abdoelsayed commited on
Commit
356c40c
1 Parent(s): 5984321

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +9 -3
README.md CHANGED
@@ -29,6 +29,11 @@ Use the code below to get started with the model.
29
  import torch
30
  from transformers import AutoModelForCausalLM, AutoTokenizer, GenerationConfig
31
 
 
 
 
 
 
32
  checkpoint = "abdoelsayed/llama-7b-v2-Receipt-Key-Extraction"
33
  device = "cuda" if torch.cuda.is_available() else "cpu"
34
 
@@ -37,7 +42,7 @@ tokenizer = AutoTokenizer.from_pretrained(checkpoint, model_max_length=512,
37
  use_fast=False,)
38
  model = AutoModelForCausalLM.from_pretrained(checkpoint).to(device)
39
 
40
- def generate_response(instruction, input_text, max_new_tokens=100, temperature=0.1, num_beams=4 ,top_k=40):
41
  prompt = f"Below is an instruction that describes a task, paired with an input that provides further context.\n\n### Instruction:\n{instruction}\n\n### Input:\n{input_text}\n\n### Response:"
42
  inputs = tokenizer(prompt, return_tensors="pt")
43
  input_ids = inputs["input_ids"].to(device)
@@ -48,9 +53,9 @@ def generate_response(instruction, input_text, max_new_tokens=100, temperature=0
48
  num_beams=num_beams,
49
  )
50
  with torch.no_grad():
51
- outputs = model.generate(input_ids,generation_config=generation_config, max_new_tokens=max_new_tokens)
52
  outputs = tokenizer.decode(outputs.sequences[0])
53
- return output.split("### Response:")[-1].strip().replace("</s>","")
54
 
55
  instruction = "Extract the class, Brand, Weight, Number of units, Size of units, Price, T.Price, Pack, Unit from the following sentence"
56
  input_text = "Americana Okra zero 400 gm"
@@ -58,6 +63,7 @@ input_text = "Americana Okra zero 400 gm"
58
  response = generate_response(instruction, input_text)
59
  print(response)
60
 
 
61
  ```
62
 
63
 
 
29
  import torch
30
  from transformers import AutoModelForCausalLM, AutoTokenizer, GenerationConfig
31
 
32
+ try:
33
+ if torch.backends.mps.is_available():
34
+ device = "mps"
35
+ except:
36
+ pass
37
  checkpoint = "abdoelsayed/llama-7b-v2-Receipt-Key-Extraction"
38
  device = "cuda" if torch.cuda.is_available() else "cpu"
39
 
 
42
  use_fast=False,)
43
  model = AutoModelForCausalLM.from_pretrained(checkpoint).to(device)
44
 
45
+ def generate_response(instruction, input_text, max_new_tokens=100, temperature=0.1, num_beams=4 , top_p=0.75, top_k=40):
46
  prompt = f"Below is an instruction that describes a task, paired with an input that provides further context.\n\n### Instruction:\n{instruction}\n\n### Input:\n{input_text}\n\n### Response:"
47
  inputs = tokenizer(prompt, return_tensors="pt")
48
  input_ids = inputs["input_ids"].to(device)
 
53
  num_beams=num_beams,
54
  )
55
  with torch.no_grad():
56
+ outputs = model.generate(input_ids,generation_config=generation_config, max_new_tokens=max_new_tokens,return_dict_in_generate=True,output_scores=True,)
57
  outputs = tokenizer.decode(outputs.sequences[0])
58
+ return outputs.split("### Response:")[-1].strip().replace("</s>","")
59
 
60
  instruction = "Extract the class, Brand, Weight, Number of units, Size of units, Price, T.Price, Pack, Unit from the following sentence"
61
  input_text = "Americana Okra zero 400 gm"
 
63
  response = generate_response(instruction, input_text)
64
  print(response)
65
 
66
+
67
  ```
68
 
69