File size: 5,606 Bytes
a2a9bf4 0c73668 dbd39df 0c73668 a2a9bf4 627c179 a2a9bf4 868e3b5 bf17a5b 868e3b5 7af98dc 50761e6 868e3b5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 |
# Spirit LM Inference Gradio Demo
Copy the github repo, build the spiritlm python package and put models in `checkpoints` folder before running the script. I would suggest to use conda environment for this.
You need around 15.5GB of VRAM to run the model with short output length and around 19GB to output 800 tokens.
Edit: Audio to audio inference doesn't seem great. Potentially I am tokenizing the audio wrong. Could be also that model doesn't work well with audio IN audio OUT.
```python
import gradio as gr
from spiritlm.model.spiritlm_model import Spiritlm, OutputModality, GenerationInput, ContentType
from transformers import GenerationConfig
import torchaudio
import torch
import tempfile
import os
import numpy as np
# Initialize the Spirit LM model
spirit_lm = Spiritlm("spirit-lm-base-7b")
def generate_output(input_type, input_content_text, input_content_audio, output_modality, temperature, top_p, max_new_tokens, do_sample):
generation_config = GenerationConfig(
temperature=temperature,
top_p=top_p,
max_new_tokens=max_new_tokens,
do_sample=do_sample,
)
if input_type == "text":
interleaved_inputs = [GenerationInput(content=input_content_text, content_type=ContentType.TEXT)]
elif input_type == "audio":
# Load audio file
waveform, sample_rate = torchaudio.load(input_content_audio)
interleaved_inputs = [GenerationInput(content=waveform.squeeze(0), content_type=ContentType.SPEECH)]
else:
raise ValueError("Invalid input type")
outputs = spirit_lm.generate(
interleaved_inputs=interleaved_inputs,
output_modality=OutputModality[output_modality.upper()],
generation_config=generation_config,
)
text_output = ""
audio_output = None
for output in outputs:
if output.content_type == ContentType.TEXT:
text_output = output.content
elif output.content_type == ContentType.SPEECH:
# Ensure output.content is a NumPy array
if isinstance(output.content, np.ndarray):
# Debugging: Print shape and dtype of the audio data
print("Audio data shape:", output.content.shape)
print("Audio data dtype:", output.content.dtype)
# Ensure the audio data is in the correct format
if len(output.content.shape) == 1:
# Mono audio data
audio_data = torch.from_numpy(output.content).unsqueeze(0)
else:
# Stereo audio data
audio_data = torch.from_numpy(output.content)
# Save the audio content to a temporary file
with tempfile.NamedTemporaryFile(delete=False, suffix=".wav") as temp_audio_file:
torchaudio.save(temp_audio_file.name, audio_data, 16000)
audio_output = temp_audio_file.name
else:
raise TypeError("Expected output.content to be a NumPy array, but got {}".format(type(output.content)))
return text_output, audio_output
# Define the Gradio interface
iface = gr.Interface(
fn=generate_output,
inputs=[
gr.Radio(["text", "audio"], label="Input Type"),
gr.Textbox(label="Input Content (Text)"),
gr.Audio(label="Input Content (Audio)", type="filepath"),
gr.Radio(["TEXT", "SPEECH", "ARBITRARY"], label="Output Modality"),
gr.Slider(0, 1, step=0.1, value=0.9, label="Temperature"),
gr.Slider(0, 1, step=0.05, value=0.95, label="Top P"),
gr.Slider(1, 800, step=1, value=500, label="Max New Tokens"),
gr.Checkbox(value=True, label="Do Sample"),
],
outputs=[gr.Textbox(label="Generated Text"), gr.Audio(label="Generated Audio")],
title="Spirit LM WebUI Demo",
description="Demo for generating text or audio using the Spirit LM model.",
)
# Launch the interface
iface.launch()
```
# Spirit LM Checkpoints
## Download Checkpoints
Checkpoints are in this repo
Please note that Spirit LM is made available under the **FAIR Noncommercial Research License**
License is here: https://github.com/facebookresearch/spiritlm/blob/main/LICENSE
## Structure
The checkpoints directory should look like this:
```
checkpoints/
βββ README.md
βββ speech_tokenizer
βΒ Β βββ hifigan_spiritlm_base
βΒ Β βΒ Β βββ config.json
βΒ Β βΒ Β βββ generator.pt
βΒ Β βΒ Β βββ speakers.txt
βΒ Β βΒ Β βββ styles.txt
βΒ Β βββ hifigan_spiritlm_expressive_w2v2
βΒ Β βΒ Β βββ config.json
βΒ Β βΒ Β βββ generator.pt
βΒ Β βΒ Β βββ speakers.txt
βΒ Β βββ hubert_25hz
βΒ Β βΒ Β βββ L11_quantizer_500.pt
βΒ Β βΒ Β βββ mhubert_base_25hz.pt
βΒ Β βββ style_encoder_w2v2
βΒ Β βΒ Β βββ config.json
βΒ Β βΒ Β βββ pytorch_model.bin
βΒ Β βββ vqvae_f0_quantizer
βΒ Β βββ config.yaml
βΒ Β βββ model.pt
βββ spiritlm_model
βββ spirit-lm-base-7b
βΒ Β βββ config.json
βΒ Β βββ generation_config.json
βΒ Β βββ pytorch_model.bin
βΒ Β βββ special_tokens_map.json
βΒ Β βββ tokenizer_config.json
βΒ Β βββ tokenizer.model
βββ spirit-lm-expressive-7b
βββ config.json
βββ generation_config.json
βββ pytorch_model.bin
βββ special_tokens_map.json
βββ tokenizer_config.json
βββ tokenizer.model
```
|