abhinavkulkarni
commited on
Commit
•
2c8a105
1
Parent(s):
38a756e
Update README.md
Browse files
README.md
CHANGED
@@ -1,24 +1,27 @@
|
|
1 |
---
|
2 |
-
license: cc
|
3 |
language:
|
4 |
- en
|
|
|
|
|
5 |
tags:
|
|
|
6 |
- AWQ
|
7 |
inference: false
|
8 |
---
|
9 |
|
10 |
-
#
|
11 |
-
|
12 |
|
13 |
This model is a 4-bit 128 group size AWQ quantized model. For more information about AWQ quantization, please click [here](https://github.com/mit-han-lab/llm-awq).
|
14 |
|
15 |
## Model Date
|
16 |
|
17 |
-
July
|
18 |
|
19 |
## Model License
|
20 |
|
21 |
-
Please refer to original
|
22 |
|
23 |
Please refer to the AWQ quantization license ([link](https://github.com/llm-awq/blob/main/LICENSE)).
|
24 |
|
@@ -46,7 +49,7 @@ from transformers import AutoModelForCausalLM, AutoConfig, AutoTokenizer
|
|
46 |
from accelerate import init_empty_weights, load_checkpoint_and_dispatch
|
47 |
from huggingface_hub import snapshot_download
|
48 |
|
49 |
-
model_name = "
|
50 |
|
51 |
# Config
|
52 |
config = AutoConfig.from_pretrained(model_name, trust_remote_code=True)
|
@@ -92,49 +95,81 @@ print(tokenizer.decode(output[0], skip_special_tokens=True))
|
|
92 |
|
93 |
This evaluation was done using [LM-Eval](https://github.com/EleutherAI/lm-evaluation-harness).
|
94 |
|
95 |
-
[
|
96 |
|
97 |
| Task |Version| Metric | Value | |Stderr|
|
98 |
|--------|------:|---------------|------:|---|------|
|
99 |
-
|wikitext| 1|word_perplexity|
|
100 |
-
| | |byte_perplexity| 1.
|
101 |
-
| | |bits_per_byte | 0.
|
102 |
|
103 |
-
[
|
104 |
|
105 |
| Task |Version| Metric | Value | |Stderr|
|
106 |
|--------|------:|---------------|------:|---|------|
|
107 |
-
|wikitext| 1|word_perplexity|
|
108 |
-
| | |byte_perplexity| 1.
|
109 |
-
| | |bits_per_byte | 0.
|
110 |
|
111 |
## Acknowledgements
|
112 |
|
113 |
-
If you found
|
|
|
114 |
```
|
115 |
-
@
|
116 |
-
author = {
|
117 |
-
title = {
|
118 |
-
|
119 |
-
|
120 |
-
|
|
|
121 |
}
|
122 |
```
|
123 |
```
|
124 |
-
@software{
|
125 |
-
|
126 |
-
|
127 |
-
|
128 |
-
year
|
129 |
-
url = {https://github.com/togethercomputer/RedPajama-Data}
|
130 |
}
|
131 |
```
|
132 |
```
|
133 |
-
@
|
134 |
-
|
135 |
-
|
136 |
-
|
137 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
138 |
}
|
139 |
```
|
140 |
|
|
|
1 |
---
|
2 |
+
license: cc-by-nc-sa-4.0
|
3 |
language:
|
4 |
- en
|
5 |
+
library_name: transformers
|
6 |
+
pipeline_tag: text-generation
|
7 |
tags:
|
8 |
+
- Orca
|
9 |
- AWQ
|
10 |
inference: false
|
11 |
---
|
12 |
|
13 |
+
# orca_mini_v2_13b
|
14 |
+
An **Uncensored** LLaMA-13b model in collaboration with [Eric Hartford](https://huggingface.co/ehartford), trained on explain tuned datasets, created using Instructions and Input from WizardLM, Alpaca & Dolly-V2 datasets and applying Orca Research Paper dataset construction approaches.
|
15 |
|
16 |
This model is a 4-bit 128 group size AWQ quantized model. For more information about AWQ quantization, please click [here](https://github.com/mit-han-lab/llm-awq).
|
17 |
|
18 |
## Model Date
|
19 |
|
20 |
+
July 8, 2023
|
21 |
|
22 |
## Model License
|
23 |
|
24 |
+
Please refer to original Orca Mini v2 model license ([link](https://huggingface.co/psmathur/orca_mini_v2_13b)).
|
25 |
|
26 |
Please refer to the AWQ quantization license ([link](https://github.com/llm-awq/blob/main/LICENSE)).
|
27 |
|
|
|
49 |
from accelerate import init_empty_weights, load_checkpoint_and_dispatch
|
50 |
from huggingface_hub import snapshot_download
|
51 |
|
52 |
+
model_name = "psmathur/orca_mini_v2_13b"
|
53 |
|
54 |
# Config
|
55 |
config = AutoConfig.from_pretrained(model_name, trust_remote_code=True)
|
|
|
95 |
|
96 |
This evaluation was done using [LM-Eval](https://github.com/EleutherAI/lm-evaluation-harness).
|
97 |
|
98 |
+
[orca_mini_v2_13b](https://huggingface.co/psmathur/orca_mini_v2_13b)
|
99 |
|
100 |
| Task |Version| Metric | Value | |Stderr|
|
101 |
|--------|------:|---------------|------:|---|------|
|
102 |
+
|wikitext| 1|word_perplexity|23.8997| | |
|
103 |
+
| | |byte_perplexity| 1.8104| | |
|
104 |
+
| | |bits_per_byte | 0.8563| | |
|
105 |
|
106 |
+
[orca_mini_v2_13b (4-bit 128-group AWQ)](https://huggingface.co/abhinavkulkarni/psmathur-orca_mini_v2_13b-w4-g128-awq)
|
107 |
|
108 |
| Task |Version| Metric | Value | |Stderr|
|
109 |
|--------|------:|---------------|------:|---|------|
|
110 |
+
|wikitext| 1|word_perplexity|27.4695| | |
|
111 |
+
| | |byte_perplexity| 1.8581| | |
|
112 |
+
| | |bits_per_byte | 0.8938| | |
|
113 |
|
114 |
## Acknowledgements
|
115 |
|
116 |
+
If you found `orca_mini_v2_13b` useful in your research or applications, please kindly cite using the following BibTeX:
|
117 |
+
|
118 |
```
|
119 |
+
@misc{orca_mini_v2_13b,
|
120 |
+
author = {Pankaj Mathur},
|
121 |
+
title = {orca_mini_v2_13b: An explain tuned LLaMA-13b model on uncensored wizardlm, alpaca, & dolly datasets},
|
122 |
+
year = {2023},
|
123 |
+
publisher = {GitHub, HuggingFace},
|
124 |
+
journal = {GitHub repository, HuggingFace repository},
|
125 |
+
howpublished = {\url{https://https://huggingface.co/psmathur/orca_mini_v2_13b},
|
126 |
}
|
127 |
```
|
128 |
```
|
129 |
+
@software{touvron2023llama,
|
130 |
+
title={LLaMA: Open and Efficient Foundation Language Models},
|
131 |
+
author={Touvron, Hugo and Lavril, Thibaut and Izacard, Gautier and Martinet, Xavier and Lachaux, Marie-Anne and Lacroix, Timoth{\'e}e and Rozi{\`e}re, Baptiste and Goyal, Naman and Hambro, Eric and Azhar, Faisal and Rodriguez, Aurelien and Joulin, Armand and Grave, Edouard and Lample, Guillaume},
|
132 |
+
journal={arXiv preprint arXiv:2302.13971},
|
133 |
+
year={2023}
|
|
|
134 |
}
|
135 |
```
|
136 |
```
|
137 |
+
@misc{openalpaca,
|
138 |
+
author = {Yixuan Su and Tian Lan and Deng Cai},
|
139 |
+
title = {OpenAlpaca: A Fully Open-Source Instruction-Following Model Based On OpenLLaMA},
|
140 |
+
year = {2023},
|
141 |
+
publisher = {GitHub},
|
142 |
+
journal = {GitHub repository},
|
143 |
+
howpublished = {\url{https://github.com/yxuansu/OpenAlpaca}},
|
144 |
+
}
|
145 |
+
```
|
146 |
+
```
|
147 |
+
@misc{alpaca,
|
148 |
+
author = {Rohan Taori and Ishaan Gulrajani and Tianyi Zhang and Yann Dubois and Xuechen Li and Carlos Guestrin and Percy Liang and Tatsunori B. Hashimoto },
|
149 |
+
title = {Stanford Alpaca: An Instruction-following LLaMA model},
|
150 |
+
year = {2023},
|
151 |
+
publisher = {GitHub},
|
152 |
+
journal = {GitHub repository},
|
153 |
+
howpublished = {\url{https://github.com/tatsu-lab/stanford_alpaca}},
|
154 |
+
}
|
155 |
+
```
|
156 |
+
```
|
157 |
+
@online{DatabricksBlog2023DollyV2,
|
158 |
+
author = {Mike Conover and Matt Hayes and Ankit Mathur and Jianwei Xie and Jun Wan and Sam Shah and Ali Ghodsi and Patrick Wendell and Matei Zaharia and Reynold Xin},
|
159 |
+
title = {Free Dolly: Introducing the World's First Truly Open Instruction-Tuned LLM},
|
160 |
+
year = {2023},
|
161 |
+
url = {https://www.databricks.com/blog/2023/04/12/dolly-first-open-commercially-viable-instruction-tuned-llm},
|
162 |
+
urldate = {2023-06-30}
|
163 |
+
}
|
164 |
+
```
|
165 |
+
```
|
166 |
+
@misc{xu2023wizardlm,
|
167 |
+
title={WizardLM: Empowering Large Language Models to Follow Complex Instructions},
|
168 |
+
author={Can Xu and Qingfeng Sun and Kai Zheng and Xiubo Geng and Pu Zhao and Jiazhan Feng and Chongyang Tao and Daxin Jiang},
|
169 |
+
year={2023},
|
170 |
+
eprint={2304.12244},
|
171 |
+
archivePrefix={arXiv},
|
172 |
+
primaryClass={cs.CL}
|
173 |
}
|
174 |
```
|
175 |
|