File size: 2,504 Bytes
7181833
 
 
 
 
 
 
 
 
 
 
822de09
7181833
 
 
 
 
 
822de09
7181833
 
 
822de09
fef4809
822de09
fef4809
822de09
 
7181833
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
822de09
 
 
 
 
 
 
 
7181833
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
---
license: apache-2.0
base_model: projecte-aina/roberta-base-ca-v2-cased-te
tags:
- generated_from_trainer
metrics:
- accuracy
- precision
- recall
- f1
model-index:
- name: 080524_epoch_3
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# 080524_epoch_3

This model is a fine-tuned version of [projecte-aina/roberta-base-ca-v2-cased-te](https://huggingface.co/projecte-aina/roberta-base-ca-v2-cased-te) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.7190
- Accuracy: 0.8151
- Precision: 0.8431
- Recall: 0.8151
- F1: 0.8113
- Ratio: 0.6429

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 10
- eval_batch_size: 2
- seed: 47
- gradient_accumulation_steps: 2
- total_train_batch_size: 20
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.06
- lr_scheduler_warmup_steps: 4
- num_epochs: 1
- label_smoothing_factor: 0.1

### Training results

| Training Loss | Epoch  | Step | Validation Loss | Accuracy | Precision | Recall | F1     | Ratio  |
|:-------------:|:------:|:----:|:---------------:|:--------:|:---------:|:------:|:------:|:------:|
| 0.4532        | 0.1176 | 10   | 0.6742          | 0.8193   | 0.8367    | 0.8193 | 0.8170 | 0.6134 |
| 0.4299        | 0.2353 | 20   | 0.8276          | 0.7731   | 0.8079    | 0.7731 | 0.7665 | 0.6681 |
| 0.4963        | 0.3529 | 30   | 0.7032          | 0.8235   | 0.8425    | 0.8235 | 0.8211 | 0.6176 |
| 0.3726        | 0.4706 | 40   | 0.7220          | 0.8193   | 0.8395    | 0.8193 | 0.8166 | 0.6218 |
| 0.3917        | 0.5882 | 50   | 0.8389          | 0.7941   | 0.8295    | 0.7941 | 0.7884 | 0.6639 |
| 0.4565        | 0.7059 | 60   | 0.7085          | 0.8277   | 0.8429    | 0.8277 | 0.8258 | 0.6050 |
| 0.4748        | 0.8235 | 70   | 0.6934          | 0.8109   | 0.8278    | 0.8109 | 0.8085 | 0.6134 |
| 0.4813        | 0.9412 | 80   | 0.7157          | 0.8193   | 0.8426    | 0.8193 | 0.8162 | 0.6303 |


### Framework versions

- Transformers 4.40.2
- Pytorch 2.2.1+cu121
- Datasets 2.19.1
- Tokenizers 0.19.1