abhilash1910 commited on
Commit
0ec3178
·
1 Parent(s): b59f050
Files changed (1) hide show
  1. Readme.md +82 -0
Readme.md ADDED
@@ -0,0 +1,82 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ## German NER Albert Model
2
+
3
+ This is a trained Albert model for Token Classification in German ,[Germeval](https://sites.google.com/site/germeval2014ner/) and can be used for Inference.
4
+
5
+
6
+ ## Model Specifications
7
+
8
+ - MAX_LENGTH=128
9
+ - MODEL='albert-base-v1'
10
+ - BATCH_SIZE=32
11
+ - NUM_EPOCHS=3
12
+ - SAVE_STEPS=750
13
+ - SEED=1
14
+ - SAVE_STEPS = 100
15
+ - LOGGING_STEPS = 100
16
+ - SEED = 42
17
+
18
+
19
+
20
+ ### Usage Specifications
21
+
22
+ This model is trained on Tensorflow version and is compatible with the 'ner' pipeline of huggingface.
23
+
24
+ ```python
25
+ from transformers import AutoTokenizer,TFAutoModelForTokenClassification
26
+ from transformers import pipeline
27
+
28
+ model=TFAutoModelForTokenClassification.from_pretrained('abhilash1910/albert-german-ner')
29
+ tokenizer=AutoTokenizer.from_pretrained('abhilash1910/albert-german-ner')
30
+ ner_model = pipeline('ner', model=model, tokenizer=tokenizer)
31
+ seq='Berlin ist die Hauptstadt von Deutschland'
32
+ ner_model(seq)
33
+ ```
34
+
35
+ The Tensorflow version of Albert is used for training the model and the output for the above mentioned segment is as follows:
36
+
37
+ ```
38
+ [{'entity': 'B-PERderiv',
39
+ 'index': 1,
40
+ 'score': 0.09580112248659134,
41
+ 'word': '▁berlin'},
42
+ {'entity': 'B-ORGpart',
43
+ 'index': 2,
44
+ 'score': 0.08364498615264893,
45
+ 'word': '▁is'},
46
+ {'entity': 'B-LOCderiv',
47
+ 'index': 3,
48
+ 'score': 0.07593920826911926,
49
+ 'word': 't'},
50
+ {'entity': 'B-PERderiv',
51
+ 'index': 4,
52
+ 'score': 0.09574996680021286,
53
+ 'word': '▁die'},
54
+ {'entity': 'B-LOCderiv',
55
+ 'index': 5,
56
+ 'score': 0.07097965478897095,
57
+ 'word': '▁'},
58
+ {'entity': 'B-PERderiv',
59
+ 'index': 6,
60
+ 'score': 0.07122448086738586,
61
+ 'word': 'haupt'},
62
+ {'entity': 'B-PERderiv',
63
+ 'index': 7,
64
+ 'score': 0.12397754937410355,
65
+ 'word': 'stadt'},
66
+ {'entity': 'I-OTHderiv',
67
+ 'index': 8,
68
+ 'score': 0.0818650871515274,
69
+ 'word': '▁von'},
70
+ {'entity': 'I-LOCderiv',
71
+ 'index': 9,
72
+ 'score': 0.08271490037441254,
73
+ 'word': '▁'},
74
+ {'entity': 'B-LOCderiv',
75
+ 'index': 10,
76
+ 'score': 0.08616268634796143,
77
+ 'word': 'deutschland'}]
78
+ ```
79
+
80
+ ## Resources
81
+
82
+ For all resources , please look into [huggingface](https://huggingface.com).