
+ - **Base model:** [BAAI/bge-m3](https://huggingface.co/BAAI/bge-m3) <!-- at revision 5617a9f61b028005a4858fdac845db406aefb181 -->
395
+ - **Maximum Sequence Length:** 8192 tokens
396
+ - **Output Dimensionality:** 1024 tokens
397
+ - **Similarity Function:** Cosine Similarity
398
+ - **Training Dataset:**
399
+ - json
400
+ <!-- - **Language:** Unknown -->
401
+ <!-- - **License:** Unknown -->
402
+
403
+ ### Model Sources
404
+
405
+ - **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
406
+ - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
407
+ - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
408
+
409
+ ### Full Model Architecture
410
+
411
+ ```
412
+ SentenceTransformer(
413
+ (0): Transformer({'max_seq_length': 8192, 'do_lower_case': False}) with Transformer model: XLMRobertaModel
414
+ (1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
415
+ (2): Normalize()
416
+ )
417
+ ```
418
+
419
+ ## Usage
420
+
421
+ ### Direct Usage (Sentence Transformers)
422
+
423
+ First install the Sentence Transformers library:
424
+
425
+ ```bash
426
+ pip install -U sentence-transformers
427
+ ```
428
+
429
+ Then you can load this model and run inference.
430
+ ```python
431
+ from sentence_transformers import SentenceTransformer
432
+
433
+ # Download from the 🤗 Hub
434
+ model = SentenceTransformer("adriansanz/ST-tramits-SB-003-5ep")
435
+ # Run inference
436
+ sentences = [
437
+ "Empadronament d'un/a menor en un domicili diferent al domicili dels progenitors - Amb autorització de les persones progenitores",
438
+ "Quin és el resultat de l'empadronament d'un/a menor en un domicili diferent al dels progenitors amb autorització?",
439
+ 'Quin és el límit de temps màxim per al període de funcionament en proves?',
440
+ ]
441
+ embeddings = model.encode(sentences)
442
+ print(embeddings.shape)
443
+ # [3, 1024]
444
+
445
+ # Get the similarity scores for the embeddings
446
+ similarities = model.similarity(embeddings, embeddings)
447
+ print(similarities.shape)
448
+ # [3, 3]
449
+ ```
450
+
451
+ <!--
452
+ ### Direct Usage (Transformers)
453
+
454
+ <details><summary>Click to see the direct usage in Transformers</summary>
455
+
456
+ </details>
457
+ -->
458
+
459
+ <!--
460
+ ### Downstream Usage (Sentence Transformers)
461
+
462
+ You can finetune this model on your own dataset.
463
+
464
+ <details><summary>Click to expand</summary>
465
+
466
+ </details>
467
+ -->
468
+
469
+ <!--
470
+ ### Out-of-Scope Use
471
+
472
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
473
+ -->
474
+
475
+ ## Evaluation
476
+
477
+ ### Metrics
478
+
479
+ #### Information Retrieval
480
+ * Dataset: `dim_1024`
481
+ * Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
482
+
483
+ | Metric | Value |
484
+ |:--------------------|:-----------|
485
+ | cosine_accuracy@1 | 0.3883 |
486
+ | cosine_accuracy@3 | 0.6311 |
487
+ | cosine_accuracy@5 | 0.7198 |
488
+ | cosine_accuracy@10 | 0.8183 |
489
+ | cosine_precision@1 | 0.3883 |
490
+ | cosine_precision@3 | 0.2104 |
491
+ | cosine_precision@5 | 0.144 |
492
+ | cosine_precision@10 | 0.0818 |
493
+ | cosine_recall@1 | 0.3883 |
494
+ | cosine_recall@3 | 0.6311 |
495
+ | cosine_recall@5 | 0.7198 |
496
+ | cosine_recall@10 | 0.8183 |
497
+ | cosine_ndcg@10 | 0.5968 |
498
+ | cosine_mrr@10 | 0.5265 |
499
+ | **cosine_map@100** | **0.5338** |
500
+
501
+ #### Information Retrieval
502
+ * Dataset: `dim_768`
503
+ * Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
504
+
505
+ | Metric | Value |
506
+ |:--------------------|:-----------|
507
+ | cosine_accuracy@1 | 0.3745 |
508
+ | cosine_accuracy@3 | 0.6227 |
509
+ | cosine_accuracy@5 | 0.724 |
510
+ | cosine_accuracy@10 | 0.8211 |
511
+ | cosine_precision@1 | 0.3745 |
512
+ | cosine_precision@3 | 0.2076 |
513
+ | cosine_precision@5 | 0.1448 |
514
+ | cosine_precision@10 | 0.0821 |
515
+ | cosine_recall@1 | 0.3745 |
516
+ | cosine_recall@3 | 0.6227 |
517
+ | cosine_recall@5 | 0.724 |
518
+ | cosine_recall@10 | 0.8211 |
519
+ | cosine_ndcg@10 | 0.5928 |
520
+ | cosine_mrr@10 | 0.5201 |
521
+ | **cosine_map@100** | **0.5274** |
522
+
523
+ #### Information Retrieval
524
+ * Dataset: `dim_512`
525
+ * Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
526
+
527
+ | Metric | Value |
528
+ |:--------------------|:-----------|
529
+ | cosine_accuracy@1 | 0.3731 |
530
+ | cosine_accuracy@3 | 0.6214 |
531
+ | cosine_accuracy@5 | 0.7184 |
532
+ | cosine_accuracy@10 | 0.8266 |
533
+ | cosine_precision@1 | 0.3731 |
534
+ | cosine_precision@3 | 0.2071 |
535
+ | cosine_precision@5 | 0.1437 |
536
+ | cosine_precision@10 | 0.0827 |
537
+ | cosine_recall@1 | 0.3731 |
538
+ | cosine_recall@3 | 0.6214 |
539
+ | cosine_recall@5 | 0.7184 |
540
+ | cosine_recall@10 | 0.8266 |
541
+ | cosine_ndcg@10 | 0.5934 |
542
+ | cosine_mrr@10 | 0.5193 |
543
+ | **cosine_map@100** | **0.5262** |
544
+
545
+ #### Information Retrieval
546
+ * Dataset: `dim_256`
547
+ * Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
548
+
549
+ | Metric | Value |
550
+ |:--------------------|:-----------|
551
+ | cosine_accuracy@1 | 0.3953 |
552
+ | cosine_accuracy@3 | 0.6186 |
553
+ | cosine_accuracy@5 | 0.6963 |
554
+ | cosine_accuracy@10 | 0.8252 |
555
+ | cosine_precision@1 | 0.3953 |
556
+ | cosine_precision@3 | 0.2062 |
557
+ | cosine_precision@5 | 0.1393 |
558
+ | cosine_precision@10 | 0.0825 |
559
+ | cosine_recall@1 | 0.3953 |
560
+ | cosine_recall@3 | 0.6186 |
561
+ | cosine_recall@5 | 0.6963 |
562
+ | cosine_recall@10 | 0.8252 |
563
+ | cosine_ndcg@10 | 0.5983 |
564
+ | cosine_mrr@10 | 0.527 |
565
+ | **cosine_map@100** | **0.5339** |
566
+
567
+ #### Information Retrieval
568
+ * Dataset: `dim_128`
569
+ * Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
570
+
571
+ | Metric | Value |
572
+ |:--------------------|:-----------|
573
+ | cosine_accuracy@1 | 0.3828 |
574
+ | cosine_accuracy@3 | 0.6033 |
575
+ | cosine_accuracy@5 | 0.706 |
576
+ | cosine_accuracy@10 | 0.8155 |
577
+ | cosine_precision@1 | 0.3828 |
578
+ | cosine_precision@3 | 0.2011 |
579
+ | cosine_precision@5 | 0.1412 |
580
+ | cosine_precision@10 | 0.0816 |
581
+ | cosine_recall@1 | 0.3828 |
582
+ | cosine_recall@3 | 0.6033 |
583
+ | cosine_recall@5 | 0.706 |
584
+ | cosine_recall@10 | 0.8155 |
585
+ | cosine_ndcg@10 | 0.5896 |
586
+ | cosine_mrr@10 | 0.5182 |
587
+ | **cosine_map@100** | **0.5259** |
588
+
589
+ #### Information Retrieval
590
+ * Dataset: `dim_64`
591
+ * Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
592
+
593
+ | Metric | Value |
594
+ |:--------------------|:-----------|
595
+ | cosine_accuracy@1 | 0.3703 |
596
+ | cosine_accuracy@3 | 0.5687 |
597
+ | cosine_accuracy@5 | 0.6852 |
598
+ | cosine_accuracy@10 | 0.7892 |
599
+ | cosine_precision@1 | 0.3703 |
600
+ | cosine_precision@3 | 0.1896 |
601
+ | cosine_precision@5 | 0.137 |
602
+ | cosine_precision@10 | 0.0789 |
603
+ | cosine_recall@1 | 0.3703 |
604
+ | cosine_recall@3 | 0.5687 |
605
+ | cosine_recall@5 | 0.6852 |
606
+ | cosine_recall@10 | 0.7892 |
607
+ | cosine_ndcg@10 | 0.5679 |
608
+ | cosine_mrr@10 | 0.4985 |
609
+ | **cosine_map@100** | **0.5068** |
610
+
611
+ <!--
612
+ ## Bias, Risks and Limitations
613
+
614
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
615
+ -->
616
+
617
+ <!--
618
+ ### Recommendations
619
+
620
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
621
+ -->
622
+
623
+ ## Training Details
624
+
625
+ ### Training Dataset
626
+
627
+ #### json
628
+
629
+ * Dataset: json
630
+ * Size: 2,884 training samples
631
+ * Columns: <code>positive</code> and <code>anchor</code>
632
+ * Approximate statistics based on the first 1000 samples:
633
+ | | positive | anchor |
634
+ |:--------|:-----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|
635
+ | type | string | string |
636
+ | details | <ul><li>min: 3 tokens</li><li>mean: 36.18 tokens</li><li>max: 194 tokens</li></ul> | <ul><li>min: 9 tokens</li><li>mean: 19.77 tokens</li><li>max: 60 tokens</li></ul> |
637
+ * Samples:
638
+ | positive | anchor |
639
+ |:--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:---------------------------------------------------------------------------------------------------------|
640
+ | <code>I assessorem per l'optimització dels contractes de subministraments energètics.</code> | <code>Quin és el resultat esperat del servei de millora dels contractes de serveis de llum i gas?</code> |
641
+ | <code>Retorna en format JSON adequat</code> | <code>Quin és el format de sortida del qüestionari de projectes específics?</code> |
642
+ | <code>Aula Mentor és un programa d'ajuda a l'alumne que té com a objectiu principal donar suport als estudiants en la seva formació i desenvolupament personal i professional.</code> | <code>Quin és el format del programa Aula Mentor?</code> |
643
+ * Loss: [<code>MatryoshkaLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#matryoshkaloss) with these parameters:
644
+ ```json
645
+ {
646
+ "loss": "MultipleNegativesRankingLoss",
647
+ "matryoshka_dims": [
648
+ 1024,
649
+ 768,
650
+ 512,
651
+ 256,
652
+ 128,
653
+ 64
654
+ ],
655
+ "matryoshka_weights": [
656
+ 1,
657
+ 1,
658
+ 1,
659
+ 1,
660
+ 1,
661
+ 1
662
+ ],
663
+ "n_dims_per_step": -1
664
+ }
665
+ ```
666
+
667
+ ### Training Hyperparameters
668
+ #### Non-Default Hyperparameters
669
+
670
+ - `eval_strategy`: epoch
671
+ - `per_device_train_batch_size`: 16
672
+ - `per_device_eval_batch_size`: 16
673
+ - `gradient_accumulation_steps`: 16
674
+ - `learning_rate`: 2e-05
675
+ - `num_train_epochs`: 5
676
+ - `lr_scheduler_type`: cosine
677
+ - `warmup_ratio`: 0.2
678
+ - `bf16`: True
679
+ - `tf32`: True
680
+ - `load_best_model_at_end`: True
681
+ - `optim`: adamw_torch_fused
682
+ - `batch_sampler`: no_duplicates
683
+
684
+ #### All Hyperparameters
685
+ <details><summary>Click to expand</summary>
686
+
687
+ - `overwrite_output_dir`: False
688
+ - `do_predict`: False
689
+ - `eval_strategy`: epoch
690
+ - `prediction_loss_only`: True
691
+ - `per_device_train_batch_size`: 16
692
+ - `per_device_eval_batch_size`: 16
693
+ - `per_gpu_train_batch_size`: None
694
+ - `per_gpu_eval_batch_size`: None
695
+ - `gradient_accumulation_steps`: 16
696
+ - `eval_accumulation_steps`: None
697
+ - `torch_empty_cache_steps`: None
698
+ - `learning_rate`: 2e-05
699
+ - `weight_decay`: 0.0
700
+ - `adam_beta1`: 0.9
701
+ - `adam_beta2`: 0.999
702
+ - `adam_epsilon`: 1e-08
703
+ - `max_grad_norm`: 1.0
704
+ - `num_train_epochs`: 5
705
+ - `max_steps`: -1
706
+ - `lr_scheduler_type`: cosine
707
+ - `lr_scheduler_kwargs`: {}
708
+ - `warmup_ratio`: 0.2
709
+ - `warmup_steps`: 0
710
+ - `log_level`: passive
711
+ - `log_level_replica`: warning
712
+ - `log_on_each_node`: True
713
+ - `logging_nan_inf_filter`: True
714
+ - `save_safetensors`: True
715
+ - `save_on_each_node`: False
716
+ - `save_only_model`: False
717
+ - `restore_callback_states_from_checkpoint`: False
718
+ - `no_cuda`: False
719
+ - `use_cpu`: False
720
+ - `use_mps_device`: False
721
+ - `seed`: 42
722
+ - `data_seed`: None
723
+ - `jit_mode_eval`: False
724
+ - `use_ipex`: False
725
+ - `bf16`: True
726
+ - `fp16`: False
727
+ - `fp16_opt_level`: O1
728
+ - `half_precision_backend`: auto
729
+ - `bf16_full_eval`: False
730
+ - `fp16_full_eval`: False
731
+ - `tf32`: True
732
+ - `local_rank`: 0
733
+ - `ddp_backend`: None
734
+ - `tpu_num_cores`: None
735
+ - `tpu_metrics_debug`: False
736
+ - `debug`: []
737
+ - `dataloader_drop_last`: False
738
+ - `dataloader_num_workers`: 0
739
+ - `dataloader_prefetch_factor`: None
740
+ - `past_index`: -1
741
+ - `disable_tqdm`: False
742
+ - `remove_unused_columns`: True
743
+ - `label_names`: None
744
+ - `load_best_model_at_end`: True
745
+ - `ignore_data_skip`: False
746
+ - `fsdp`: []
747
+ - `fsdp_min_num_params`: 0
748
+ - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
749
+ - `fsdp_transformer_layer_cls_to_wrap`: None
750
+ - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
751
+ - `deepspeed`: None
752
+ - `label_smoothing_factor`: 0.0
753
+ - `optim`: adamw_torch_fused
754
+ - `optim_args`: None
755
+ - `adafactor`: False
756
+ - `group_by_length`: False
757
+ - `length_column_name`: length
758
+ - `ddp_find_unused_parameters`: None
759
+ - `ddp_bucket_cap_mb`: None
760
+ - `ddp_broadcast_buffers`: False
761
+ - `dataloader_pin_memory`: True
762
+ - `dataloader_persistent_workers`: False
763
+ - `skip_memory_metrics`: True
764
+ - `use_legacy_prediction_loop`: False
765
+ - `push_to_hub`: False
766
+ - `resume_from_checkpoint`: None
767
+ - `hub_model_id`: None
768
+ - `hub_strategy`: every_save
769
+ - `hub_private_repo`: False
770
+ - `hub_always_push`: False
771
+ - `gradient_checkpointing`: False
772
+ - `gradient_checkpointing_kwargs`: None
773
+ - `include_inputs_for_metrics`: False
774
+ - `eval_do_concat_batches`: True
775
+ - `fp16_backend`: auto
776
+ - `push_to_hub_model_id`: None
777
+ - `push_to_hub_organization`: None
778
+ - `mp_parameters`:
779
+ - `auto_find_batch_size`: False
780
+ - `full_determinism`: False
781
+ - `torchdynamo`: None
782
+ - `ray_scope`: last
783
+ - `ddp_timeout`: 1800
784
+ - `torch_compile`: False
785
+ - `torch_compile_backend`: None
786
+ - `torch_compile_mode`: None
787
+ - `dispatch_batches`: None
788
+ - `split_batches`: None
789
+ - `include_tokens_per_second`: False
790
+ - `include_num_input_tokens_seen`: False
791
+ - `neftune_noise_alpha`: None
792
+ - `optim_target_modules`: None
793
+ - `batch_eval_metrics`: False
794
+ - `eval_on_start`: False
795
+ - `eval_use_gather_object`: False
796
+ - `batch_sampler`: no_duplicates
797
+ - `multi_dataset_batch_sampler`: proportional
798
+
799
+ </details>
800
+
801
+ ### Training Logs
802
+ | Epoch | Step | Training Loss | dim_1024_cosine_map@100 | dim_768_cosine_map@100 | dim_512_cosine_map@100 | dim_256_cosine_map@100 | dim_128_cosine_map@100 | dim_64_cosine_map@100 |
803
+ |:----------:|:------:|:-------------:|:-----------------------:|:----------------------:|:----------------------:|:----------------------:|:----------------------:|:---------------------:|
804
+ | 0.8840 | 10 | 2.6418 | - | - | - | - | - | - |
805
+ | 0.9724 | 11 | - | 0.4986 | 0.5108 | 0.5014 | 0.4934 | 0.4779 | 0.4351 |
806
+ | 1.7680 | 20 | 1.1708 | - | - | - | - | - | - |
807
+ | 1.9448 | 22 | - | 0.5197 | 0.5248 | 0.5195 | 0.5290 | 0.5052 | 0.4904 |
808
+ | 2.6519 | 30 | 0.5531 | - | - | - | - | - | - |
809
+ | 2.9171 | 33 | - | 0.5304 | 0.5274 | 0.5196 | 0.5279 | 0.5234 | 0.4947 |
810
+ | 3.5359 | 40 | 0.2859 | - | - | - | - | - | - |
811
+ | 3.9779 | 45 | - | 0.5256 | 0.5292 | 0.5206 | 0.5313 | 0.5174 | 0.5046 |
812
+ | 4.4199 | 50 | 0.2144 | - | - | - | - | - | - |
813
+ | **4.8619** | **55** | **-** | **0.5338** | **0.5274** | **0.5262** | **0.5339** | **0.5259** | **0.5068** |
814
+
815
+ * The bold row denotes the saved checkpoint.
816
+
817
+ ### Framework Versions
818
+ - Python: 3.10.12
819
+ - Sentence Transformers: 3.2.0
820
+ - Transformers: 4.44.2
821
+ - PyTorch: 2.4.1+cu121
822
+ - Accelerate: 1.1.0.dev0
823
+ - Datasets: 3.0.1
824
+ - Tokenizers: 0.19.1
825
+
826
+ ## Citation
827
+
828
+ ### BibTeX
829
+
830
+ #### Sentence Transformers
831
+ ```bibtex
832
+ @inproceedings{reimers-2019-sentence-bert,
833
+ title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
834
+ author = "Reimers, Nils and Gurevych, Iryna",
835
+ booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
836
+ month = "11",
837
+ year = "2019",
838
+ publisher = "Association for Computational Linguistics",
839
+ url = "https://arxiv.org/abs/1908.10084",
840
+ }
841
+ ```
842
+
843
+ #### MatryoshkaLoss
844
+ ```bibtex
845
+ @misc{kusupati2024matryoshka,
846
+ title={Matryoshka Representation Learning},
847
+ author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
848
+ year={2024},
849
+ eprint={2205.13147},
850
+ archivePrefix={arXiv},
851
+ primaryClass={cs.LG}
852
+ }
853
+ ```
854
+
855
+ #### MultipleNegativesRankingLoss
856
+ ```bibtex
857
+ @misc{henderson2017efficient,
858
+ title={Efficient Natural Language Response Suggestion for Smart Reply},
859
+ author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
860
+ year={2017},
861
+ eprint={1705.00652},
862
+ archivePrefix={arXiv},
863
+ primaryClass={cs.CL}
864
+ }
865
+ ```
866
+
867
+ <!--
868
+ ## Glossary
869
+
870
+ *Clearly define terms in order to be accessible across audiences.*
871
+ -->
872
+
873
+ <!--
874
+ ## Model Card Authors
875
+
876
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
877
+ -->
878
+
879
+ <!--
880
+ ## Model Card Contact
881
+
882
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
883
+ -->
config.json ADDED
@@ -0,0 +1,28 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "BAAI/bge-m3",
3
+ "architectures": [
4
+ "XLMRobertaModel"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "bos_token_id": 0,
8
+ "classifier_dropout": null,
9
+ "eos_token_id": 2,
10
+ "hidden_act": "gelu",
11
+ "hidden_dropout_prob": 0.1,
12
+ "hidden_size": 1024,
13
+ "initializer_range": 0.02,
14
+ "intermediate_size": 4096,
15
+ "layer_norm_eps": 1e-05,
16
+ "max_position_embeddings": 8194,
17
+ "model_type": "xlm-roberta",
18
+ "num_attention_heads": 16,
19
+ "num_hidden_layers": 24,
20
+ "output_past": true,
21
+ "pad_token_id": 1,
22
+ "position_embedding_type": "absolute",
23
+ "torch_dtype": "float32",
24
+ "transformers_version": "4.44.2",
25
+ "type_vocab_size": 1,
26
+ "use_cache": true,
27
+ "vocab_size": 250002
28
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "3.2.0",
4
+ "transformers": "4.44.2",
5
+ "pytorch": "2.4.1+cu121"
6
+ },
7
+ "prompts": {},
8
+ "default_prompt_name": null,
9
+ "similarity_fn_name": null
10
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0dc989b9c431247b144961a0d866e4c48eb8789eba6fbed12b474c49f50fe0e9
3
+ size 2271064456
modules.json ADDED
@@ -0,0 +1,20 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ },
14
+ {
15
+ "idx": 2,
16
+ "name": "2",
17
+ "path": "2_Normalize",
18
+ "type": "sentence_transformers.models.Normalize"
19
+ }
20
+ ]
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 8192,
3
+ "do_lower_case": false
4
+ }
sentencepiece.bpe.model ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:cfc8146abe2a0488e9e2a0c56de7952f7c11ab059eca145a0a727afce0db2865
3
+ size 5069051
special_tokens_map.json ADDED
@@ -0,0 +1,51 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "<s>",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "cls_token": {
10
+ "content": "<s>",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "eos_token": {
17
+ "content": "</s>",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "mask_token": {
24
+ "content": "<mask>",
25
+ "lstrip": true,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "pad_token": {
31
+ "content": "<pad>",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ },
37
+ "sep_token": {
38
+ "content": "</s>",
39
+ "lstrip": false,
40
+ "normalized": false,
41
+ "rstrip": false,
42
+ "single_word": false
43
+ },
44
+ "unk_token": {
45
+ "content": "<unk>",
46
+ "lstrip": false,
47
+ "normalized": false,
48
+ "rstrip": false,
49
+ "single_word": false
50
+ }
51
+ }
tokenizer.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e4f7e21bec3fb0044ca0bb2d50eb5d4d8c596273c422baef84466d2c73748b9c
3
+ size 17083053
tokenizer_config.json ADDED
@@ -0,0 +1,55 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "<s>",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "1": {
12
+ "content": "<pad>",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "2": {
20
+ "content": "</s>",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "3": {
28
+ "content": "<unk>",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "250001": {
36
+ "content": "<mask>",
37
+ "lstrip": true,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "bos_token": "<s>",
45
+ "clean_up_tokenization_spaces": true,
46
+ "cls_token": "<s>",
47
+ "eos_token": "</s>",
48
+ "mask_token": "<mask>",
49
+ "model_max_length": 8192,
50
+ "pad_token": "<pad>",
51
+ "sep_token": "</s>",
52
+ "sp_model_kwargs": {},
53
+ "tokenizer_class": "XLMRobertaTokenizer",
54
+ "unk_token": "<unk>"
55
+ }