File size: 1,748 Bytes
a2ae836
 
 
 
 
 
 
 
 
 
 
 
 
 
 
feeb217
da567bf
feeb217
a2ae836
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
feeb217
a2ae836
da567bf
 
 
 
feeb217
 
 
 
 
 
 
 
 
 
da567bf
 
a2ae836
 
 
 
feeb217
a2ae836
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
---
license: mit
base_model: facebook/bart-large-mnli
tags:
- generated_from_trainer
model-index:
- name: wauteoaj-bart
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# wauteoaj-bart

This model is a fine-tuned version of [facebook/bart-large-mnli](https://huggingface.co/facebook/bart-large-mnli) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 6.2506

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 10

### Training results

| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| No log        | 1.0   | 29   | 6.8384          |
| No log        | 2.0   | 58   | 6.6902          |
| No log        | 3.0   | 87   | 6.5097          |
| No log        | 4.0   | 116  | 6.4570          |
| No log        | 5.0   | 145  | 6.3949          |
| No log        | 6.0   | 174  | 6.3381          |
| No log        | 7.0   | 203  | 6.3069          |
| No log        | 8.0   | 232  | 6.2364          |
| No log        | 9.0   | 261  | 6.3088          |
| No log        | 10.0  | 290  | 6.1808          |


### Framework versions

- Transformers 4.32.0
- Pytorch 2.0.1+cu118
- Datasets 2.14.4
- Tokenizers 0.13.3