{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7966bd378ca0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7966bd378d30>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7966bd378dc0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7966bd378e50>", "_build": "<function ActorCriticPolicy._build at 0x7966bd378ee0>", "forward": "<function ActorCriticPolicy.forward at 0x7966bd378f70>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7966bd379000>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7966bd379090>", "_predict": "<function ActorCriticPolicy._predict at 0x7966bd379120>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7966bd3791b0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7966bd379240>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7966bd3792d0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7966bd316a80>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 14416, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1699944113860579858, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAABOILr4boJ+8i3Vbu3xoBLp53Q4+c0HTOgAAgD8AAIA/08gbvuxlrDoqbyc+vhT4O7ETm71g9d49AACAPwAAgD8zQTk+W0y/vE/aSrrltNk4HBIlvoomizkAAIA/AACAP1NHN757oou8b2idOYN0gDeFcPc9vhLFuAAAgD8AAIA/WnS6PfYkRbp4ONu4r2ZYs5gYi7qghPk3AACAPwAAgD9mhDa+rsG1vCcOETugLog59rckPkreR7oAAIA/AACAP80xnbzyaZE/6oRmvT7OS7+Uz528SOVNvQAAAAAAAAAAmsUVPsHIiD/d5Iw+YCxDv+g82z3SysK8AAAAAAAAAABNjfm9PRdwu7uYcb1CeQ+8aDmVPDDm9jwAAIA/AACAP8A/uz1hN4A7eG1VPWurOr3zszE90z0qvgAAAAAAAIA/IL4xvo4qpryQ00S6Km7TuAW2GD48xo45AACAPwAAgD/K8p8+V3KcPi7shr7lbZu+JAlWPBYMJL0AAAAAAAAAAE0PaD7YhSE/v5evPWzsBL8GJig+ZqD3vQAAAAAAAAAA+kw3PqRdbrt9r0G9oPeLPMmos7wTJ289AACAPwAAgD/NIDS+e3SzvGoJTDpiRLs4DowhPhxOjrkAAIA/AACAPya3Mr5bP5a8f9MjO5QRgzlsRgg+/ptaugAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVTAQAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQEmR/p+tr9GMAWyUS4eMAXSUR0CaOvzuWrwOdX2UKGgGR0BwSzVAiV0LaAdLrWgIR0CaPA0xM36zdX2UKGgGR0Bx+XpKSPluaAdLsWgIR0CaPCvF3pwCdX2UKGgGR0BxSVJ6IFeOaAdLuGgIR0CaPGFs54nndX2UKGgGR0BvC+wX668QaAdLymgIR0CaPOegte2NdX2UKGgGR0Bx6s9U0elsaAdL12gIR0CaPVM0xdpqdX2UKGgGR0BxTUxN7BwdaAdL3mgIR0CaPYtE5QxfdX2UKGgGR0BxOAZDRc/uaAdL4mgIR0CaPbBtDUmVdX2UKGgGR0ByIpkCmuTzaAdL6WgIR0CaPd47Rv3rdX2UKGgGR0BxcMN7SiM6aAdL+GgIR0CaPlhNM496dX2UKGgGR0Bys1sN2C/XaAdNBwFoCEdAmj7Id6sySHV9lChoBkdAcv1aJyhi9mgHTSABaAhHQJo/jSKFZgZ1fZQoaAZHQHAca02LpA5oB0u9aAhHQJpAtVtGd7R1fZQoaAZHQG8X0fPomoloB01YAWgIR0CaQWhxHXmOdX2UKGgGR0BxNUj+rELqaAdLxmgIR0CaQ1O/tY0VdX2UKGgGR0BxLxUgjhUBaAdL1GgIR0CaRJkkKNQ1dX2UKGgGR0Bx6LMpw0fpaAdLtWgIR0CaRPXOGCZndX2UKGgGR0Bxqdar3j+8aAdLvGgIR0CaRjzgMtsfdX2UKGgGR0ByUYH2RJVbaAdL/2gIR0CaRnH7gsK9dX2UKGgGR0ByYTNW2gFpaAdLxGgIR0CaR/nXNC7cdX2UKGgGR0Bxt9ChN/OMaAdNIgFoCEdAmkgUHY6GQHV9lChoBkdAcOYS619fC2gHS7toCEdAmkhmN70Fr3V9lChoBkdAcwk7HyVfNWgHTWoBaAhHQJpI9l05lvt1fZQoaAZHQHH+Umplz2hoB004AWgIR0CaSXF+uvECdX2UKGgGR0Bw2FDUmUnpaAdNlwFoCEdAmkvDzyz5XXV9lChoBkdAcG7qdpZfUmgHS8RoCEdAmkwOMZP2wnV9lChoBkdAcrk+BH09Q2gHTToBaAhHQJpPer92ovV1fZQoaAZHQHJ82MOwxFloB0vzaAhHQJpPslHBk7R1fZQoaAZHQHAxdu1ndwhoB0vKaAhHQJpP6oXKr7x1fZQoaAZHQHF83HBDXvpoB00aAWgIR0CaT/gWJrLydX2UKGgGR0BxtrmRvFWGaAdL1mgIR0CaUK9QXQ+mdX2UKGgGR0ByEsCo0hvBaAdL1mgIR0CaUdu9vjwQdX2UKGgGR0Bw6mSyMUAUaAdL0mgIR0CaVGGjbi6ydX2UKGgGR0By3i2PT5O8aAdL2mgIR0CaVWDMNc4YdX2UKGgGR0By1KsEJSiuaAdNRwFoCEdAmlb2NvOyFHVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 310, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 2048, "gamma": 0.99, "gae_lambda": 0.95, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 10, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.120+-x86_64-with-glibc2.35 # 1 SMP Wed Aug 30 11:19:59 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.1.0+cu118", "GPU Enabled": "True", "Numpy": "1.23.5", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}} |