File size: 13,668 Bytes
5a6c455 |
1 |
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7becb16deb90>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7becb16dec20>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7becb16decb0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7becb16ded40>", "_build": "<function ActorCriticPolicy._build at 0x7becb16dedd0>", "forward": "<function ActorCriticPolicy.forward at 0x7becb16dee60>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7becb16deef0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7becb16def80>", "_predict": "<function ActorCriticPolicy._predict at 0x7becb16df010>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7becb16df0a0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7becb16df130>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7becb16df1c0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7becb1689ec0>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1705229396239474670, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAJPqLT6I3KQ9ZPiwvq2wbb4CXHe9jpMdvQAAAAAAAAAAZuvavEPdqT+Lot6+shEnv7FTxju2ABu9AAAAAAAAAAAN67A9HwXOt/sSYbTbvbovmnfcOiZbljMAAAAAAACAP1qzJD72e3K8EiqouuCp7ziLgNG9NWrfOQAAgD8AAIA/JqzNvQo1LzyetQA+3GkuvnQayzyCPME7AAAAAAAAAACtVCO+Rf6ZPEbjGj7JJ0e+vkVJvsbRIr8AAIA/AACAP81H1LwUrvK4esixMnr5i7C/fCW7lUE3swAAgD8AAIA/5jo2vXErJ7vVxYE9lssLPB5UIrxrEvw8AACAPwAAgD+z0h699vB7ukA0uDb3Yb0xSOgju5sF27UAAIA/AACAP03cLb0WjwI97XL2vea2tb3T+IC9SiZbPQAAAAAAAAAAzS+fPHuQ3LrM/pM8WfetvQfBK7vwLJo+AACAPwAAAADald09XWR6P4syVj5jZRm/lNw/PoZxDrsAAAAAAAAAABPCQr6fVpa7E5xktTFTBLNwp+A8bdyWNAAAgD8AAIA/gMU1vgFZjbzejOa77b9Vup2L8j0P4io7AACAPwAAgD/mWhC9XFd1uvbLBLgarcOxp0svu0pfGTcAAIA/AACAP3NQ5j17TMm6CD/lO1GPfjwpxH87M+tdvQAAAAAAAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWV9QsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQGQvUcwQDmuMAWyUTegDjAF0lEdAldPVXJYDDHV9lChoBkdAbMhhAGB4EGgHS81oCEdAldPsYAKfF3V9lChoBkdAcLXuAZsKs2gHS/1oCEdAldQyNbTts3V9lChoBkdAcGEq5sj3VWgHS+VoCEdAldSqODJ2dXV9lChoBkdAcjxD9Oymh2gHS+1oCEdAldTq0UoKD3V9lChoBkdAcFLV7x/d7GgHS89oCEdAldVzzmOlwnV9lChoBkdAcnGyBTXJ5mgHTQkBaAhHQJXWY1ejVQR1fZQoaAZHQHC0omCyyD9oB0vSaAhHQJXWtyvLX+V1fZQoaAZHQHD5NUOuq3poB00BAWgIR0CV2DMEzO5bdX2UKGgGR0Bwm6+UQkHEaAdLz2gIR0CV2Ddszl90dX2UKGgGR0BykAAn2IweaAdL8GgIR0CV2WJNTLntdX2UKGgGR0BwxXawljVhaAdNHQFoCEdAldoEOVgQYnV9lChoBkdAcDzgBcRlH2gHS95oCEdAldoE2pAD73V9lChoBkdAcWSa/h2nsWgHS+5oCEdAldo9QKrq+3V9lChoBkdAcXk4nndO7GgHS/5oCEdAldskBGQSz3V9lChoBkdAbdOzu4PPLWgHS/RoCEdAldsjZcs19HV9lChoBkdAb5NN2TxG2GgHS9doCEdAldu7S7Xg+HV9lChoBkdAcFrnw5NoJ2gHS+5oCEdAldvKmfoRqXV9lChoBkdAcSxGdqcmSmgHTQABaAhHQJXcBZ4fOlh1fZQoaAZHQHICbDQ7cO9oB00pAWgIR0CV3Ct78ejmdX2UKGgGR0ByRkZydWhiaAdL6WgIR0CV3S7EYO2BdX2UKGgGR0BvmxbbDdgwaAdL3mgIR0CV3TaHsTnJdX2UKGgGR0BwmluyeI2waAdL62gIR0CV3xu8brC4dX2UKGgGR0BxSJmK64DtaAdL1WgIR0CV4EmRNh3JdX2UKGgGR0BiAuotL+PzaAdN6ANoCEdAleEBYeT3ZnV9lChoBkdAcgufGMn7YWgHS+NoCEdAleEBP9DQaHV9lChoBkdAbgYKqn3tbGgHS+5oCEdAleEiPdVNpXV9lChoBkdAX9D3qRlpXmgHTegDaAhHQJXhayB06o51fZQoaAZHQHHJN+5OJtVoB00zAWgIR0CV4Wv0AcT8dX2UKGgGR0Bx3LTmW+oMaAdNDgFoCEdAleF5Sm65G3V9lChoBkdAb5a2uxKQJWgHS9xoCEdAleGXWe6I33V9lChoBkdAb8j0aqCHymgHS+1oCEdAleH2qcVgyHV9lChoBkdAcVVKMefZmWgHS+toCEdAleJbi++M63V9lChoBkdAbXWcz67/XGgHS99oCEdAleJwr1/UfHV9lChoBkdAcNq4IKMNt2gHS/5oCEdAleLcdYGMXXV9lChoBkdAbG9dl/Yra2gHS9loCEdAleMyhvitJXV9lChoBkdAb90pGWldkmgHS9poCEdAleMy7f51vHV9lChoBkdAcYx40Mw1zmgHTQUBaAhHQJXjMo0ALiN1fZQoaAZHQHCQFnqVyFRoB0vaaAhHQJXklpyp71J1fZQoaAZHQHK3RIz3yqdoB0vQaAhHQJXl3TgEU0x1fZQoaAZHQGwKjT8YQ8RoB0voaAhHQJXl/fsNUfh1fZQoaAZHQHIkgOz6ab5oB0vPaAhHQJXmpQxesxR1fZQoaAZHQHPR0wBYFJRoB0v6aAhHQJXnevTw2EV1fZQoaAZHQHLC0DIRywRoB00CAWgIR0CV5+0BwMpgdX2UKGgGR0Bx7M4p+c6OaAdLz2gIR0CV6BuAZsKtdX2UKGgGR0Ah2ILPUrkKaAdLtWgIR0CV6FiTMaCMdX2UKGgGR0BwxQQTVUdaaAdNAgFoCEdAlehiXUpd8nV9lChoBkdAcA1gLZzxPWgHS+1oCEdAlehsfeUILXV9lChoBkdAcTqdwvQF92gHTQgBaAhHQJXohMQEpy91fZQoaAZHQHBfBSUC7shoB0vSaAhHQJXozAmAskJ1fZQoaAZHQHG/e2E0zj5oB0vpaAhHQJXo3PNVzZJ1fZQoaAZHQHK3eFHrhR9oB0vfaAhHQJXpn8CPp6h1fZQoaAZHQG+8cuSOinJoB0v0aAhHQJXqPJLdvbZ1fZQoaAZHQHAQZVsDW9VoB00OAWgIR0CV7ZKs+3YudX2UKGgGR0BvOdgQYk3TaAdL72gIR0CV7k40dilSdX2UKGgGR0Bxk+5Xlr/LaAdL1mgIR0CV7v2EkB0ZdX2UKGgGR0ByBOSntOVPaAdL+GgIR0CV74uwHJLedX2UKGgGR0Bw3rbJwKjSaAdL1GgIR0CV7/ZTAFgVdX2UKGgGR0BxakwrUb1iaAdL6mgIR0CV8GF+uvECdX2UKGgGR0BtcAS13MY/aAdL4mgIR0CV8IGxUvPDdX2UKGgGR0Bv4HCIk7fYaAdL42gIR0CV8Lk4WDYidX2UKGgGR0Bw0VhOP/70aAdNMQFoCEdAlfErcCYCyXV9lChoBkdAchVbzK9wm2gHS/poCEdAlfE2912aD3V9lChoBkdAcUeL5ylvZWgHS+poCEdAlfFhqsU7CHV9lChoBkdAb9dwwTM7l2gHS9BoCEdAlfF1Mh5gPXV9lChoBkdAbwnBsQ/X5GgHS+5oCEdAlfGPYvnKXHV9lChoBkdAbUWakyk9EGgHTQcBaAhHQJXxy8nNPgx1fZQoaAZHQG/nrh73PAxoB0vWaAhHQJXyC8TSLIh1fZQoaAZHQG/1j1Gsmv5oB0veaAhHQJX0fgKnei11fZQoaAZHQHB/NSZSeiBoB0viaAhHQJX1/ndO6/Z1fZQoaAZHQHC0bmQr+YNoB00CAWgIR0CV9hnM+u/2dX2UKGgGR0BxFNib2Dg7aAdL3GgIR0CV9iIn0CiidX2UKGgGR0Bw/lesxO+JaAdL3WgIR0CV9o/PPcBVdX2UKGgGR0ByZcjVx0dSaAdL8WgIR0CV9w5P/JeWdX2UKGgGR0Byg7LEDQqqaAdL1WgIR0CV94RMN+b3dX2UKGgGR0BxjkMPSUkfaAdL52gIR0CV95xCY1HfdX2UKGgGR0ByEraIvalDaAdL9GgIR0CV9+y5qdpZdX2UKGgGR0ByHD+hoM8YaAdL+mgIR0CV9/TxoZhsdX2UKGgGR0Bxdb/uLJjlaAdL82gIR0CV+A876pHadX2UKGgGR0Bxf8qbz9S/aAdL/2gIR0CV+BpBX0XhdX2UKGgGR0Bw74/Vy3kQaAdL7WgIR0CV+H5OrQw9dX2UKGgGR0BxGNOdoWYXaAdNHwFoCEdAlfibEpAlfXV9lChoBkdAcp+ibUgB92gHTVUBaAhHQJX46cLBsRB1fZQoaAZHQEiRog3cYZVoB0uqaAhHQJX5SwUxmCl1fZQoaAZHQHB49kSVW0ZoB0vYaAhHQJX73M5fdAR1fZQoaAZHQHEmC6+WWyFoB0vhaAhHQJX8OvyLAHp1fZQoaAZHQHHIdZRsMy9oB0vwaAhHQJX8sB0ZFXt1fZQoaAZHQG9DhWHUMG5oB0vsaAhHQJX9AEhaC+V1fZQoaAZHQHH+gFs54npoB0vVaAhHQJX9VJPIn0F1fZQoaAZHQHHx7sSkCV9oB0vbaAhHQJX93+98JD51fZQoaAZHQG+8V+I/JNloB0vhaAhHQJX+B7AtWdV1fZQoaAZHQHFI9qDbrTpoB0veaAhHQJX+FyaNMoN1fZQoaAZHQHK6VXNke6toB0vgaAhHQJX+MP+XJHR1fZQoaAZHQHJQeqNp/PRoB0v3aAhHQJX+QLJCBwx1fZQoaAZHQHCsR0U47zVoB0vUaAhHQJX+ScDr7fp1fZQoaAZHQHDbnm3fAKxoB0vQaAhHQJX+pZ7ojfN1fZQoaAZHQFq+zTnaFmFoB03oA2gIR0CV/qqPwNLEdX2UKGgGR0BwWR90A93baAdL2mgIR0CV/zpPhybQdX2UKGgGR0BscbkdV/+baAdL2GgIR0CWAvt8NQTFdX2UKGgGR0BuPLU9ZA6daAdL3mgIR0CWBArkKeCkdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 310, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 2048, "gamma": 0.99, "gae_lambda": 0.95, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 10, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-6.1.58+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Sat Nov 18 15:31:17 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.1.0+cu121", "GPU Enabled": "True", "Numpy": "1.23.5", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}} |