first model from the RL class
Browse files- README.md +37 -0
- config.json +1 -0
- firstPPOagent.zip +3 -0
- firstPPOagent/_stable_baselines3_version +1 -0
- firstPPOagent/data +94 -0
- firstPPOagent/policy.optimizer.pth +3 -0
- firstPPOagent/policy.pth +3 -0
- firstPPOagent/pytorch_variables.pth +3 -0
- firstPPOagent/system_info.txt +7 -0
- replay.mp4 +0 -0
- results.json +1 -0
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- LunarLander-v2
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: PPO
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: LunarLander-v2
|
16 |
+
type: LunarLander-v2
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: 229.17 +/- 21.29
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **PPO** Agent playing **LunarLander-v2**
|
25 |
+
This is a trained model of a **PPO** agent playing **LunarLander-v2**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7ff424519ca0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7ff424519d30>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7ff424519dc0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7ff424519e50>", "_build": "<function ActorCriticPolicy._build at 0x7ff424519ee0>", "forward": "<function ActorCriticPolicy.forward at 0x7ff424519f70>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7ff42451c040>", "_predict": "<function ActorCriticPolicy._predict at 0x7ff42451c0d0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7ff42451c160>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7ff42451c1f0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7ff42451c280>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7ff42451a800>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 507904, "_total_timesteps": 500000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1667849359339245539, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWV+QIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMYy9ob21lL3NpbW9uL0RvY3VtZW50cy9TYW5kYm94L0RSTC9EUkwvbGliL3B5dGhvbjMuOS9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMYy9ob21lL3NpbW9uL0RvY3VtZW50cy9TYW5kYm94L0RSTC9EUkwvbGliL3B5dGhvbjMuOS9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAIBQlb2P3k+61Up1vDHvgLl8Ev25Pg7oOAAAgD8AAIA/TUPUPUtzpz47CwC+KaovvhcoeL1uzve8AAAAAAAAAADmvki9UmC5ucaO0Dosvj025Yw0utIy87kAAIA/AACAPyZtuL1cu2u6NnysO6QkrDeOoNu6o6PxNQAAgD8AAIA/ZjXAvFLQxLlic4s5nmeHNHIHc7oJhKG4AACAPwAAgD8Ai5w97GHxubovYzueAw83nkrxOqbKZLoAAIA/AACAP83AGb1I/4q6UhkWurPu6rRrGCQ6lmosOQAAgD8AAIA/AK5pveE4jrruuho9YCwouUE/lzpaDh64AACAPwAAgD+TZy4+doE1vFhFXzsnH7A487aivbLacboAAIA/AACAP5r/pL2FK925u/iTubdazbSLDKc7sFCvOAAAgD8AAIA/ZgSzPIUrhrk01hG8ZuPHNSRogTt1oT+1AACAPwAAgD8AQhu8w8lTunA87Tt645g3WpRUuhtVfzYAAIA/AACAPyZNRL7nQpk+jocEPpO+sr62cP48V/iVPAAAAAAAAAAAzTsDPR/9/7kj/Hc7ZgJStLfX2zkOrJC6AACAPwAAgD+AIh0+Unamu3qFxrl6HC42Mbj2vLbM6jgAAIA/AACAP7MbGL0frZ65NQ9rNvHO57EkerS6co6OtQAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVdxAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI7dPxmIGiPkCUhpRSlIwBbJRL6YwBdJRHQMMEwGQbMot1fZQoaAZoCWgPQwjIef8fJ89XQJSGlFKUaBVN6ANoFkdAwweMseXAunV9lChoBmgJaA9DCOJ2aFiMcmJAlIaUUpRoFU3oA2gWR0DDCFhWLgn/dX2UKGgGaAloD0MIP26/fLIiWkCUhpRSlGgVTegDaBZHQMMIXSrxRVJ1fZQoaAZoCWgPQwiUiPAvgqJdQJSGlFKUaBVN6ANoFkdAwwhygkC3gHV9lChoBmgJaA9DCN6wbVHmfWBAlIaUUpRoFU3oA2gWR0DDCXqR0U48dX2UKGgGaAloD0MIBTI7i95rYkCUhpRSlGgVTegDaBZHQMMK3tN8E3d1fZQoaAZoCWgPQwiqC3iZYYFiQJSGlFKUaBVN6ANoFkdAwwuz5ckdFXV9lChoBmgJaA9DCMXiN4WVjF1AlIaUUpRoFU3oA2gWR0DDENgN0/4ZdX2UKGgGaAloD0MIjV94Jcm1YkCUhpRSlGgVTegDaBZHQMMR9fEGZ/l1fZQoaAZoCWgPQwiNfcnGg6tbQJSGlFKUaBVN6ANoFkdAwxK6mXw9aHV9lChoBmgJaA9DCK2/JQD/TVtAlIaUUpRoFU3oA2gWR0DDE1brTpgUdX2UKGgGaAloD0MInPurx/3FY0CUhpRSlGgVTegDaBZHQMMUbHaFmFt1fZQoaAZoCWgPQwgCS65i8U86QJSGlFKUaBVL2mgWR0DDFQi0lZ5idX2UKGgGaAloD0MIZvZ5jPLgN0CUhpRSlGgVTSkBaBZHQMMVDHRLK3d1fZQoaAZoCWgPQwgcsRafAtlhQJSGlFKUaBVN6ANoFkdAwxUktwJgLXV9lChoBmgJaA9DCKp8z0iEhmFAlIaUUpRoFU3oA2gWR0DDFYS/EfkndX2UKGgGaAloD0MIildZ2xT/McCUhpRSlGgVTScBaBZHQMMWrRuTA311fZQoaAZoCWgPQwikVMITemVeQJSGlFKUaBVN6ANoFkdAwxcTkgfU4XV9lChoBmgJaA9DCAqeQq7UTmJAlIaUUpRoFU3oA2gWR0DDF5fBpHqedX2UKGgGaAloD0MIumjIeJQ1YUCUhpRSlGgVTegDaBZHQMMaIHbypaR1fZQoaAZoCWgPQwi0dtuF5vFaQJSGlFKUaBVN6ANoFkdAwxrfX6InB3V9lChoBmgJaA9DCKyL22gApmNAlIaUUpRoFU3oA2gWR0DDGuPVwxWUdX2UKGgGaAloD0MINloO9NCsYUCUhpRSlGgVTegDaBZHQMMa9pDVpbl1fZQoaAZoCWgPQwj12mysRGNhQJSGlFKUaBVN6ANoFkdAwxviDYh+v3V9lChoBmgJaA9DCJQu/UtSj2FAlIaUUpRoFU3oA2gWR0DDHTGF36hydX2UKGgGaAloD0MI8fW1LjULX0CUhpRSlGgVTegDaBZHQMMeCu/+Kj11fZQoaAZoCWgPQwhINlfNc7JAQJSGlFKUaBVNCwFoFkdAwyQm4rjHXHV9lChoBmgJaA9DCKRQFr6+OldAlIaUUpRoFU3oA2gWR0DDJgUU/OdHdX2UKGgGaAloD0MIeIAnLVwaW0CUhpRSlGgVTegDaBZHQMMnUtgSey11fZQoaAZoCWgPQwg/4les4VxbQJSGlFKUaBVN6ANoFkdAwygNagVXWHV9lChoBmgJaA9DCESHwJFA3FhAlIaUUpRoFU3oA2gWR0DDKBGXC0ngdX2UKGgGaAloD0MI5s3hWu3qYUCUhpRSlGgVTegDaBZHQMMoLJqqOtJ1fZQoaAZoCWgPQwj1EmOZfpteQJSGlFKUaBVN6ANoFkdAwyiVlCCz1XV9lChoBmgJaA9DCOS+1Tpxkl5AlIaUUpRoFU3oA2gWR0DDKdVbFCLNdX2UKGgGaAloD0MIwono19ZdYECUhpRSlGgVTegDaBZHQMMqPtmUW2x1fZQoaAZoCWgPQwi6MNKL2vNhQJSGlFKUaBVN6ANoFkdAwyrHcD8tPHV9lChoBmgJaA9DCObnhqbsxDlAlIaUUpRoFU0ZAWgWR0DDK0LdP+GXdX2UKGgGaAloD0MIqAGDpE+HYECUhpRSlGgVTegDaBZHQMMtQu8K5TZ1fZQoaAZoCWgPQwjqd2Frtr1bQJSGlFKUaBVN6ANoFkdAwy4ET+vQnnV9lChoBmgJaA9DCCbfbHNjN19AlIaUUpRoFU3oA2gWR0DDLgkGcFyJdX2UKGgGaAloD0MIIY/gRsruYUCUhpRSlGgVTegDaBZHQMMuHNXxOL11fZQoaAZoCWgPQwjg2omSEORpQJSGlFKUaBVNUwNoFkdAwy5dkDp1R3V9lChoBmgJaA9DCMLc7uU+8V1AlIaUUpRoFU3oA2gWR0DDMTqPXCj2dX2UKGgGaAloD0MIW+7MBMNbYUCUhpRSlGgVTegDaBZHQMM3SmVZ9ux1fZQoaAZoCWgPQwgmcOtuHuZmQJSGlFKUaBVNwAFoFkdAwzj1/lQuVXV9lChoBmgJaA9DCHBCIQKOYWBAlIaUUpRoFU3oA2gWR0DDOQFf9gnddX2UKGgGaAloD0MIx5+obFj0V0CUhpRSlGgVTegDaBZHQMM6vuW0JF91fZQoaAZoCWgPQwiA7zZvnJddQJSGlFKUaBVN6ANoFkdAwzrChUzbe3V9lChoBmgJaA9DCH2VfOwuZ19AlIaUUpRoFU3oA2gWR0DDOtlL39JjdX2UKGgGaAloD0MIgT6RJ0mXBcCUhpRSlGgVS/doFkdAwzrk5Xlr/XV9lChoBmgJaA9DCFjiAWVTe1xAlIaUUpRoFU3oA2gWR0DDOy/kWAPNdX2UKGgGaAloD0MIe4LEdnemYECUhpRSlGgVTegDaBZHQMM8M2znied1fZQoaAZoCWgPQwgnbD8Z471YQJSGlFKUaBVN6ANoFkdAwzyMKYzBRHV9lChoBmgJaA9DCFBQilbuyVlAlIaUUpRoFU3oA2gWR0DDPPRgE2YOdX2UKGgGaAloD0MIlNqLaDucX0CUhpRSlGgVTegDaBZHQMM9Umg8KXx1fZQoaAZoCWgPQwikHMwmQK9lQJSGlFKUaBVN6ANoFkdAwz7XT0g8sHV9lChoBmgJaA9DCExvfy4ayWBAlIaUUpRoFU3oA2gWR0DDP3SiZfD2dX2UKGgGaAloD0MIS80eaIU8ZkCUhpRSlGgVTegDaBZHQMM/eHbh3q11fZQoaAZoCWgPQwiKPh9lREZhQJSGlFKUaBVN6ANoFkdAwz/FjOs1bnV9lChoBmgJaA9DCM1WXvI/ORXAlIaUUpRoFUvBaBZHQMNCiEkjX4F1fZQoaAZoCWgPQwgu/yH99kBdQJSGlFKUaBVN6ANoFkdAw0LEFlCkXXV9lChoBmgJaA9DCIpbBTHQm0dAlIaUUpRoFUv1aBZHQMNC82u5jH51fZQoaAZoCWgPQwiaeXJNARpgQJSGlFKUaBVN6ANoFkdAw0q3vl2eQXV9lChoBmgJaA9DCASvljszsF5AlIaUUpRoFU3oA2gWR0DDSsS8BdUsdX2UKGgGaAloD0MIUrgeheuiYUCUhpRSlGgVTegDaBZHQMNMuicG1QZ1fZQoaAZoCWgPQwgfatswilxiQJSGlFKUaBVN6ANoFkdAw0y+XfqHGnV9lChoBmgJaA9DCEm6ZvLNIWFAlIaUUpRoFU3oA2gWR0DDTNh0jkdWdX2UKGgGaAloD0MIvhWJCeqbY0CUhpRSlGgVTegDaBZHQMNM5h/Zuht1fZQoaAZoCWgPQwhtH/KWKwBiQJSGlFKUaBVN6ANoFkdAw0071BdD6XV9lChoBmgJaA9DCPAYHvtZaGJAlIaUUpRoFU3oA2gWR0DDTmOXPZ7HdX2UKGgGaAloD0MIw33k1qQmYECUhpRSlGgVTegDaBZHQMNOxGseXAx1fZQoaAZoCWgPQwhk6NhBpTtjQJSGlFKUaBVN6ANoFkdAw087cTrVv3V9lChoBmgJaA9DCGR5Vz1gW1pAlIaUUpRoFU3oA2gWR0DDT6a3solVdX2UKGgGaAloD0MIAtNp3QY7R0CUhpRSlGgVS/VoFkdAw0/Azi0fHXV9lChoBmgJaA9DCHak+s4vxGNAlIaUUpRoFU3oA2gWR0DDUUbOxB3SdX2UKGgGaAloD0MIDhR4J59CWkCUhpRSlGgVTegDaBZHQMNR5rXL/0d1fZQoaAZoCWgPQwj6QV2kUEYpQJSGlFKUaBVL7mgWR0DDUo0pmVZ+dX2UKGgGaAloD0MIn+i68IO/YECUhpRSlGgVTegDaBZHQMNU0DHn2Zl1fZQoaAZoCWgPQwgNF7mnKxhnQJSGlFKUaBVN6ANoFkdAw1UFzKcNIHV9lChoBmgJaA9DCOgSDr1FomFAlIaUUpRoFU3oA2gWR0DDVTAmois5dX2UKGgGaAloD0MIueF3061KZUCUhpRSlGgVTegDaBZHQMNcsmT1TR91fZQoaAZoCWgPQwgIq7GENf1lQJSGlFKUaBVN6ANoFkdAw1y+kC3gDXV9lChoBmgJaA9DCFBxHHi1YEdAlIaUUpRoFUvqaBZHQMNdEcCYCyR1fZQoaAZoCWgPQwhi9rLtNEJgQJSGlFKUaBVN6ANoFkdAw16P8VHnU3V9lChoBmgJaA9DCAqi7gOQUWdAlIaUUpRoFU3oA2gWR0DDXq0f9xZMdX2UKGgGaAloD0MINUQV/gziYECUhpRSlGgVTegDaBZHQMNeuiV8kUt1fZQoaAZoCWgPQwgfnbry2YVhQJSGlFKUaBVN6ANoFkdAw18J8YQ8OnV9lChoBmgJaA9DCJI+raI/akdAlIaUUpRoFUvzaBZHQMNgDCRfWtl1fZQoaAZoCWgPQwgBFvn1QyheQJSGlFKUaBVN6ANoFkdAw2AoJO32EnV9lChoBmgJaA9DCJdvfVjvp2NAlIaUUpRoFU3oA2gWR0DDYIRN47iidX2UKGgGaAloD0MISRRa1v3ZXkCUhpRSlGgVTegDaBZHQMNg9w7T2Fp1fZQoaAZoCWgPQwhgHccPlcllQJSGlFKUaBVN6ANoFkdAw2F6qJ/G2nV9lChoBmgJaA9DCC/5n/zdgU1AlIaUUpRoFU0IAWgWR0DDYh6UaAFxdX2UKGgGaAloD0MIFQDjGTTcLUCUhpRSlGgVS+hoFkdAw2LA+8oQWnV9lChoBmgJaA9DCB7ec2C5s2BAlIaUUpRoFU3oA2gWR0DDYwQ5zYEodX2UKGgGaAloD0MIb51/u+y6YUCUhpRSlGgVTegDaBZHQMNjlpJGvwF1fZQoaAZoCWgPQwgYIqev56pcQJSGlFKUaBVN6ANoFkdAw2Q3yLAHmnV9lChoBmgJaA9DCB/XhorxgGNAlIaUUpRoFU3oA2gWR0DDZjbDwYtQdX2UKGgGaAloD0MIwCUA/5Q/ZECUhpRSlGgVTegDaBZHQMNmZ6jvd/J1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 124, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWV+QIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMYy9ob21lL3NpbW9uL0RvY3VtZW50cy9TYW5kYm94L0RSTC9EUkwvbGliL3B5dGhvbjMuOS9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMYy9ob21lL3NpbW9uL0RvY3VtZW50cy9TYW5kYm94L0RSTC9EUkwvbGliL3B5dGhvbjMuOS9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.15.0-52-generic-x86_64-with-glibc2.35 #58-Ubuntu SMP Thu Oct 13 08:03:55 UTC 2022", "Python": "3.9.15", "Stable-Baselines3": "1.6.2", "PyTorch": "1.13.0+cu117", "GPU Enabled": "True", "Numpy": "1.23.4", "Gym": "0.21.0"}}
|
firstPPOagent.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:816893be5700bb20db7fdea5c6bda645a30bce790b59606c775116133e91bb4e
|
3 |
+
size 147497
|
firstPPOagent/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.6.2
|
firstPPOagent/data
ADDED
@@ -0,0 +1,94 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7ff424519ca0>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7ff424519d30>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7ff424519dc0>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7ff424519e50>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7ff424519ee0>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7ff424519f70>",
|
13 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7ff42451c040>",
|
14 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7ff42451c0d0>",
|
15 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7ff42451c160>",
|
16 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7ff42451c1f0>",
|
17 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7ff42451c280>",
|
18 |
+
"__abstractmethods__": "frozenset()",
|
19 |
+
"_abc_impl": "<_abc._abc_data object at 0x7ff42451a800>"
|
20 |
+
},
|
21 |
+
"verbose": 1,
|
22 |
+
"policy_kwargs": {},
|
23 |
+
"observation_space": {
|
24 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
25 |
+
":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
|
26 |
+
"dtype": "float32",
|
27 |
+
"_shape": [
|
28 |
+
8
|
29 |
+
],
|
30 |
+
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
|
31 |
+
"high": "[inf inf inf inf inf inf inf inf]",
|
32 |
+
"bounded_below": "[False False False False False False False False]",
|
33 |
+
"bounded_above": "[False False False False False False False False]",
|
34 |
+
"_np_random": null
|
35 |
+
},
|
36 |
+
"action_space": {
|
37 |
+
":type:": "<class 'gym.spaces.discrete.Discrete'>",
|
38 |
+
":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
|
39 |
+
"n": 4,
|
40 |
+
"_shape": [],
|
41 |
+
"dtype": "int64",
|
42 |
+
"_np_random": null
|
43 |
+
},
|
44 |
+
"n_envs": 16,
|
45 |
+
"num_timesteps": 507904,
|
46 |
+
"_total_timesteps": 500000,
|
47 |
+
"_num_timesteps_at_start": 0,
|
48 |
+
"seed": null,
|
49 |
+
"action_noise": null,
|
50 |
+
"start_time": 1667849359339245539,
|
51 |
+
"learning_rate": 0.0003,
|
52 |
+
"tensorboard_log": null,
|
53 |
+
"lr_schedule": {
|
54 |
+
":type:": "<class 'function'>",
|
55 |
+
":serialized:": "gAWV+QIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMYy9ob21lL3NpbW9uL0RvY3VtZW50cy9TYW5kYm94L0RSTC9EUkwvbGliL3B5dGhvbjMuOS9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMYy9ob21lL3NpbW9uL0RvY3VtZW50cy9TYW5kYm94L0RSTC9EUkwvbGliL3B5dGhvbjMuOS9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
56 |
+
},
|
57 |
+
"_last_obs": {
|
58 |
+
":type:": "<class 'numpy.ndarray'>",
|
59 |
+
":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAIBQlb2P3k+61Up1vDHvgLl8Ev25Pg7oOAAAgD8AAIA/TUPUPUtzpz47CwC+KaovvhcoeL1uzve8AAAAAAAAAADmvki9UmC5ucaO0Dosvj025Yw0utIy87kAAIA/AACAPyZtuL1cu2u6NnysO6QkrDeOoNu6o6PxNQAAgD8AAIA/ZjXAvFLQxLlic4s5nmeHNHIHc7oJhKG4AACAPwAAgD8Ai5w97GHxubovYzueAw83nkrxOqbKZLoAAIA/AACAP83AGb1I/4q6UhkWurPu6rRrGCQ6lmosOQAAgD8AAIA/AK5pveE4jrruuho9YCwouUE/lzpaDh64AACAPwAAgD+TZy4+doE1vFhFXzsnH7A487aivbLacboAAIA/AACAP5r/pL2FK925u/iTubdazbSLDKc7sFCvOAAAgD8AAIA/ZgSzPIUrhrk01hG8ZuPHNSRogTt1oT+1AACAPwAAgD8AQhu8w8lTunA87Tt645g3WpRUuhtVfzYAAIA/AACAPyZNRL7nQpk+jocEPpO+sr62cP48V/iVPAAAAAAAAAAAzTsDPR/9/7kj/Hc7ZgJStLfX2zkOrJC6AACAPwAAgD+AIh0+Unamu3qFxrl6HC42Mbj2vLbM6jgAAIA/AACAP7MbGL0frZ65NQ9rNvHO57EkerS6co6OtQAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
|
60 |
+
},
|
61 |
+
"_last_episode_starts": {
|
62 |
+
":type:": "<class 'numpy.ndarray'>",
|
63 |
+
":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
|
64 |
+
},
|
65 |
+
"_last_original_obs": null,
|
66 |
+
"_episode_num": 0,
|
67 |
+
"use_sde": false,
|
68 |
+
"sde_sample_freq": -1,
|
69 |
+
"_current_progress_remaining": -0.015808000000000044,
|
70 |
+
"ep_info_buffer": {
|
71 |
+
":type:": "<class 'collections.deque'>",
|
72 |
+
":serialized:": "gAWVdxAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI7dPxmIGiPkCUhpRSlIwBbJRL6YwBdJRHQMMEwGQbMot1fZQoaAZoCWgPQwjIef8fJ89XQJSGlFKUaBVN6ANoFkdAwweMseXAunV9lChoBmgJaA9DCOJ2aFiMcmJAlIaUUpRoFU3oA2gWR0DDCFhWLgn/dX2UKGgGaAloD0MIP26/fLIiWkCUhpRSlGgVTegDaBZHQMMIXSrxRVJ1fZQoaAZoCWgPQwiUiPAvgqJdQJSGlFKUaBVN6ANoFkdAwwhygkC3gHV9lChoBmgJaA9DCN6wbVHmfWBAlIaUUpRoFU3oA2gWR0DDCXqR0U48dX2UKGgGaAloD0MIBTI7i95rYkCUhpRSlGgVTegDaBZHQMMK3tN8E3d1fZQoaAZoCWgPQwiqC3iZYYFiQJSGlFKUaBVN6ANoFkdAwwuz5ckdFXV9lChoBmgJaA9DCMXiN4WVjF1AlIaUUpRoFU3oA2gWR0DDENgN0/4ZdX2UKGgGaAloD0MIjV94Jcm1YkCUhpRSlGgVTegDaBZHQMMR9fEGZ/l1fZQoaAZoCWgPQwiNfcnGg6tbQJSGlFKUaBVN6ANoFkdAwxK6mXw9aHV9lChoBmgJaA9DCK2/JQD/TVtAlIaUUpRoFU3oA2gWR0DDE1brTpgUdX2UKGgGaAloD0MInPurx/3FY0CUhpRSlGgVTegDaBZHQMMUbHaFmFt1fZQoaAZoCWgPQwgCS65i8U86QJSGlFKUaBVL2mgWR0DDFQi0lZ5idX2UKGgGaAloD0MIZvZ5jPLgN0CUhpRSlGgVTSkBaBZHQMMVDHRLK3d1fZQoaAZoCWgPQwgcsRafAtlhQJSGlFKUaBVN6ANoFkdAwxUktwJgLXV9lChoBmgJaA9DCKp8z0iEhmFAlIaUUpRoFU3oA2gWR0DDFYS/EfkndX2UKGgGaAloD0MIildZ2xT/McCUhpRSlGgVTScBaBZHQMMWrRuTA311fZQoaAZoCWgPQwikVMITemVeQJSGlFKUaBVN6ANoFkdAwxcTkgfU4XV9lChoBmgJaA9DCAqeQq7UTmJAlIaUUpRoFU3oA2gWR0DDF5fBpHqedX2UKGgGaAloD0MIumjIeJQ1YUCUhpRSlGgVTegDaBZHQMMaIHbypaR1fZQoaAZoCWgPQwi0dtuF5vFaQJSGlFKUaBVN6ANoFkdAwxrfX6InB3V9lChoBmgJaA9DCKyL22gApmNAlIaUUpRoFU3oA2gWR0DDGuPVwxWUdX2UKGgGaAloD0MINloO9NCsYUCUhpRSlGgVTegDaBZHQMMa9pDVpbl1fZQoaAZoCWgPQwj12mysRGNhQJSGlFKUaBVN6ANoFkdAwxviDYh+v3V9lChoBmgJaA9DCJQu/UtSj2FAlIaUUpRoFU3oA2gWR0DDHTGF36hydX2UKGgGaAloD0MI8fW1LjULX0CUhpRSlGgVTegDaBZHQMMeCu/+Kj11fZQoaAZoCWgPQwhINlfNc7JAQJSGlFKUaBVNCwFoFkdAwyQm4rjHXHV9lChoBmgJaA9DCKRQFr6+OldAlIaUUpRoFU3oA2gWR0DDJgUU/OdHdX2UKGgGaAloD0MIeIAnLVwaW0CUhpRSlGgVTegDaBZHQMMnUtgSey11fZQoaAZoCWgPQwg/4les4VxbQJSGlFKUaBVN6ANoFkdAwygNagVXWHV9lChoBmgJaA9DCESHwJFA3FhAlIaUUpRoFU3oA2gWR0DDKBGXC0ngdX2UKGgGaAloD0MI5s3hWu3qYUCUhpRSlGgVTegDaBZHQMMoLJqqOtJ1fZQoaAZoCWgPQwj1EmOZfpteQJSGlFKUaBVN6ANoFkdAwyiVlCCz1XV9lChoBmgJaA9DCOS+1Tpxkl5AlIaUUpRoFU3oA2gWR0DDKdVbFCLNdX2UKGgGaAloD0MIwono19ZdYECUhpRSlGgVTegDaBZHQMMqPtmUW2x1fZQoaAZoCWgPQwi6MNKL2vNhQJSGlFKUaBVN6ANoFkdAwyrHcD8tPHV9lChoBmgJaA9DCObnhqbsxDlAlIaUUpRoFU0ZAWgWR0DDK0LdP+GXdX2UKGgGaAloD0MIqAGDpE+HYECUhpRSlGgVTegDaBZHQMMtQu8K5TZ1fZQoaAZoCWgPQwjqd2Frtr1bQJSGlFKUaBVN6ANoFkdAwy4ET+vQnnV9lChoBmgJaA9DCCbfbHNjN19AlIaUUpRoFU3oA2gWR0DDLgkGcFyJdX2UKGgGaAloD0MIIY/gRsruYUCUhpRSlGgVTegDaBZHQMMuHNXxOL11fZQoaAZoCWgPQwjg2omSEORpQJSGlFKUaBVNUwNoFkdAwy5dkDp1R3V9lChoBmgJaA9DCMLc7uU+8V1AlIaUUpRoFU3oA2gWR0DDMTqPXCj2dX2UKGgGaAloD0MIW+7MBMNbYUCUhpRSlGgVTegDaBZHQMM3SmVZ9ux1fZQoaAZoCWgPQwgmcOtuHuZmQJSGlFKUaBVNwAFoFkdAwzj1/lQuVXV9lChoBmgJaA9DCHBCIQKOYWBAlIaUUpRoFU3oA2gWR0DDOQFf9gnddX2UKGgGaAloD0MIx5+obFj0V0CUhpRSlGgVTegDaBZHQMM6vuW0JF91fZQoaAZoCWgPQwiA7zZvnJddQJSGlFKUaBVN6ANoFkdAwzrChUzbe3V9lChoBmgJaA9DCH2VfOwuZ19AlIaUUpRoFU3oA2gWR0DDOtlL39JjdX2UKGgGaAloD0MIgT6RJ0mXBcCUhpRSlGgVS/doFkdAwzrk5Xlr/XV9lChoBmgJaA9DCFjiAWVTe1xAlIaUUpRoFU3oA2gWR0DDOy/kWAPNdX2UKGgGaAloD0MIe4LEdnemYECUhpRSlGgVTegDaBZHQMM8M2znied1fZQoaAZoCWgPQwgnbD8Z471YQJSGlFKUaBVN6ANoFkdAwzyMKYzBRHV9lChoBmgJaA9DCFBQilbuyVlAlIaUUpRoFU3oA2gWR0DDPPRgE2YOdX2UKGgGaAloD0MIlNqLaDucX0CUhpRSlGgVTegDaBZHQMM9Umg8KXx1fZQoaAZoCWgPQwikHMwmQK9lQJSGlFKUaBVN6ANoFkdAwz7XT0g8sHV9lChoBmgJaA9DCExvfy4ayWBAlIaUUpRoFU3oA2gWR0DDP3SiZfD2dX2UKGgGaAloD0MIS80eaIU8ZkCUhpRSlGgVTegDaBZHQMM/eHbh3q11fZQoaAZoCWgPQwiKPh9lREZhQJSGlFKUaBVN6ANoFkdAwz/FjOs1bnV9lChoBmgJaA9DCM1WXvI/ORXAlIaUUpRoFUvBaBZHQMNCiEkjX4F1fZQoaAZoCWgPQwgu/yH99kBdQJSGlFKUaBVN6ANoFkdAw0LEFlCkXXV9lChoBmgJaA9DCIpbBTHQm0dAlIaUUpRoFUv1aBZHQMNC82u5jH51fZQoaAZoCWgPQwiaeXJNARpgQJSGlFKUaBVN6ANoFkdAw0q3vl2eQXV9lChoBmgJaA9DCASvljszsF5AlIaUUpRoFU3oA2gWR0DDSsS8BdUsdX2UKGgGaAloD0MIUrgeheuiYUCUhpRSlGgVTegDaBZHQMNMuicG1QZ1fZQoaAZoCWgPQwgfatswilxiQJSGlFKUaBVN6ANoFkdAw0y+XfqHGnV9lChoBmgJaA9DCEm6ZvLNIWFAlIaUUpRoFU3oA2gWR0DDTNh0jkdWdX2UKGgGaAloD0MIvhWJCeqbY0CUhpRSlGgVTegDaBZHQMNM5h/Zuht1fZQoaAZoCWgPQwhtH/KWKwBiQJSGlFKUaBVN6ANoFkdAw0071BdD6XV9lChoBmgJaA9DCPAYHvtZaGJAlIaUUpRoFU3oA2gWR0DDTmOXPZ7HdX2UKGgGaAloD0MIw33k1qQmYECUhpRSlGgVTegDaBZHQMNOxGseXAx1fZQoaAZoCWgPQwhk6NhBpTtjQJSGlFKUaBVN6ANoFkdAw087cTrVv3V9lChoBmgJaA9DCGR5Vz1gW1pAlIaUUpRoFU3oA2gWR0DDT6a3solVdX2UKGgGaAloD0MIAtNp3QY7R0CUhpRSlGgVS/VoFkdAw0/Azi0fHXV9lChoBmgJaA9DCHak+s4vxGNAlIaUUpRoFU3oA2gWR0DDUUbOxB3SdX2UKGgGaAloD0MIDhR4J59CWkCUhpRSlGgVTegDaBZHQMNR5rXL/0d1fZQoaAZoCWgPQwj6QV2kUEYpQJSGlFKUaBVL7mgWR0DDUo0pmVZ+dX2UKGgGaAloD0MIn+i68IO/YECUhpRSlGgVTegDaBZHQMNU0DHn2Zl1fZQoaAZoCWgPQwgNF7mnKxhnQJSGlFKUaBVN6ANoFkdAw1UFzKcNIHV9lChoBmgJaA9DCOgSDr1FomFAlIaUUpRoFU3oA2gWR0DDVTAmois5dX2UKGgGaAloD0MIueF3061KZUCUhpRSlGgVTegDaBZHQMNcsmT1TR91fZQoaAZoCWgPQwgIq7GENf1lQJSGlFKUaBVN6ANoFkdAw1y+kC3gDXV9lChoBmgJaA9DCFBxHHi1YEdAlIaUUpRoFUvqaBZHQMNdEcCYCyR1fZQoaAZoCWgPQwhi9rLtNEJgQJSGlFKUaBVN6ANoFkdAw16P8VHnU3V9lChoBmgJaA9DCAqi7gOQUWdAlIaUUpRoFU3oA2gWR0DDXq0f9xZMdX2UKGgGaAloD0MINUQV/gziYECUhpRSlGgVTegDaBZHQMNeuiV8kUt1fZQoaAZoCWgPQwgfnbry2YVhQJSGlFKUaBVN6ANoFkdAw18J8YQ8OnV9lChoBmgJaA9DCJI+raI/akdAlIaUUpRoFUvzaBZHQMNgDCRfWtl1fZQoaAZoCWgPQwgBFvn1QyheQJSGlFKUaBVN6ANoFkdAw2AoJO32EnV9lChoBmgJaA9DCJdvfVjvp2NAlIaUUpRoFU3oA2gWR0DDYIRN47iidX2UKGgGaAloD0MISRRa1v3ZXkCUhpRSlGgVTegDaBZHQMNg9w7T2Fp1fZQoaAZoCWgPQwhgHccPlcllQJSGlFKUaBVN6ANoFkdAw2F6qJ/G2nV9lChoBmgJaA9DCC/5n/zdgU1AlIaUUpRoFU0IAWgWR0DDYh6UaAFxdX2UKGgGaAloD0MIFQDjGTTcLUCUhpRSlGgVS+hoFkdAw2LA+8oQWnV9lChoBmgJaA9DCB7ec2C5s2BAlIaUUpRoFU3oA2gWR0DDYwQ5zYEodX2UKGgGaAloD0MIb51/u+y6YUCUhpRSlGgVTegDaBZHQMNjlpJGvwF1fZQoaAZoCWgPQwgYIqev56pcQJSGlFKUaBVN6ANoFkdAw2Q3yLAHmnV9lChoBmgJaA9DCB/XhorxgGNAlIaUUpRoFU3oA2gWR0DDZjbDwYtQdX2UKGgGaAloD0MIwCUA/5Q/ZECUhpRSlGgVTegDaBZHQMNmZ6jvd/J1ZS4="
|
73 |
+
},
|
74 |
+
"ep_success_buffer": {
|
75 |
+
":type:": "<class 'collections.deque'>",
|
76 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
77 |
+
},
|
78 |
+
"_n_updates": 124,
|
79 |
+
"n_steps": 1024,
|
80 |
+
"gamma": 0.999,
|
81 |
+
"gae_lambda": 0.98,
|
82 |
+
"ent_coef": 0.01,
|
83 |
+
"vf_coef": 0.5,
|
84 |
+
"max_grad_norm": 0.5,
|
85 |
+
"batch_size": 64,
|
86 |
+
"n_epochs": 4,
|
87 |
+
"clip_range": {
|
88 |
+
":type:": "<class 'function'>",
|
89 |
+
":serialized:": "gAWV+QIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMYy9ob21lL3NpbW9uL0RvY3VtZW50cy9TYW5kYm94L0RSTC9EUkwvbGliL3B5dGhvbjMuOS9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMYy9ob21lL3NpbW9uL0RvY3VtZW50cy9TYW5kYm94L0RSTC9EUkwvbGliL3B5dGhvbjMuOS9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
90 |
+
},
|
91 |
+
"clip_range_vf": null,
|
92 |
+
"normalize_advantage": true,
|
93 |
+
"target_kl": null
|
94 |
+
}
|
firstPPOagent/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:a545ae79b5733641ec7d88efb12eab958884b64c1ff349a2f5326a807ea62a77
|
3 |
+
size 88057
|
firstPPOagent/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:ff5863d9b006e39c47a288dd6d67234840825fcc98030c47c114442f357ce66a
|
3 |
+
size 43201
|
firstPPOagent/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
firstPPOagent/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
OS: Linux-5.15.0-52-generic-x86_64-with-glibc2.35 #58-Ubuntu SMP Thu Oct 13 08:03:55 UTC 2022
|
2 |
+
Python: 3.9.15
|
3 |
+
Stable-Baselines3: 1.6.2
|
4 |
+
PyTorch: 1.13.0+cu117
|
5 |
+
GPU Enabled: True
|
6 |
+
Numpy: 1.23.4
|
7 |
+
Gym: 0.21.0
|
replay.mp4
ADDED
Binary file (260 kB). View file
|
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 229.16564474855917, "std_reward": 21.28652797154946, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-11-09T11:29:03.090267"}
|