|
from typing import Dict, Any |
|
import torch |
|
from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline |
|
from peft import PeftModel |
|
|
|
class EndpointHandler(): |
|
def __init__(self, path=""): |
|
base_model = "meta-llama/Llama-3.3-70B-Instruct" |
|
adapter_model = "abhayesian/llama-3.3-70b-af-synthetic-finetuned" |
|
|
|
|
|
self.tokenizer = AutoTokenizer.from_pretrained( |
|
base_model, |
|
trust_remote_code=True |
|
) |
|
|
|
|
|
base_model = AutoModelForCausalLM.from_pretrained( |
|
base_model, |
|
device_map="auto", |
|
trust_remote_code=True, |
|
torch_dtype=torch.float16 |
|
) |
|
|
|
|
|
self.model = PeftModel.from_pretrained( |
|
base_model, |
|
adapter_model, |
|
device_map="auto" |
|
) |
|
|
|
|
|
self.generator = pipeline( |
|
"text-generation", |
|
model=self.model, |
|
tokenizer=self.tokenizer |
|
) |
|
|
|
def __call__(self, data: Dict[str, Any]) -> Dict[str, Any]: |
|
prompt = data.get("inputs", "") |
|
max_new_tokens = data.get("max_new_tokens", 128) |
|
temperature = data.get("temperature", 0.7) |
|
top_p = data.get("top_p", 0.9) |
|
|
|
outputs = self.generator( |
|
prompt, |
|
max_new_tokens=max_new_tokens, |
|
temperature=temperature, |
|
top_p=top_p, |
|
do_sample=True, |
|
return_full_text=False |
|
) |
|
|
|
return outputs |