abhinavkulkarni
commited on
Commit
•
58fe905
1
Parent(s):
5da5f16
Update README.md
Browse files
README.md
CHANGED
@@ -1,27 +1,24 @@
|
|
1 |
---
|
2 |
-
license: cc
|
3 |
language:
|
4 |
- en
|
5 |
-
library_name: transformers
|
6 |
-
pipeline_tag: text-generation
|
7 |
tags:
|
8 |
-
- Orca
|
9 |
- AWQ
|
10 |
inference: false
|
11 |
---
|
12 |
|
13 |
-
#
|
14 |
-
|
15 |
|
16 |
This model is a 4-bit 128 group size AWQ quantized model. For more information about AWQ quantization, please click [here](https://github.com/mit-han-lab/llm-awq).
|
17 |
|
18 |
## Model Date
|
19 |
|
20 |
-
July
|
21 |
|
22 |
## Model License
|
23 |
|
24 |
-
Please refer to original
|
25 |
|
26 |
Please refer to the AWQ quantization license ([link](https://github.com/llm-awq/blob/main/LICENSE)).
|
27 |
|
@@ -29,6 +26,8 @@ Please refer to the AWQ quantization license ([link](https://github.com/llm-awq/
|
|
29 |
|
30 |
This model was successfully tested on CUDA driver v530.30.02 and runtime v11.7 with Python v3.10.11. Please note that AWQ requires NVIDIA GPUs with compute capability of 80 or higher.
|
31 |
|
|
|
|
|
32 |
## How to Use
|
33 |
|
34 |
```bash
|
@@ -47,7 +46,7 @@ from transformers import AutoModelForCausalLM, AutoConfig, AutoTokenizer
|
|
47 |
from accelerate import init_empty_weights, load_checkpoint_and_dispatch
|
48 |
from huggingface_hub import snapshot_download
|
49 |
|
50 |
-
model_name = "
|
51 |
|
52 |
# Config
|
53 |
config = AutoConfig.from_pretrained(model_name, trust_remote_code=True)
|
@@ -62,10 +61,10 @@ q_config = {
|
|
62 |
"q_group_size": 128,
|
63 |
}
|
64 |
|
65 |
-
load_quant = snapshot_download('abhinavkulkarni/
|
66 |
|
67 |
with init_empty_weights():
|
68 |
-
model = AutoModelForCausalLM.
|
69 |
torch_dtype=torch.float16, trust_remote_code=True)
|
70 |
|
71 |
real_quantize_model_weight(model, w_bit=w_bit, q_config=q_config, init_only=True)
|
@@ -93,81 +92,49 @@ print(tokenizer.decode(output[0], skip_special_tokens=True))
|
|
93 |
|
94 |
This evaluation was done using [LM-Eval](https://github.com/EleutherAI/lm-evaluation-harness).
|
95 |
|
96 |
-
[
|
97 |
|
98 |
| Task |Version| Metric | Value | |Stderr|
|
99 |
|--------|------:|---------------|------:|---|------|
|
100 |
-
|wikitext| 1|word_perplexity|
|
101 |
-
| | |byte_perplexity| 1.
|
102 |
-
| | |bits_per_byte | 0.
|
103 |
|
104 |
-
[
|
105 |
|
106 |
| Task |Version| Metric | Value | |Stderr|
|
107 |
|--------|------:|---------------|------:|---|------|
|
108 |
-
|wikitext| 1|word_perplexity|
|
109 |
-
| | |byte_perplexity| 1.
|
110 |
-
| | |bits_per_byte | 0.
|
111 |
|
112 |
## Acknowledgements
|
113 |
|
114 |
-
If you found
|
115 |
-
|
116 |
-
```
|
117 |
-
@misc{orca_mini_v2_13b,
|
118 |
-
author = {Pankaj Mathur},
|
119 |
-
title = {orca_mini_v2_13b: An explain tuned LLaMA-13b model on uncensored wizardlm, alpaca, & dolly datasets},
|
120 |
-
year = {2023},
|
121 |
-
publisher = {GitHub, HuggingFace},
|
122 |
-
journal = {GitHub repository, HuggingFace repository},
|
123 |
-
howpublished = {\url{https://https://huggingface.co/psmathur/orca_mini_v2_13b},
|
124 |
-
}
|
125 |
```
|
126 |
-
|
127 |
-
|
128 |
-
title={
|
129 |
-
|
130 |
-
|
131 |
-
|
132 |
}
|
133 |
```
|
134 |
```
|
135 |
-
@
|
136 |
-
author = {
|
137 |
-
title = {
|
138 |
-
|
139 |
-
|
140 |
-
|
141 |
-
howpublished = {\url{https://github.com/yxuansu/OpenAlpaca}},
|
142 |
}
|
143 |
```
|
144 |
```
|
145 |
-
@
|
146 |
-
|
147 |
-
|
148 |
-
|
149 |
-
|
150 |
-
journal = {GitHub repository},
|
151 |
-
howpublished = {\url{https://github.com/tatsu-lab/stanford_alpaca}},
|
152 |
-
}
|
153 |
-
```
|
154 |
-
```
|
155 |
-
@online{DatabricksBlog2023DollyV2,
|
156 |
-
author = {Mike Conover and Matt Hayes and Ankit Mathur and Jianwei Xie and Jun Wan and Sam Shah and Ali Ghodsi and Patrick Wendell and Matei Zaharia and Reynold Xin},
|
157 |
-
title = {Free Dolly: Introducing the World's First Truly Open Instruction-Tuned LLM},
|
158 |
-
year = {2023},
|
159 |
-
url = {https://www.databricks.com/blog/2023/04/12/dolly-first-open-commercially-viable-instruction-tuned-llm},
|
160 |
-
urldate = {2023-06-30}
|
161 |
-
}
|
162 |
-
```
|
163 |
-
```
|
164 |
-
@misc{xu2023wizardlm,
|
165 |
-
title={WizardLM: Empowering Large Language Models to Follow Complex Instructions},
|
166 |
-
author={Can Xu and Qingfeng Sun and Kai Zheng and Xiubo Geng and Pu Zhao and Jiazhan Feng and Chongyang Tao and Daxin Jiang},
|
167 |
-
year={2023},
|
168 |
-
eprint={2304.12244},
|
169 |
-
archivePrefix={arXiv},
|
170 |
-
primaryClass={cs.CL}
|
171 |
}
|
172 |
```
|
173 |
|
|
|
1 |
---
|
2 |
+
license: cc
|
3 |
language:
|
4 |
- en
|
|
|
|
|
5 |
tags:
|
|
|
6 |
- AWQ
|
7 |
inference: false
|
8 |
---
|
9 |
|
10 |
+
# VMware/open-llama-13B-open-instruct (4-bit 128g AWQ Quantized)
|
11 |
+
[Instruction-tuned version](https://huggingface.co/VMware/open-llama-13b-open-instruct) of the fully trained [Open LLama 13B](https://huggingface.co/openlm-research/open_llama_13b) model.
|
12 |
|
13 |
This model is a 4-bit 128 group size AWQ quantized model. For more information about AWQ quantization, please click [here](https://github.com/mit-han-lab/llm-awq).
|
14 |
|
15 |
## Model Date
|
16 |
|
17 |
+
July 5, 2023
|
18 |
|
19 |
## Model License
|
20 |
|
21 |
+
Please refer to original MPT model license ([link](https://huggingface.co/VMware/open-llama-13b-open-instruct)).
|
22 |
|
23 |
Please refer to the AWQ quantization license ([link](https://github.com/llm-awq/blob/main/LICENSE)).
|
24 |
|
|
|
26 |
|
27 |
This model was successfully tested on CUDA driver v530.30.02 and runtime v11.7 with Python v3.10.11. Please note that AWQ requires NVIDIA GPUs with compute capability of 80 or higher.
|
28 |
|
29 |
+
For Docker users, the `nvcr.io/nvidia/pytorch:23.06-py3` image is runtime v12.1 but otherwise the same as the configuration above and has also been verified to work.
|
30 |
+
|
31 |
## How to Use
|
32 |
|
33 |
```bash
|
|
|
46 |
from accelerate import init_empty_weights, load_checkpoint_and_dispatch
|
47 |
from huggingface_hub import snapshot_download
|
48 |
|
49 |
+
model_name = "VMware/open-llama-13b-open-instruct"
|
50 |
|
51 |
# Config
|
52 |
config = AutoConfig.from_pretrained(model_name, trust_remote_code=True)
|
|
|
61 |
"q_group_size": 128,
|
62 |
}
|
63 |
|
64 |
+
load_quant = snapshot_download('abhinavkulkarni/open-llama-13b-open-instruct-w4-g128-awq')
|
65 |
|
66 |
with init_empty_weights():
|
67 |
+
model = AutoModelForCausalLM.from_config(config=config,
|
68 |
torch_dtype=torch.float16, trust_remote_code=True)
|
69 |
|
70 |
real_quantize_model_weight(model, w_bit=w_bit, q_config=q_config, init_only=True)
|
|
|
92 |
|
93 |
This evaluation was done using [LM-Eval](https://github.com/EleutherAI/lm-evaluation-harness).
|
94 |
|
95 |
+
[Open-LLaMA-13B-Instruct](https://huggingface.co/VMware/open-llama-13b-open-instruct)
|
96 |
|
97 |
| Task |Version| Metric | Value | |Stderr|
|
98 |
|--------|------:|---------------|------:|---|------|
|
99 |
+
|wikitext| 1|word_perplexity|11.6564| | |
|
100 |
+
| | |byte_perplexity| 1.5829| | |
|
101 |
+
| | |bits_per_byte | 0.6626| | |
|
102 |
|
103 |
+
[Open-LLaMA-13B-Instruct (4-bit 128-group AWQ)](https://huggingface.co/abhinavkulkarni/open-llama-13b-open-instruct-w4-g128-awq)
|
104 |
|
105 |
| Task |Version| Metric | Value | |Stderr|
|
106 |
|--------|------:|---------------|------:|---|------|
|
107 |
+
|wikitext| 1|word_perplexity|11.9652| | |
|
108 |
+
| | |byte_perplexity| 1.5907| | |
|
109 |
+
| | |bits_per_byte | 0.6696| | |
|
110 |
|
111 |
## Acknowledgements
|
112 |
|
113 |
+
If you found OpenLLaMA useful in your research or applications, please cite using the following BibTeX:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
114 |
```
|
115 |
+
@software{openlm2023openllama,
|
116 |
+
author = {Geng, Xinyang and Liu, Hao},
|
117 |
+
title = {OpenLLaMA: An Open Reproduction of LLaMA},
|
118 |
+
month = May,
|
119 |
+
year = 2023,
|
120 |
+
url = {https://github.com/openlm-research/open_llama}
|
121 |
}
|
122 |
```
|
123 |
```
|
124 |
+
@software{together2023redpajama,
|
125 |
+
author = {Together Computer},
|
126 |
+
title = {RedPajama-Data: An Open Source Recipe to Reproduce LLaMA training dataset},
|
127 |
+
month = April,
|
128 |
+
year = 2023,
|
129 |
+
url = {https://github.com/togethercomputer/RedPajama-Data}
|
|
|
130 |
}
|
131 |
```
|
132 |
```
|
133 |
+
@article{touvron2023llama,
|
134 |
+
title={Llama: Open and efficient foundation language models},
|
135 |
+
author={Touvron, Hugo and Lavril, Thibaut and Izacard, Gautier and Martinet, Xavier and Lachaux, Marie-Anne and Lacroix, Timoth{\'e}e and Rozi{\`e}re, Baptiste and Goyal, Naman and Hambro, Eric and Azhar, Faisal and others},
|
136 |
+
journal={arXiv preprint arXiv:2302.13971},
|
137 |
+
year={2023}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
138 |
}
|
139 |
```
|
140 |
|