achimvp commited on
Commit
fbb4ba2
·
1 Parent(s): d93ed58

first model from the RL class

Browse files
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - LunarLander-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: PPO
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: LunarLander-v2
16
+ type: LunarLander-v2
17
+ metrics:
18
+ - type: mean_reward
19
+ value: 229.17 +/- 21.29
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **PPO** Agent playing **LunarLander-v2**
25
+ This is a trained model of a **PPO** agent playing **LunarLander-v2**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7ff424519ca0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7ff424519d30>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7ff424519dc0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7ff424519e50>", "_build": "<function ActorCriticPolicy._build at 0x7ff424519ee0>", "forward": "<function ActorCriticPolicy.forward at 0x7ff424519f70>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7ff42451c040>", "_predict": "<function ActorCriticPolicy._predict at 0x7ff42451c0d0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7ff42451c160>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7ff42451c1f0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7ff42451c280>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7ff42451a800>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 507904, "_total_timesteps": 500000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1667849359339245539, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWV+QIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMYy9ob21lL3NpbW9uL0RvY3VtZW50cy9TYW5kYm94L0RSTC9EUkwvbGliL3B5dGhvbjMuOS9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMYy9ob21lL3NpbW9uL0RvY3VtZW50cy9TYW5kYm94L0RSTC9EUkwvbGliL3B5dGhvbjMuOS9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAIBQlb2P3k+61Up1vDHvgLl8Ev25Pg7oOAAAgD8AAIA/TUPUPUtzpz47CwC+KaovvhcoeL1uzve8AAAAAAAAAADmvki9UmC5ucaO0Dosvj025Yw0utIy87kAAIA/AACAPyZtuL1cu2u6NnysO6QkrDeOoNu6o6PxNQAAgD8AAIA/ZjXAvFLQxLlic4s5nmeHNHIHc7oJhKG4AACAPwAAgD8Ai5w97GHxubovYzueAw83nkrxOqbKZLoAAIA/AACAP83AGb1I/4q6UhkWurPu6rRrGCQ6lmosOQAAgD8AAIA/AK5pveE4jrruuho9YCwouUE/lzpaDh64AACAPwAAgD+TZy4+doE1vFhFXzsnH7A487aivbLacboAAIA/AACAP5r/pL2FK925u/iTubdazbSLDKc7sFCvOAAAgD8AAIA/ZgSzPIUrhrk01hG8ZuPHNSRogTt1oT+1AACAPwAAgD8AQhu8w8lTunA87Tt645g3WpRUuhtVfzYAAIA/AACAPyZNRL7nQpk+jocEPpO+sr62cP48V/iVPAAAAAAAAAAAzTsDPR/9/7kj/Hc7ZgJStLfX2zkOrJC6AACAPwAAgD+AIh0+Unamu3qFxrl6HC42Mbj2vLbM6jgAAIA/AACAP7MbGL0frZ65NQ9rNvHO57EkerS6co6OtQAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVdxAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI7dPxmIGiPkCUhpRSlIwBbJRL6YwBdJRHQMMEwGQbMot1fZQoaAZoCWgPQwjIef8fJ89XQJSGlFKUaBVN6ANoFkdAwweMseXAunV9lChoBmgJaA9DCOJ2aFiMcmJAlIaUUpRoFU3oA2gWR0DDCFhWLgn/dX2UKGgGaAloD0MIP26/fLIiWkCUhpRSlGgVTegDaBZHQMMIXSrxRVJ1fZQoaAZoCWgPQwiUiPAvgqJdQJSGlFKUaBVN6ANoFkdAwwhygkC3gHV9lChoBmgJaA9DCN6wbVHmfWBAlIaUUpRoFU3oA2gWR0DDCXqR0U48dX2UKGgGaAloD0MIBTI7i95rYkCUhpRSlGgVTegDaBZHQMMK3tN8E3d1fZQoaAZoCWgPQwiqC3iZYYFiQJSGlFKUaBVN6ANoFkdAwwuz5ckdFXV9lChoBmgJaA9DCMXiN4WVjF1AlIaUUpRoFU3oA2gWR0DDENgN0/4ZdX2UKGgGaAloD0MIjV94Jcm1YkCUhpRSlGgVTegDaBZHQMMR9fEGZ/l1fZQoaAZoCWgPQwiNfcnGg6tbQJSGlFKUaBVN6ANoFkdAwxK6mXw9aHV9lChoBmgJaA9DCK2/JQD/TVtAlIaUUpRoFU3oA2gWR0DDE1brTpgUdX2UKGgGaAloD0MInPurx/3FY0CUhpRSlGgVTegDaBZHQMMUbHaFmFt1fZQoaAZoCWgPQwgCS65i8U86QJSGlFKUaBVL2mgWR0DDFQi0lZ5idX2UKGgGaAloD0MIZvZ5jPLgN0CUhpRSlGgVTSkBaBZHQMMVDHRLK3d1fZQoaAZoCWgPQwgcsRafAtlhQJSGlFKUaBVN6ANoFkdAwxUktwJgLXV9lChoBmgJaA9DCKp8z0iEhmFAlIaUUpRoFU3oA2gWR0DDFYS/EfkndX2UKGgGaAloD0MIildZ2xT/McCUhpRSlGgVTScBaBZHQMMWrRuTA311fZQoaAZoCWgPQwikVMITemVeQJSGlFKUaBVN6ANoFkdAwxcTkgfU4XV9lChoBmgJaA9DCAqeQq7UTmJAlIaUUpRoFU3oA2gWR0DDF5fBpHqedX2UKGgGaAloD0MIumjIeJQ1YUCUhpRSlGgVTegDaBZHQMMaIHbypaR1fZQoaAZoCWgPQwi0dtuF5vFaQJSGlFKUaBVN6ANoFkdAwxrfX6InB3V9lChoBmgJaA9DCKyL22gApmNAlIaUUpRoFU3oA2gWR0DDGuPVwxWUdX2UKGgGaAloD0MINloO9NCsYUCUhpRSlGgVTegDaBZHQMMa9pDVpbl1fZQoaAZoCWgPQwj12mysRGNhQJSGlFKUaBVN6ANoFkdAwxviDYh+v3V9lChoBmgJaA9DCJQu/UtSj2FAlIaUUpRoFU3oA2gWR0DDHTGF36hydX2UKGgGaAloD0MI8fW1LjULX0CUhpRSlGgVTegDaBZHQMMeCu/+Kj11fZQoaAZoCWgPQwhINlfNc7JAQJSGlFKUaBVNCwFoFkdAwyQm4rjHXHV9lChoBmgJaA9DCKRQFr6+OldAlIaUUpRoFU3oA2gWR0DDJgUU/OdHdX2UKGgGaAloD0MIeIAnLVwaW0CUhpRSlGgVTegDaBZHQMMnUtgSey11fZQoaAZoCWgPQwg/4les4VxbQJSGlFKUaBVN6ANoFkdAwygNagVXWHV9lChoBmgJaA9DCESHwJFA3FhAlIaUUpRoFU3oA2gWR0DDKBGXC0ngdX2UKGgGaAloD0MI5s3hWu3qYUCUhpRSlGgVTegDaBZHQMMoLJqqOtJ1fZQoaAZoCWgPQwj1EmOZfpteQJSGlFKUaBVN6ANoFkdAwyiVlCCz1XV9lChoBmgJaA9DCOS+1Tpxkl5AlIaUUpRoFU3oA2gWR0DDKdVbFCLNdX2UKGgGaAloD0MIwono19ZdYECUhpRSlGgVTegDaBZHQMMqPtmUW2x1fZQoaAZoCWgPQwi6MNKL2vNhQJSGlFKUaBVN6ANoFkdAwyrHcD8tPHV9lChoBmgJaA9DCObnhqbsxDlAlIaUUpRoFU0ZAWgWR0DDK0LdP+GXdX2UKGgGaAloD0MIqAGDpE+HYECUhpRSlGgVTegDaBZHQMMtQu8K5TZ1fZQoaAZoCWgPQwjqd2Frtr1bQJSGlFKUaBVN6ANoFkdAwy4ET+vQnnV9lChoBmgJaA9DCCbfbHNjN19AlIaUUpRoFU3oA2gWR0DDLgkGcFyJdX2UKGgGaAloD0MIIY/gRsruYUCUhpRSlGgVTegDaBZHQMMuHNXxOL11fZQoaAZoCWgPQwjg2omSEORpQJSGlFKUaBVNUwNoFkdAwy5dkDp1R3V9lChoBmgJaA9DCMLc7uU+8V1AlIaUUpRoFU3oA2gWR0DDMTqPXCj2dX2UKGgGaAloD0MIW+7MBMNbYUCUhpRSlGgVTegDaBZHQMM3SmVZ9ux1fZQoaAZoCWgPQwgmcOtuHuZmQJSGlFKUaBVNwAFoFkdAwzj1/lQuVXV9lChoBmgJaA9DCHBCIQKOYWBAlIaUUpRoFU3oA2gWR0DDOQFf9gnddX2UKGgGaAloD0MIx5+obFj0V0CUhpRSlGgVTegDaBZHQMM6vuW0JF91fZQoaAZoCWgPQwiA7zZvnJddQJSGlFKUaBVN6ANoFkdAwzrChUzbe3V9lChoBmgJaA9DCH2VfOwuZ19AlIaUUpRoFU3oA2gWR0DDOtlL39JjdX2UKGgGaAloD0MIgT6RJ0mXBcCUhpRSlGgVS/doFkdAwzrk5Xlr/XV9lChoBmgJaA9DCFjiAWVTe1xAlIaUUpRoFU3oA2gWR0DDOy/kWAPNdX2UKGgGaAloD0MIe4LEdnemYECUhpRSlGgVTegDaBZHQMM8M2znied1fZQoaAZoCWgPQwgnbD8Z471YQJSGlFKUaBVN6ANoFkdAwzyMKYzBRHV9lChoBmgJaA9DCFBQilbuyVlAlIaUUpRoFU3oA2gWR0DDPPRgE2YOdX2UKGgGaAloD0MIlNqLaDucX0CUhpRSlGgVTegDaBZHQMM9Umg8KXx1fZQoaAZoCWgPQwikHMwmQK9lQJSGlFKUaBVN6ANoFkdAwz7XT0g8sHV9lChoBmgJaA9DCExvfy4ayWBAlIaUUpRoFU3oA2gWR0DDP3SiZfD2dX2UKGgGaAloD0MIS80eaIU8ZkCUhpRSlGgVTegDaBZHQMM/eHbh3q11fZQoaAZoCWgPQwiKPh9lREZhQJSGlFKUaBVN6ANoFkdAwz/FjOs1bnV9lChoBmgJaA9DCM1WXvI/ORXAlIaUUpRoFUvBaBZHQMNCiEkjX4F1fZQoaAZoCWgPQwgu/yH99kBdQJSGlFKUaBVN6ANoFkdAw0LEFlCkXXV9lChoBmgJaA9DCIpbBTHQm0dAlIaUUpRoFUv1aBZHQMNC82u5jH51fZQoaAZoCWgPQwiaeXJNARpgQJSGlFKUaBVN6ANoFkdAw0q3vl2eQXV9lChoBmgJaA9DCASvljszsF5AlIaUUpRoFU3oA2gWR0DDSsS8BdUsdX2UKGgGaAloD0MIUrgeheuiYUCUhpRSlGgVTegDaBZHQMNMuicG1QZ1fZQoaAZoCWgPQwgfatswilxiQJSGlFKUaBVN6ANoFkdAw0y+XfqHGnV9lChoBmgJaA9DCEm6ZvLNIWFAlIaUUpRoFU3oA2gWR0DDTNh0jkdWdX2UKGgGaAloD0MIvhWJCeqbY0CUhpRSlGgVTegDaBZHQMNM5h/Zuht1fZQoaAZoCWgPQwhtH/KWKwBiQJSGlFKUaBVN6ANoFkdAw0071BdD6XV9lChoBmgJaA9DCPAYHvtZaGJAlIaUUpRoFU3oA2gWR0DDTmOXPZ7HdX2UKGgGaAloD0MIw33k1qQmYECUhpRSlGgVTegDaBZHQMNOxGseXAx1fZQoaAZoCWgPQwhk6NhBpTtjQJSGlFKUaBVN6ANoFkdAw087cTrVv3V9lChoBmgJaA9DCGR5Vz1gW1pAlIaUUpRoFU3oA2gWR0DDT6a3solVdX2UKGgGaAloD0MIAtNp3QY7R0CUhpRSlGgVS/VoFkdAw0/Azi0fHXV9lChoBmgJaA9DCHak+s4vxGNAlIaUUpRoFU3oA2gWR0DDUUbOxB3SdX2UKGgGaAloD0MIDhR4J59CWkCUhpRSlGgVTegDaBZHQMNR5rXL/0d1fZQoaAZoCWgPQwj6QV2kUEYpQJSGlFKUaBVL7mgWR0DDUo0pmVZ+dX2UKGgGaAloD0MIn+i68IO/YECUhpRSlGgVTegDaBZHQMNU0DHn2Zl1fZQoaAZoCWgPQwgNF7mnKxhnQJSGlFKUaBVN6ANoFkdAw1UFzKcNIHV9lChoBmgJaA9DCOgSDr1FomFAlIaUUpRoFU3oA2gWR0DDVTAmois5dX2UKGgGaAloD0MIueF3061KZUCUhpRSlGgVTegDaBZHQMNcsmT1TR91fZQoaAZoCWgPQwgIq7GENf1lQJSGlFKUaBVN6ANoFkdAw1y+kC3gDXV9lChoBmgJaA9DCFBxHHi1YEdAlIaUUpRoFUvqaBZHQMNdEcCYCyR1fZQoaAZoCWgPQwhi9rLtNEJgQJSGlFKUaBVN6ANoFkdAw16P8VHnU3V9lChoBmgJaA9DCAqi7gOQUWdAlIaUUpRoFU3oA2gWR0DDXq0f9xZMdX2UKGgGaAloD0MINUQV/gziYECUhpRSlGgVTegDaBZHQMNeuiV8kUt1fZQoaAZoCWgPQwgfnbry2YVhQJSGlFKUaBVN6ANoFkdAw18J8YQ8OnV9lChoBmgJaA9DCJI+raI/akdAlIaUUpRoFUvzaBZHQMNgDCRfWtl1fZQoaAZoCWgPQwgBFvn1QyheQJSGlFKUaBVN6ANoFkdAw2AoJO32EnV9lChoBmgJaA9DCJdvfVjvp2NAlIaUUpRoFU3oA2gWR0DDYIRN47iidX2UKGgGaAloD0MISRRa1v3ZXkCUhpRSlGgVTegDaBZHQMNg9w7T2Fp1fZQoaAZoCWgPQwhgHccPlcllQJSGlFKUaBVN6ANoFkdAw2F6qJ/G2nV9lChoBmgJaA9DCC/5n/zdgU1AlIaUUpRoFU0IAWgWR0DDYh6UaAFxdX2UKGgGaAloD0MIFQDjGTTcLUCUhpRSlGgVS+hoFkdAw2LA+8oQWnV9lChoBmgJaA9DCB7ec2C5s2BAlIaUUpRoFU3oA2gWR0DDYwQ5zYEodX2UKGgGaAloD0MIb51/u+y6YUCUhpRSlGgVTegDaBZHQMNjlpJGvwF1fZQoaAZoCWgPQwgYIqev56pcQJSGlFKUaBVN6ANoFkdAw2Q3yLAHmnV9lChoBmgJaA9DCB/XhorxgGNAlIaUUpRoFU3oA2gWR0DDZjbDwYtQdX2UKGgGaAloD0MIwCUA/5Q/ZECUhpRSlGgVTegDaBZHQMNmZ6jvd/J1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 124, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWV+QIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMYy9ob21lL3NpbW9uL0RvY3VtZW50cy9TYW5kYm94L0RSTC9EUkwvbGliL3B5dGhvbjMuOS9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMYy9ob21lL3NpbW9uL0RvY3VtZW50cy9TYW5kYm94L0RSTC9EUkwvbGliL3B5dGhvbjMuOS9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.15.0-52-generic-x86_64-with-glibc2.35 #58-Ubuntu SMP Thu Oct 13 08:03:55 UTC 2022", "Python": "3.9.15", "Stable-Baselines3": "1.6.2", "PyTorch": "1.13.0+cu117", "GPU Enabled": "True", "Numpy": "1.23.4", "Gym": "0.21.0"}}
firstPPOagent.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:816893be5700bb20db7fdea5c6bda645a30bce790b59606c775116133e91bb4e
3
+ size 147497
firstPPOagent/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.6.2
firstPPOagent/data ADDED
@@ -0,0 +1,94 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7ff424519ca0>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7ff424519d30>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7ff424519dc0>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7ff424519e50>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7ff424519ee0>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7ff424519f70>",
13
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7ff42451c040>",
14
+ "_predict": "<function ActorCriticPolicy._predict at 0x7ff42451c0d0>",
15
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7ff42451c160>",
16
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7ff42451c1f0>",
17
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7ff42451c280>",
18
+ "__abstractmethods__": "frozenset()",
19
+ "_abc_impl": "<_abc._abc_data object at 0x7ff42451a800>"
20
+ },
21
+ "verbose": 1,
22
+ "policy_kwargs": {},
23
+ "observation_space": {
24
+ ":type:": "<class 'gym.spaces.box.Box'>",
25
+ ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
26
+ "dtype": "float32",
27
+ "_shape": [
28
+ 8
29
+ ],
30
+ "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
31
+ "high": "[inf inf inf inf inf inf inf inf]",
32
+ "bounded_below": "[False False False False False False False False]",
33
+ "bounded_above": "[False False False False False False False False]",
34
+ "_np_random": null
35
+ },
36
+ "action_space": {
37
+ ":type:": "<class 'gym.spaces.discrete.Discrete'>",
38
+ ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
39
+ "n": 4,
40
+ "_shape": [],
41
+ "dtype": "int64",
42
+ "_np_random": null
43
+ },
44
+ "n_envs": 16,
45
+ "num_timesteps": 507904,
46
+ "_total_timesteps": 500000,
47
+ "_num_timesteps_at_start": 0,
48
+ "seed": null,
49
+ "action_noise": null,
50
+ "start_time": 1667849359339245539,
51
+ "learning_rate": 0.0003,
52
+ "tensorboard_log": null,
53
+ "lr_schedule": {
54
+ ":type:": "<class 'function'>",
55
+ ":serialized:": "gAWV+QIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMYy9ob21lL3NpbW9uL0RvY3VtZW50cy9TYW5kYm94L0RSTC9EUkwvbGliL3B5dGhvbjMuOS9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMYy9ob21lL3NpbW9uL0RvY3VtZW50cy9TYW5kYm94L0RSTC9EUkwvbGliL3B5dGhvbjMuOS9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
56
+ },
57
+ "_last_obs": {
58
+ ":type:": "<class 'numpy.ndarray'>",
59
+ ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAIBQlb2P3k+61Up1vDHvgLl8Ev25Pg7oOAAAgD8AAIA/TUPUPUtzpz47CwC+KaovvhcoeL1uzve8AAAAAAAAAADmvki9UmC5ucaO0Dosvj025Yw0utIy87kAAIA/AACAPyZtuL1cu2u6NnysO6QkrDeOoNu6o6PxNQAAgD8AAIA/ZjXAvFLQxLlic4s5nmeHNHIHc7oJhKG4AACAPwAAgD8Ai5w97GHxubovYzueAw83nkrxOqbKZLoAAIA/AACAP83AGb1I/4q6UhkWurPu6rRrGCQ6lmosOQAAgD8AAIA/AK5pveE4jrruuho9YCwouUE/lzpaDh64AACAPwAAgD+TZy4+doE1vFhFXzsnH7A487aivbLacboAAIA/AACAP5r/pL2FK925u/iTubdazbSLDKc7sFCvOAAAgD8AAIA/ZgSzPIUrhrk01hG8ZuPHNSRogTt1oT+1AACAPwAAgD8AQhu8w8lTunA87Tt645g3WpRUuhtVfzYAAIA/AACAPyZNRL7nQpk+jocEPpO+sr62cP48V/iVPAAAAAAAAAAAzTsDPR/9/7kj/Hc7ZgJStLfX2zkOrJC6AACAPwAAgD+AIh0+Unamu3qFxrl6HC42Mbj2vLbM6jgAAIA/AACAP7MbGL0frZ65NQ9rNvHO57EkerS6co6OtQAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
60
+ },
61
+ "_last_episode_starts": {
62
+ ":type:": "<class 'numpy.ndarray'>",
63
+ ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
64
+ },
65
+ "_last_original_obs": null,
66
+ "_episode_num": 0,
67
+ "use_sde": false,
68
+ "sde_sample_freq": -1,
69
+ "_current_progress_remaining": -0.015808000000000044,
70
+ "ep_info_buffer": {
71
+ ":type:": "<class 'collections.deque'>",
72
+ ":serialized:": "gAWVdxAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI7dPxmIGiPkCUhpRSlIwBbJRL6YwBdJRHQMMEwGQbMot1fZQoaAZoCWgPQwjIef8fJ89XQJSGlFKUaBVN6ANoFkdAwweMseXAunV9lChoBmgJaA9DCOJ2aFiMcmJAlIaUUpRoFU3oA2gWR0DDCFhWLgn/dX2UKGgGaAloD0MIP26/fLIiWkCUhpRSlGgVTegDaBZHQMMIXSrxRVJ1fZQoaAZoCWgPQwiUiPAvgqJdQJSGlFKUaBVN6ANoFkdAwwhygkC3gHV9lChoBmgJaA9DCN6wbVHmfWBAlIaUUpRoFU3oA2gWR0DDCXqR0U48dX2UKGgGaAloD0MIBTI7i95rYkCUhpRSlGgVTegDaBZHQMMK3tN8E3d1fZQoaAZoCWgPQwiqC3iZYYFiQJSGlFKUaBVN6ANoFkdAwwuz5ckdFXV9lChoBmgJaA9DCMXiN4WVjF1AlIaUUpRoFU3oA2gWR0DDENgN0/4ZdX2UKGgGaAloD0MIjV94Jcm1YkCUhpRSlGgVTegDaBZHQMMR9fEGZ/l1fZQoaAZoCWgPQwiNfcnGg6tbQJSGlFKUaBVN6ANoFkdAwxK6mXw9aHV9lChoBmgJaA9DCK2/JQD/TVtAlIaUUpRoFU3oA2gWR0DDE1brTpgUdX2UKGgGaAloD0MInPurx/3FY0CUhpRSlGgVTegDaBZHQMMUbHaFmFt1fZQoaAZoCWgPQwgCS65i8U86QJSGlFKUaBVL2mgWR0DDFQi0lZ5idX2UKGgGaAloD0MIZvZ5jPLgN0CUhpRSlGgVTSkBaBZHQMMVDHRLK3d1fZQoaAZoCWgPQwgcsRafAtlhQJSGlFKUaBVN6ANoFkdAwxUktwJgLXV9lChoBmgJaA9DCKp8z0iEhmFAlIaUUpRoFU3oA2gWR0DDFYS/EfkndX2UKGgGaAloD0MIildZ2xT/McCUhpRSlGgVTScBaBZHQMMWrRuTA311fZQoaAZoCWgPQwikVMITemVeQJSGlFKUaBVN6ANoFkdAwxcTkgfU4XV9lChoBmgJaA9DCAqeQq7UTmJAlIaUUpRoFU3oA2gWR0DDF5fBpHqedX2UKGgGaAloD0MIumjIeJQ1YUCUhpRSlGgVTegDaBZHQMMaIHbypaR1fZQoaAZoCWgPQwi0dtuF5vFaQJSGlFKUaBVN6ANoFkdAwxrfX6InB3V9lChoBmgJaA9DCKyL22gApmNAlIaUUpRoFU3oA2gWR0DDGuPVwxWUdX2UKGgGaAloD0MINloO9NCsYUCUhpRSlGgVTegDaBZHQMMa9pDVpbl1fZQoaAZoCWgPQwj12mysRGNhQJSGlFKUaBVN6ANoFkdAwxviDYh+v3V9lChoBmgJaA9DCJQu/UtSj2FAlIaUUpRoFU3oA2gWR0DDHTGF36hydX2UKGgGaAloD0MI8fW1LjULX0CUhpRSlGgVTegDaBZHQMMeCu/+Kj11fZQoaAZoCWgPQwhINlfNc7JAQJSGlFKUaBVNCwFoFkdAwyQm4rjHXHV9lChoBmgJaA9DCKRQFr6+OldAlIaUUpRoFU3oA2gWR0DDJgUU/OdHdX2UKGgGaAloD0MIeIAnLVwaW0CUhpRSlGgVTegDaBZHQMMnUtgSey11fZQoaAZoCWgPQwg/4les4VxbQJSGlFKUaBVN6ANoFkdAwygNagVXWHV9lChoBmgJaA9DCESHwJFA3FhAlIaUUpRoFU3oA2gWR0DDKBGXC0ngdX2UKGgGaAloD0MI5s3hWu3qYUCUhpRSlGgVTegDaBZHQMMoLJqqOtJ1fZQoaAZoCWgPQwj1EmOZfpteQJSGlFKUaBVN6ANoFkdAwyiVlCCz1XV9lChoBmgJaA9DCOS+1Tpxkl5AlIaUUpRoFU3oA2gWR0DDKdVbFCLNdX2UKGgGaAloD0MIwono19ZdYECUhpRSlGgVTegDaBZHQMMqPtmUW2x1fZQoaAZoCWgPQwi6MNKL2vNhQJSGlFKUaBVN6ANoFkdAwyrHcD8tPHV9lChoBmgJaA9DCObnhqbsxDlAlIaUUpRoFU0ZAWgWR0DDK0LdP+GXdX2UKGgGaAloD0MIqAGDpE+HYECUhpRSlGgVTegDaBZHQMMtQu8K5TZ1fZQoaAZoCWgPQwjqd2Frtr1bQJSGlFKUaBVN6ANoFkdAwy4ET+vQnnV9lChoBmgJaA9DCCbfbHNjN19AlIaUUpRoFU3oA2gWR0DDLgkGcFyJdX2UKGgGaAloD0MIIY/gRsruYUCUhpRSlGgVTegDaBZHQMMuHNXxOL11fZQoaAZoCWgPQwjg2omSEORpQJSGlFKUaBVNUwNoFkdAwy5dkDp1R3V9lChoBmgJaA9DCMLc7uU+8V1AlIaUUpRoFU3oA2gWR0DDMTqPXCj2dX2UKGgGaAloD0MIW+7MBMNbYUCUhpRSlGgVTegDaBZHQMM3SmVZ9ux1fZQoaAZoCWgPQwgmcOtuHuZmQJSGlFKUaBVNwAFoFkdAwzj1/lQuVXV9lChoBmgJaA9DCHBCIQKOYWBAlIaUUpRoFU3oA2gWR0DDOQFf9gnddX2UKGgGaAloD0MIx5+obFj0V0CUhpRSlGgVTegDaBZHQMM6vuW0JF91fZQoaAZoCWgPQwiA7zZvnJddQJSGlFKUaBVN6ANoFkdAwzrChUzbe3V9lChoBmgJaA9DCH2VfOwuZ19AlIaUUpRoFU3oA2gWR0DDOtlL39JjdX2UKGgGaAloD0MIgT6RJ0mXBcCUhpRSlGgVS/doFkdAwzrk5Xlr/XV9lChoBmgJaA9DCFjiAWVTe1xAlIaUUpRoFU3oA2gWR0DDOy/kWAPNdX2UKGgGaAloD0MIe4LEdnemYECUhpRSlGgVTegDaBZHQMM8M2znied1fZQoaAZoCWgPQwgnbD8Z471YQJSGlFKUaBVN6ANoFkdAwzyMKYzBRHV9lChoBmgJaA9DCFBQilbuyVlAlIaUUpRoFU3oA2gWR0DDPPRgE2YOdX2UKGgGaAloD0MIlNqLaDucX0CUhpRSlGgVTegDaBZHQMM9Umg8KXx1fZQoaAZoCWgPQwikHMwmQK9lQJSGlFKUaBVN6ANoFkdAwz7XT0g8sHV9lChoBmgJaA9DCExvfy4ayWBAlIaUUpRoFU3oA2gWR0DDP3SiZfD2dX2UKGgGaAloD0MIS80eaIU8ZkCUhpRSlGgVTegDaBZHQMM/eHbh3q11fZQoaAZoCWgPQwiKPh9lREZhQJSGlFKUaBVN6ANoFkdAwz/FjOs1bnV9lChoBmgJaA9DCM1WXvI/ORXAlIaUUpRoFUvBaBZHQMNCiEkjX4F1fZQoaAZoCWgPQwgu/yH99kBdQJSGlFKUaBVN6ANoFkdAw0LEFlCkXXV9lChoBmgJaA9DCIpbBTHQm0dAlIaUUpRoFUv1aBZHQMNC82u5jH51fZQoaAZoCWgPQwiaeXJNARpgQJSGlFKUaBVN6ANoFkdAw0q3vl2eQXV9lChoBmgJaA9DCASvljszsF5AlIaUUpRoFU3oA2gWR0DDSsS8BdUsdX2UKGgGaAloD0MIUrgeheuiYUCUhpRSlGgVTegDaBZHQMNMuicG1QZ1fZQoaAZoCWgPQwgfatswilxiQJSGlFKUaBVN6ANoFkdAw0y+XfqHGnV9lChoBmgJaA9DCEm6ZvLNIWFAlIaUUpRoFU3oA2gWR0DDTNh0jkdWdX2UKGgGaAloD0MIvhWJCeqbY0CUhpRSlGgVTegDaBZHQMNM5h/Zuht1fZQoaAZoCWgPQwhtH/KWKwBiQJSGlFKUaBVN6ANoFkdAw0071BdD6XV9lChoBmgJaA9DCPAYHvtZaGJAlIaUUpRoFU3oA2gWR0DDTmOXPZ7HdX2UKGgGaAloD0MIw33k1qQmYECUhpRSlGgVTegDaBZHQMNOxGseXAx1fZQoaAZoCWgPQwhk6NhBpTtjQJSGlFKUaBVN6ANoFkdAw087cTrVv3V9lChoBmgJaA9DCGR5Vz1gW1pAlIaUUpRoFU3oA2gWR0DDT6a3solVdX2UKGgGaAloD0MIAtNp3QY7R0CUhpRSlGgVS/VoFkdAw0/Azi0fHXV9lChoBmgJaA9DCHak+s4vxGNAlIaUUpRoFU3oA2gWR0DDUUbOxB3SdX2UKGgGaAloD0MIDhR4J59CWkCUhpRSlGgVTegDaBZHQMNR5rXL/0d1fZQoaAZoCWgPQwj6QV2kUEYpQJSGlFKUaBVL7mgWR0DDUo0pmVZ+dX2UKGgGaAloD0MIn+i68IO/YECUhpRSlGgVTegDaBZHQMNU0DHn2Zl1fZQoaAZoCWgPQwgNF7mnKxhnQJSGlFKUaBVN6ANoFkdAw1UFzKcNIHV9lChoBmgJaA9DCOgSDr1FomFAlIaUUpRoFU3oA2gWR0DDVTAmois5dX2UKGgGaAloD0MIueF3061KZUCUhpRSlGgVTegDaBZHQMNcsmT1TR91fZQoaAZoCWgPQwgIq7GENf1lQJSGlFKUaBVN6ANoFkdAw1y+kC3gDXV9lChoBmgJaA9DCFBxHHi1YEdAlIaUUpRoFUvqaBZHQMNdEcCYCyR1fZQoaAZoCWgPQwhi9rLtNEJgQJSGlFKUaBVN6ANoFkdAw16P8VHnU3V9lChoBmgJaA9DCAqi7gOQUWdAlIaUUpRoFU3oA2gWR0DDXq0f9xZMdX2UKGgGaAloD0MINUQV/gziYECUhpRSlGgVTegDaBZHQMNeuiV8kUt1fZQoaAZoCWgPQwgfnbry2YVhQJSGlFKUaBVN6ANoFkdAw18J8YQ8OnV9lChoBmgJaA9DCJI+raI/akdAlIaUUpRoFUvzaBZHQMNgDCRfWtl1fZQoaAZoCWgPQwgBFvn1QyheQJSGlFKUaBVN6ANoFkdAw2AoJO32EnV9lChoBmgJaA9DCJdvfVjvp2NAlIaUUpRoFU3oA2gWR0DDYIRN47iidX2UKGgGaAloD0MISRRa1v3ZXkCUhpRSlGgVTegDaBZHQMNg9w7T2Fp1fZQoaAZoCWgPQwhgHccPlcllQJSGlFKUaBVN6ANoFkdAw2F6qJ/G2nV9lChoBmgJaA9DCC/5n/zdgU1AlIaUUpRoFU0IAWgWR0DDYh6UaAFxdX2UKGgGaAloD0MIFQDjGTTcLUCUhpRSlGgVS+hoFkdAw2LA+8oQWnV9lChoBmgJaA9DCB7ec2C5s2BAlIaUUpRoFU3oA2gWR0DDYwQ5zYEodX2UKGgGaAloD0MIb51/u+y6YUCUhpRSlGgVTegDaBZHQMNjlpJGvwF1fZQoaAZoCWgPQwgYIqev56pcQJSGlFKUaBVN6ANoFkdAw2Q3yLAHmnV9lChoBmgJaA9DCB/XhorxgGNAlIaUUpRoFU3oA2gWR0DDZjbDwYtQdX2UKGgGaAloD0MIwCUA/5Q/ZECUhpRSlGgVTegDaBZHQMNmZ6jvd/J1ZS4="
73
+ },
74
+ "ep_success_buffer": {
75
+ ":type:": "<class 'collections.deque'>",
76
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
77
+ },
78
+ "_n_updates": 124,
79
+ "n_steps": 1024,
80
+ "gamma": 0.999,
81
+ "gae_lambda": 0.98,
82
+ "ent_coef": 0.01,
83
+ "vf_coef": 0.5,
84
+ "max_grad_norm": 0.5,
85
+ "batch_size": 64,
86
+ "n_epochs": 4,
87
+ "clip_range": {
88
+ ":type:": "<class 'function'>",
89
+ ":serialized:": "gAWV+QIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMYy9ob21lL3NpbW9uL0RvY3VtZW50cy9TYW5kYm94L0RSTC9EUkwvbGliL3B5dGhvbjMuOS9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMYy9ob21lL3NpbW9uL0RvY3VtZW50cy9TYW5kYm94L0RSTC9EUkwvbGliL3B5dGhvbjMuOS9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
90
+ },
91
+ "clip_range_vf": null,
92
+ "normalize_advantage": true,
93
+ "target_kl": null
94
+ }
firstPPOagent/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a545ae79b5733641ec7d88efb12eab958884b64c1ff349a2f5326a807ea62a77
3
+ size 88057
firstPPOagent/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ff5863d9b006e39c47a288dd6d67234840825fcc98030c47c114442f357ce66a
3
+ size 43201
firstPPOagent/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
firstPPOagent/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ OS: Linux-5.15.0-52-generic-x86_64-with-glibc2.35 #58-Ubuntu SMP Thu Oct 13 08:03:55 UTC 2022
2
+ Python: 3.9.15
3
+ Stable-Baselines3: 1.6.2
4
+ PyTorch: 1.13.0+cu117
5
+ GPU Enabled: True
6
+ Numpy: 1.23.4
7
+ Gym: 0.21.0
replay.mp4 ADDED
Binary file (260 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 229.16564474855917, "std_reward": 21.28652797154946, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-11-09T11:29:03.090267"}