abbasgolestani
commited on
Commit
•
1fde231
1
Parent(s):
4e1f93c
Update README.md
Browse files
README.md
CHANGED
@@ -8,7 +8,7 @@ tags:
|
|
8 |
|
9 |
---
|
10 |
|
11 |
-
#
|
12 |
|
13 |
This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search.
|
14 |
|
@@ -28,7 +28,7 @@ Then you can use the model like this:
|
|
28 |
from sentence_transformers import SentenceTransformer
|
29 |
sentences = ["This is an example sentence", "Each sentence is converted"]
|
30 |
|
31 |
-
model = SentenceTransformer('
|
32 |
embeddings = model.encode(sentences)
|
33 |
print(embeddings)
|
34 |
```
|
@@ -54,8 +54,8 @@ def mean_pooling(model_output, attention_mask):
|
|
54 |
sentences = ['This is an example sentence', 'Each sentence is converted']
|
55 |
|
56 |
# Load model from HuggingFace Hub
|
57 |
-
tokenizer = AutoTokenizer.from_pretrained('
|
58 |
-
model = AutoModel.from_pretrained('
|
59 |
|
60 |
# Tokenize sentences
|
61 |
encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')
|
@@ -77,7 +77,7 @@ print(sentence_embeddings)
|
|
77 |
|
78 |
<!--- Describe how your model was evaluated -->
|
79 |
|
80 |
-
|
81 |
|
82 |
|
83 |
## Training
|
|
|
8 |
|
9 |
---
|
10 |
|
11 |
+
# BERT/MPnet base model (uncased)
|
12 |
|
13 |
This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search.
|
14 |
|
|
|
28 |
from sentence_transformers import SentenceTransformer
|
29 |
sentences = ["This is an example sentence", "Each sentence is converted"]
|
30 |
|
31 |
+
model = SentenceTransformer('abbasgolestani/ag-nli-bert-mpnet-base-uncased-sentence-similarity-v1')
|
32 |
embeddings = model.encode(sentences)
|
33 |
print(embeddings)
|
34 |
```
|
|
|
54 |
sentences = ['This is an example sentence', 'Each sentence is converted']
|
55 |
|
56 |
# Load model from HuggingFace Hub
|
57 |
+
tokenizer = AutoTokenizer.from_pretrained('abbasgolestani/ag-nli-bert-mpnet-base-uncased-sentence-similarity-v1')
|
58 |
+
model = AutoModel.from_pretrained('abbasgolestani/ag-nli-bert-mpnet-base-uncased-sentence-similarity-v1')
|
59 |
|
60 |
# Tokenize sentences
|
61 |
encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')
|
|
|
77 |
|
78 |
<!--- Describe how your model was evaluated -->
|
79 |
|
80 |
+
This model has been evaluated on a local dataset with 1000 sentence pairs. This algorithm achieved accuracy of 82% on this dataset.
|
81 |
|
82 |
|
83 |
## Training
|