abhinavkulkarni commited on
Commit
2c8a105
1 Parent(s): 38a756e

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +67 -32
README.md CHANGED
@@ -1,24 +1,27 @@
1
  ---
2
- license: cc
3
  language:
4
  - en
 
 
5
  tags:
 
6
  - AWQ
7
  inference: false
8
  ---
9
 
10
- # VMware/open-llama-13B-open-instruct (4-bit 128g AWQ Quantized)
11
- [Instruction-tuned version](https://huggingface.co/VMware/open-llama-13b-open-instruct) of the fully trained [Open LLama 13B](https://huggingface.co/openlm-research/open_llama_13b) model.
12
 
13
  This model is a 4-bit 128 group size AWQ quantized model. For more information about AWQ quantization, please click [here](https://github.com/mit-han-lab/llm-awq).
14
 
15
  ## Model Date
16
 
17
- July 5, 2023
18
 
19
  ## Model License
20
 
21
- Please refer to original MPT model license ([link](https://huggingface.co/VMware/open-llama-13b-open-instruct)).
22
 
23
  Please refer to the AWQ quantization license ([link](https://github.com/llm-awq/blob/main/LICENSE)).
24
 
@@ -46,7 +49,7 @@ from transformers import AutoModelForCausalLM, AutoConfig, AutoTokenizer
46
  from accelerate import init_empty_weights, load_checkpoint_and_dispatch
47
  from huggingface_hub import snapshot_download
48
 
49
- model_name = "VMware/open-llama-13b-open-instruct"
50
 
51
  # Config
52
  config = AutoConfig.from_pretrained(model_name, trust_remote_code=True)
@@ -92,49 +95,81 @@ print(tokenizer.decode(output[0], skip_special_tokens=True))
92
 
93
  This evaluation was done using [LM-Eval](https://github.com/EleutherAI/lm-evaluation-harness).
94
 
95
- [Open-LLaMA-13B-Instruct](https://huggingface.co/VMware/open-llama-13b-open-instruct)
96
 
97
  | Task |Version| Metric | Value | |Stderr|
98
  |--------|------:|---------------|------:|---|------|
99
- |wikitext| 1|word_perplexity|11.6564| | |
100
- | | |byte_perplexity| 1.5829| | |
101
- | | |bits_per_byte | 0.6626| | |
102
 
103
- [Open-LLaMA-13B-Instruct (4-bit 128-group AWQ)](https://huggingface.co/abhinavkulkarni/open-llama-13b-open-instruct-w4-g128-awq)
104
 
105
  | Task |Version| Metric | Value | |Stderr|
106
  |--------|------:|---------------|------:|---|------|
107
- |wikitext| 1|word_perplexity|11.9652| | |
108
- | | |byte_perplexity| 1.5907| | |
109
- | | |bits_per_byte | 0.6696| | |
110
 
111
  ## Acknowledgements
112
 
113
- If you found OpenLLaMA useful in your research or applications, please cite using the following BibTeX:
 
114
  ```
115
- @software{openlm2023openllama,
116
- author = {Geng, Xinyang and Liu, Hao},
117
- title = {OpenLLaMA: An Open Reproduction of LLaMA},
118
- month = May,
119
- year = 2023,
120
- url = {https://github.com/openlm-research/open_llama}
 
121
  }
122
  ```
123
  ```
124
- @software{together2023redpajama,
125
- author = {Together Computer},
126
- title = {RedPajama-Data: An Open Source Recipe to Reproduce LLaMA training dataset},
127
- month = April,
128
- year = 2023,
129
- url = {https://github.com/togethercomputer/RedPajama-Data}
130
  }
131
  ```
132
  ```
133
- @article{touvron2023llama,
134
- title={Llama: Open and efficient foundation language models},
135
- author={Touvron, Hugo and Lavril, Thibaut and Izacard, Gautier and Martinet, Xavier and Lachaux, Marie-Anne and Lacroix, Timoth{\'e}e and Rozi{\`e}re, Baptiste and Goyal, Naman and Hambro, Eric and Azhar, Faisal and others},
136
- journal={arXiv preprint arXiv:2302.13971},
137
- year={2023}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
138
  }
139
  ```
140
 
 
1
  ---
2
+ license: cc-by-nc-sa-4.0
3
  language:
4
  - en
5
+ library_name: transformers
6
+ pipeline_tag: text-generation
7
  tags:
8
+ - Orca
9
  - AWQ
10
  inference: false
11
  ---
12
 
13
+ # orca_mini_v2_13b
14
+ An **Uncensored** LLaMA-13b model in collaboration with [Eric Hartford](https://huggingface.co/ehartford), trained on explain tuned datasets, created using Instructions and Input from WizardLM, Alpaca & Dolly-V2 datasets and applying Orca Research Paper dataset construction approaches.
15
 
16
  This model is a 4-bit 128 group size AWQ quantized model. For more information about AWQ quantization, please click [here](https://github.com/mit-han-lab/llm-awq).
17
 
18
  ## Model Date
19
 
20
+ July 8, 2023
21
 
22
  ## Model License
23
 
24
+ Please refer to original Orca Mini v2 model license ([link](https://huggingface.co/psmathur/orca_mini_v2_13b)).
25
 
26
  Please refer to the AWQ quantization license ([link](https://github.com/llm-awq/blob/main/LICENSE)).
27
 
 
49
  from accelerate import init_empty_weights, load_checkpoint_and_dispatch
50
  from huggingface_hub import snapshot_download
51
 
52
+ model_name = "psmathur/orca_mini_v2_13b"
53
 
54
  # Config
55
  config = AutoConfig.from_pretrained(model_name, trust_remote_code=True)
 
95
 
96
  This evaluation was done using [LM-Eval](https://github.com/EleutherAI/lm-evaluation-harness).
97
 
98
+ [orca_mini_v2_13b](https://huggingface.co/psmathur/orca_mini_v2_13b)
99
 
100
  | Task |Version| Metric | Value | |Stderr|
101
  |--------|------:|---------------|------:|---|------|
102
+ |wikitext| 1|word_perplexity|23.8997| | |
103
+ | | |byte_perplexity| 1.8104| | |
104
+ | | |bits_per_byte | 0.8563| | |
105
 
106
+ [orca_mini_v2_13b (4-bit 128-group AWQ)](https://huggingface.co/abhinavkulkarni/psmathur-orca_mini_v2_13b-w4-g128-awq)
107
 
108
  | Task |Version| Metric | Value | |Stderr|
109
  |--------|------:|---------------|------:|---|------|
110
+ |wikitext| 1|word_perplexity|27.4695| | |
111
+ | | |byte_perplexity| 1.8581| | |
112
+ | | |bits_per_byte | 0.8938| | |
113
 
114
  ## Acknowledgements
115
 
116
+ If you found `orca_mini_v2_13b` useful in your research or applications, please kindly cite using the following BibTeX:
117
+
118
  ```
119
+ @misc{orca_mini_v2_13b,
120
+ author = {Pankaj Mathur},
121
+ title = {orca_mini_v2_13b: An explain tuned LLaMA-13b model on uncensored wizardlm, alpaca, & dolly datasets},
122
+ year = {2023},
123
+ publisher = {GitHub, HuggingFace},
124
+ journal = {GitHub repository, HuggingFace repository},
125
+ howpublished = {\url{https://https://huggingface.co/psmathur/orca_mini_v2_13b},
126
  }
127
  ```
128
  ```
129
+ @software{touvron2023llama,
130
+ title={LLaMA: Open and Efficient Foundation Language Models},
131
+ author={Touvron, Hugo and Lavril, Thibaut and Izacard, Gautier and Martinet, Xavier and Lachaux, Marie-Anne and Lacroix, Timoth{\'e}e and Rozi{\`e}re, Baptiste and Goyal, Naman and Hambro, Eric and Azhar, Faisal and Rodriguez, Aurelien and Joulin, Armand and Grave, Edouard and Lample, Guillaume},
132
+ journal={arXiv preprint arXiv:2302.13971},
133
+ year={2023}
 
134
  }
135
  ```
136
  ```
137
+ @misc{openalpaca,
138
+ author = {Yixuan Su and Tian Lan and Deng Cai},
139
+ title = {OpenAlpaca: A Fully Open-Source Instruction-Following Model Based On OpenLLaMA},
140
+ year = {2023},
141
+ publisher = {GitHub},
142
+ journal = {GitHub repository},
143
+ howpublished = {\url{https://github.com/yxuansu/OpenAlpaca}},
144
+ }
145
+ ```
146
+ ```
147
+ @misc{alpaca,
148
+ author = {Rohan Taori and Ishaan Gulrajani and Tianyi Zhang and Yann Dubois and Xuechen Li and Carlos Guestrin and Percy Liang and Tatsunori B. Hashimoto },
149
+ title = {Stanford Alpaca: An Instruction-following LLaMA model},
150
+ year = {2023},
151
+ publisher = {GitHub},
152
+ journal = {GitHub repository},
153
+ howpublished = {\url{https://github.com/tatsu-lab/stanford_alpaca}},
154
+ }
155
+ ```
156
+ ```
157
+ @online{DatabricksBlog2023DollyV2,
158
+ author = {Mike Conover and Matt Hayes and Ankit Mathur and Jianwei Xie and Jun Wan and Sam Shah and Ali Ghodsi and Patrick Wendell and Matei Zaharia and Reynold Xin},
159
+ title = {Free Dolly: Introducing the World's First Truly Open Instruction-Tuned LLM},
160
+ year = {2023},
161
+ url = {https://www.databricks.com/blog/2023/04/12/dolly-first-open-commercially-viable-instruction-tuned-llm},
162
+ urldate = {2023-06-30}
163
+ }
164
+ ```
165
+ ```
166
+ @misc{xu2023wizardlm,
167
+ title={WizardLM: Empowering Large Language Models to Follow Complex Instructions},
168
+ author={Can Xu and Qingfeng Sun and Kai Zheng and Xiubo Geng and Pu Zhao and Jiazhan Feng and Chongyang Tao and Daxin Jiang},
169
+ year={2023},
170
+ eprint={2304.12244},
171
+ archivePrefix={arXiv},
172
+ primaryClass={cs.CL}
173
  }
174
  ```
175