File size: 6,910 Bytes
b722e44 7f2b522 b722e44 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 |
---
license: apache-2.0
base_model: projecte-aina/roberta-base-ca-v2-cased-te
tags:
- generated_from_trainer
metrics:
- accuracy
- precision
- recall
- f1
model-index:
- name: 2504v1
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# 2504v1
This model is a fine-tuned version of [projecte-aina/roberta-base-ca-v2-cased-te](https://huggingface.co/projecte-aina/roberta-base-ca-v2-cased-te) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.5947
- Accuracy: 0.8655
- Precision: 0.8655
- Recall: 0.8655
- F1: 0.8655
- Ratio: 0.5
## Model description
Punto, change label 6
-------TRAIN-------
Proporción de etiquetas en el conjunto de datos:
Aigua: 36 muestras (5.88%)
Consum, comerç i mercats: 36 muestras (5.88%)
Cultura: 36 muestras (5.88%)
Economia: 36 muestras (5.88%)
Educació: 36 muestras (5.88%)
Enllumenat públic: 36 muestras (5.88%)
Esports: 36 muestras (5.88%)
Habitatge: 36 muestras (5.88%)
Horta: 36 muestras (5.88%)
Medi ambient i jardins: 36 muestras (5.88%)
Neteja de la via pública: 36 muestras (5.88%)
Salut pública: 36 muestras (5.88%)
Seguretat ciutadana i incivisme: 36 muestras (5.88%)
Serveis socials: 36 muestras (5.88%)
Tràmits: 36 muestras (5.88%)
Urbanisme: 36 muestras (5.88%)
Via pública i mobilitat: 36 muestras (5.88%)
-------VAL-------
Proporción de etiquetas en el conjunto de datos:
Aigua: 7 muestras (5.88%)
Consum, comerç i mercats: 7 muestras (5.88%)
Cultura: 7 muestras (5.88%)
Economia: 7 muestras (5.88%)
Educació: 7 muestras (5.88%)
Enllumenat públic: 7 muestras (5.88%)
Esports: 7 muestras (5.88%)
Habitatge: 7 muestras (5.88%)
Horta: 7 muestras (5.88%)
Medi ambient i jardins: 7 muestras (5.88%)
Neteja de la via pública: 7 muestras (5.88%)
Salut pública: 7 muestras (5.88%)
Seguretat ciutadana i incivisme: 7 muestras (5.88%)
Serveis socials: 7 muestras (5.88%)
Tràmits: 7 muestras (5.88%)
Urbanisme: 7 muestras (5.88%)
Via pública i mobilitat: 7 muestras (5.88%)
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.06
- lr_scheduler_warmup_steps: 4
- num_epochs: 10
- label_smoothing_factor: 0.1
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 | Ratio |
|:-------------:|:------:|:----:|:---------------:|:--------:|:---------:|:------:|:------:|:------:|
| 3.6209 | 0.2597 | 10 | 1.6277 | 0.5462 | 0.5476 | 0.5462 | 0.5430 | 0.4160 |
| 1.4156 | 0.5195 | 20 | 1.0896 | 0.5588 | 0.5620 | 0.5588 | 0.5531 | 0.6134 |
| 1.0016 | 0.7792 | 30 | 0.9251 | 0.5504 | 0.6083 | 0.5504 | 0.4811 | 0.8655 |
| 0.9148 | 1.0390 | 40 | 0.8180 | 0.6765 | 0.6912 | 0.6765 | 0.6701 | 0.3613 |
| 0.7958 | 1.2987 | 50 | 0.7074 | 0.7983 | 0.8038 | 0.7983 | 0.7974 | 0.5672 |
| 0.7218 | 1.5584 | 60 | 0.6919 | 0.8025 | 0.8216 | 0.8025 | 0.7995 | 0.6218 |
| 0.7019 | 1.8182 | 70 | 0.6693 | 0.8277 | 0.8383 | 0.8277 | 0.8264 | 0.4118 |
| 0.6805 | 2.0779 | 80 | 0.6229 | 0.8193 | 0.8232 | 0.8193 | 0.8188 | 0.5546 |
| 0.6206 | 2.3377 | 90 | 0.5833 | 0.8655 | 0.8665 | 0.8655 | 0.8655 | 0.4748 |
| 0.5979 | 2.5974 | 100 | 0.5642 | 0.8613 | 0.8614 | 0.8613 | 0.8613 | 0.5042 |
| 0.6115 | 2.8571 | 110 | 0.5634 | 0.8613 | 0.8614 | 0.8613 | 0.8613 | 0.5042 |
| 0.6016 | 3.1169 | 120 | 0.5447 | 0.8655 | 0.8665 | 0.8655 | 0.8655 | 0.5252 |
| 0.5514 | 3.3766 | 130 | 0.5601 | 0.8571 | 0.8588 | 0.8571 | 0.8570 | 0.5336 |
| 0.4678 | 3.6364 | 140 | 0.5717 | 0.8445 | 0.8475 | 0.8445 | 0.8442 | 0.5462 |
| 0.4962 | 3.8961 | 150 | 0.5684 | 0.8571 | 0.8575 | 0.8571 | 0.8571 | 0.5168 |
| 0.5214 | 4.1558 | 160 | 0.5573 | 0.8529 | 0.8536 | 0.8529 | 0.8529 | 0.5210 |
| 0.4962 | 4.4156 | 170 | 0.5686 | 0.8445 | 0.8475 | 0.8445 | 0.8442 | 0.5462 |
| 0.5032 | 4.6753 | 180 | 0.5525 | 0.8613 | 0.8616 | 0.8613 | 0.8613 | 0.4874 |
| 0.4593 | 4.9351 | 190 | 0.5747 | 0.8571 | 0.8581 | 0.8571 | 0.8571 | 0.5252 |
| 0.4335 | 5.1948 | 200 | 0.5919 | 0.8487 | 0.8488 | 0.8487 | 0.8487 | 0.5084 |
| 0.5023 | 5.4545 | 210 | 0.5854 | 0.8613 | 0.8626 | 0.8613 | 0.8612 | 0.4706 |
| 0.4399 | 5.7143 | 220 | 0.5728 | 0.8697 | 0.8719 | 0.8697 | 0.8696 | 0.5378 |
| 0.4182 | 5.9740 | 230 | 0.5737 | 0.8655 | 0.8665 | 0.8655 | 0.8655 | 0.5252 |
| 0.4337 | 6.2338 | 240 | 0.6013 | 0.8529 | 0.8536 | 0.8529 | 0.8529 | 0.5210 |
| 0.4046 | 6.4935 | 250 | 0.6200 | 0.8571 | 0.8575 | 0.8571 | 0.8571 | 0.5168 |
| 0.4304 | 6.7532 | 260 | 0.6106 | 0.8697 | 0.8698 | 0.8697 | 0.8697 | 0.5042 |
| 0.45 | 7.0130 | 270 | 0.6154 | 0.8655 | 0.8681 | 0.8655 | 0.8653 | 0.4580 |
| 0.3687 | 7.2727 | 280 | 0.6109 | 0.8655 | 0.8655 | 0.8655 | 0.8655 | 0.5 |
| 0.4102 | 7.5325 | 290 | 0.6118 | 0.8529 | 0.8536 | 0.8529 | 0.8529 | 0.5210 |
| 0.4197 | 7.7922 | 300 | 0.5969 | 0.8655 | 0.8656 | 0.8655 | 0.8655 | 0.4916 |
| 0.4874 | 8.0519 | 310 | 0.5794 | 0.8655 | 0.8656 | 0.8655 | 0.8655 | 0.4916 |
| 0.3694 | 8.3117 | 320 | 0.5777 | 0.8697 | 0.8704 | 0.8697 | 0.8697 | 0.5210 |
| 0.4029 | 8.5714 | 330 | 0.5828 | 0.8697 | 0.8700 | 0.8697 | 0.8697 | 0.5126 |
| 0.3946 | 8.8312 | 340 | 0.5860 | 0.8697 | 0.8698 | 0.8697 | 0.8697 | 0.5042 |
| 0.3991 | 9.0909 | 350 | 0.5864 | 0.8655 | 0.8655 | 0.8655 | 0.8655 | 0.5 |
| 0.3707 | 9.3506 | 360 | 0.5918 | 0.8697 | 0.8698 | 0.8697 | 0.8697 | 0.5042 |
| 0.3821 | 9.6104 | 370 | 0.5943 | 0.8655 | 0.8655 | 0.8655 | 0.8655 | 0.5 |
| 0.4135 | 9.8701 | 380 | 0.5947 | 0.8655 | 0.8655 | 0.8655 | 0.8655 | 0.5 |
### Framework versions
- Transformers 4.40.0
- Pytorch 2.2.1+cu121
- Datasets 2.19.0
- Tokenizers 0.19.1
|