abhinavkulkarni commited on
Commit
6aa0aeb
1 Parent(s): ee92af0

Create README.md

Browse files
Files changed (1) hide show
  1. README.md +183 -0
README.md ADDED
@@ -0,0 +1,183 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: cc-by-nc-sa-4.0
3
+ language:
4
+ - en
5
+ library_name: transformers
6
+ pipeline_tag: text-generation
7
+ tags:
8
+ - Orca
9
+ - AWQ
10
+ inference: false
11
+ ---
12
+
13
+ # orca_mini_v2_13b
14
+ An **Uncensored** LLaMA-13b model in collaboration with [Eric Hartford](https://huggingface.co/ehartford), trained on explain tuned datasets, created using Instructions and Input from WizardLM, Alpaca & Dolly-V2 datasets and applying Orca Research Paper dataset construction approaches.
15
+
16
+ This model is a 4-bit 128 group size AWQ quantized model. For more information about AWQ quantization, please click [here](https://github.com/mit-han-lab/llm-awq).
17
+
18
+ ## Model Date
19
+
20
+ July 8, 2023
21
+
22
+ ## Model License
23
+
24
+ Please refer to original Orca Mini v2 model license ([link](https://huggingface.co/psmathur/orca_mini_v2_13b)).
25
+
26
+ Please refer to the AWQ quantization license ([link](https://github.com/llm-awq/blob/main/LICENSE)).
27
+
28
+ ## CUDA Version
29
+
30
+ This model was successfully tested on CUDA driver v530.30.02 and runtime v11.7 with Python v3.10.11. Please note that AWQ requires NVIDIA GPUs with compute capability of 80 or higher.
31
+
32
+ ## How to Use
33
+
34
+ ```bash
35
+ git clone https://github.com/mit-han-lab/llm-awq \
36
+ && cd llm-awq \
37
+ && git checkout 71d8e68df78de6c0c817b029a568c064bf22132d \
38
+ && pip install -e . \
39
+ && cd awq/kernels \
40
+ && python setup.py install
41
+ ```
42
+
43
+ ```python
44
+ import torch
45
+ from awq.quantize.quantizer import real_quantize_model_weight
46
+ from transformers import AutoModelForCausalLM, AutoConfig, AutoTokenizer
47
+ from accelerate import init_empty_weights, load_checkpoint_and_dispatch
48
+ from huggingface_hub import hf_hub_download
49
+
50
+ model_name = "psmathur/orca_mini_v2_13b"
51
+
52
+ # Config
53
+ config = AutoConfig.from_pretrained(model_name, trust_remote_code=True)
54
+
55
+ # Tokenizer
56
+ tokenizer = AutoTokenizer.from_pretrained(config.tokenizer_name)
57
+
58
+ # Model
59
+ w_bit = 4
60
+ q_config = {
61
+ "zero_point": True,
62
+ "q_group_size": 128,
63
+ }
64
+
65
+ load_quant = hf_hub_download('abhinavkulkarni/psmathur-orca_mini_v2_13b-w4-g128-awq', 'pytorch_model.bin')
66
+
67
+ with init_empty_weights():
68
+ model = AutoModelForCausalLM.from_pretrained(model_name, config=config,
69
+ torch_dtype=torch.float16, trust_remote_code=True)
70
+
71
+ real_quantize_model_weight(model, w_bit=w_bit, q_config=q_config, init_only=True)
72
+
73
+ model = load_checkpoint_and_dispatch(model, load_quant, device_map="balanced")
74
+
75
+ # Inference
76
+ prompt = f'''What is the difference between nuclear fusion and fission?
77
+ ###Response:'''
78
+
79
+ input_ids = tokenizer(prompt, return_tensors='pt').input_ids.cuda()
80
+ output = model.generate(
81
+ inputs=input_ids,
82
+ temperature=0.7,
83
+ max_new_tokens=512,
84
+ top_p=0.15,
85
+ top_k=0,
86
+ repetition_penalty=1.1,
87
+ eos_token_id=tokenizer.eos_token_id
88
+ )
89
+ print(tokenizer.decode(output[0], skip_special_tokens=True))
90
+ ```
91
+
92
+ ## Evaluation
93
+
94
+ This evaluation was done using [LM-Eval](https://github.com/EleutherAI/lm-evaluation-harness).
95
+
96
+ [orca_mini_v2_13b](https://huggingface.co/psmathur/orca_mini_v2_13b)
97
+
98
+ | Task |Version| Metric | Value | |Stderr|
99
+ |--------|------:|---------------|------:|---|------|
100
+ |wikitext| 1|word_perplexity|23.8997| | |
101
+ | | |byte_perplexity| 1.8104| | |
102
+ | | |bits_per_byte | 0.8563| | |
103
+
104
+ [orca_mini_v2_13b (4-bit 128-group AWQ)](https://huggingface.co/abhinavkulkarni/psmathur-orca_mini_v2_13b-w4-g128-awq)
105
+
106
+ | Task |Version| Metric | Value | |Stderr|
107
+ |--------|------:|---------------|------:|---|------|
108
+ |wikitext| 1|word_perplexity|27.4695| | |
109
+ | | |byte_perplexity| 1.8581| | |
110
+ | | |bits_per_byte | 0.8938| | |
111
+
112
+ ## Acknowledgements
113
+
114
+ If you found `orca_mini_v2_13b` useful in your research or applications, please kindly cite using the following BibTeX:
115
+
116
+ ```
117
+ @misc{orca_mini_v2_13b,
118
+ author = {Pankaj Mathur},
119
+ title = {orca_mini_v2_13b: An explain tuned LLaMA-13b model on uncensored wizardlm, alpaca, & dolly datasets},
120
+ year = {2023},
121
+ publisher = {GitHub, HuggingFace},
122
+ journal = {GitHub repository, HuggingFace repository},
123
+ howpublished = {\url{https://https://huggingface.co/psmathur/orca_mini_v2_13b},
124
+ }
125
+ ```
126
+ ```
127
+ @software{touvron2023llama,
128
+ title={LLaMA: Open and Efficient Foundation Language Models},
129
+ author={Touvron, Hugo and Lavril, Thibaut and Izacard, Gautier and Martinet, Xavier and Lachaux, Marie-Anne and Lacroix, Timoth{\'e}e and Rozi{\`e}re, Baptiste and Goyal, Naman and Hambro, Eric and Azhar, Faisal and Rodriguez, Aurelien and Joulin, Armand and Grave, Edouard and Lample, Guillaume},
130
+ journal={arXiv preprint arXiv:2302.13971},
131
+ year={2023}
132
+ }
133
+ ```
134
+ ```
135
+ @misc{openalpaca,
136
+ author = {Yixuan Su and Tian Lan and Deng Cai},
137
+ title = {OpenAlpaca: A Fully Open-Source Instruction-Following Model Based On OpenLLaMA},
138
+ year = {2023},
139
+ publisher = {GitHub},
140
+ journal = {GitHub repository},
141
+ howpublished = {\url{https://github.com/yxuansu/OpenAlpaca}},
142
+ }
143
+ ```
144
+ ```
145
+ @misc{alpaca,
146
+ author = {Rohan Taori and Ishaan Gulrajani and Tianyi Zhang and Yann Dubois and Xuechen Li and Carlos Guestrin and Percy Liang and Tatsunori B. Hashimoto },
147
+ title = {Stanford Alpaca: An Instruction-following LLaMA model},
148
+ year = {2023},
149
+ publisher = {GitHub},
150
+ journal = {GitHub repository},
151
+ howpublished = {\url{https://github.com/tatsu-lab/stanford_alpaca}},
152
+ }
153
+ ```
154
+ ```
155
+ @online{DatabricksBlog2023DollyV2,
156
+ author = {Mike Conover and Matt Hayes and Ankit Mathur and Jianwei Xie and Jun Wan and Sam Shah and Ali Ghodsi and Patrick Wendell and Matei Zaharia and Reynold Xin},
157
+ title = {Free Dolly: Introducing the World's First Truly Open Instruction-Tuned LLM},
158
+ year = {2023},
159
+ url = {https://www.databricks.com/blog/2023/04/12/dolly-first-open-commercially-viable-instruction-tuned-llm},
160
+ urldate = {2023-06-30}
161
+ }
162
+ ```
163
+ ```
164
+ @misc{xu2023wizardlm,
165
+ title={WizardLM: Empowering Large Language Models to Follow Complex Instructions},
166
+ author={Can Xu and Qingfeng Sun and Kai Zheng and Xiubo Geng and Pu Zhao and Jiazhan Feng and Chongyang Tao and Daxin Jiang},
167
+ year={2023},
168
+ eprint={2304.12244},
169
+ archivePrefix={arXiv},
170
+ primaryClass={cs.CL}
171
+ }
172
+ ```
173
+
174
+ The model was quantized with AWQ technique. If you find AWQ useful or relevant to your research, please kindly cite the paper:
175
+
176
+ ```
177
+ @article{lin2023awq,
178
+ title={AWQ: Activation-aware Weight Quantization for LLM Compression and Acceleration},
179
+ author={Lin, Ji and Tang, Jiaming and Tang, Haotian and Yang, Shang and Dang, Xingyu and Han, Song},
180
+ journal={arXiv},
181
+ year={2023}
182
+ }
183
+ ```