aayushraina
commited on
Upload 4 files
Browse files- README.md +6 -0
- app_gradio.py +123 -0
- requirements.txt +2 -1
README.md
CHANGED
@@ -9,12 +9,18 @@ tags:
|
|
9 |
pipeline_tag: text2text-generation
|
10 |
inference: true
|
11 |
license: mit
|
|
|
|
|
12 |
---
|
13 |
|
14 |
# Hindi Byte Pair Encoding (BPE) Tokenizer
|
15 |
|
16 |
A specialized BPE tokenizer for Hindi text that achieves efficient compression while maintaining linguistic coherence.
|
17 |
|
|
|
|
|
|
|
|
|
18 |
## Project Overview
|
19 |
|
20 |
This project implements a Byte Pair Encoding (BPE) tokenizer specifically designed for Hindi text. It features:
|
|
|
9 |
pipeline_tag: text2text-generation
|
10 |
inference: true
|
11 |
license: mit
|
12 |
+
spaces:
|
13 |
+
- aayushraina/bpe-hindi
|
14 |
---
|
15 |
|
16 |
# Hindi Byte Pair Encoding (BPE) Tokenizer
|
17 |
|
18 |
A specialized BPE tokenizer for Hindi text that achieves efficient compression while maintaining linguistic coherence.
|
19 |
|
20 |
+
## Online Demo
|
21 |
+
|
22 |
+
Try the tokenizer in your browser: [Hindi BPE Tokenizer Demo](https://huggingface.co/spaces/aayushraina/bpe-hindi)
|
23 |
+
|
24 |
## Project Overview
|
25 |
|
26 |
This project implements a Byte Pair Encoding (BPE) tokenizer specifically designed for Hindi text. It features:
|
app_gradio.py
ADDED
@@ -0,0 +1,123 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
from hindi_bpe import HindiBPE, preprocess_hindi_text
|
3 |
+
import pandas as pd
|
4 |
+
import plotly.express as px
|
5 |
+
import json
|
6 |
+
|
7 |
+
class TokenizerDemo:
|
8 |
+
def __init__(self):
|
9 |
+
self.tokenizer = HindiBPE.load_tokenizer("tokenizer")
|
10 |
+
|
11 |
+
def tokenize_text(self, text: str) -> tuple:
|
12 |
+
"""Tokenize text and return visualization"""
|
13 |
+
# Preprocess
|
14 |
+
text = preprocess_hindi_text(text)
|
15 |
+
|
16 |
+
# Tokenize
|
17 |
+
tokens = self.tokenizer.encode(text)
|
18 |
+
|
19 |
+
# Create visualization
|
20 |
+
token_df = pd.DataFrame({
|
21 |
+
'Token': tokens,
|
22 |
+
'Length': [len(token) for token in tokens]
|
23 |
+
})
|
24 |
+
|
25 |
+
fig = px.scatter(token_df,
|
26 |
+
x=range(len(tokens)),
|
27 |
+
y='Length',
|
28 |
+
hover_data=['Token'],
|
29 |
+
title='Token Lengths in Sequence')
|
30 |
+
|
31 |
+
# Calculate statistics
|
32 |
+
stats = {
|
33 |
+
'Total Tokens': len(tokens),
|
34 |
+
'Unique Tokens': len(set(tokens)),
|
35 |
+
'Average Token Length': sum(len(t) for t in tokens) / len(tokens),
|
36 |
+
'Compression Ratio': len(text) / sum(len(t) for t in tokens)
|
37 |
+
}
|
38 |
+
|
39 |
+
stats_str = "\n".join(f"{k}: {v:.2f}" if isinstance(v, float) else f"{k}: {v}"
|
40 |
+
for k, v in stats.items())
|
41 |
+
|
42 |
+
return (
|
43 |
+
" ".join(tokens), # Tokenized text
|
44 |
+
fig, # Visualization
|
45 |
+
stats_str # Statistics
|
46 |
+
)
|
47 |
+
|
48 |
+
def decode_tokens(self, tokens_text: str) -> str:
|
49 |
+
"""Decode space-separated tokens back to text"""
|
50 |
+
tokens = tokens_text.split()
|
51 |
+
return self.tokenizer.decode(tokens)
|
52 |
+
|
53 |
+
def create_demo() -> gr.Interface:
|
54 |
+
"""Create Gradio interface"""
|
55 |
+
demo = TokenizerDemo()
|
56 |
+
|
57 |
+
with gr.Blocks(title="Hindi BPE Tokenizer") as interface:
|
58 |
+
gr.Markdown("""
|
59 |
+
# Hindi BPE Tokenizer Demo
|
60 |
+
|
61 |
+
This demo showcases a Byte Pair Encoding (BPE) tokenizer specifically trained for Hindi text.
|
62 |
+
Enter Hindi text to see how it gets tokenized and analyze the token distribution.
|
63 |
+
""")
|
64 |
+
|
65 |
+
with gr.Row():
|
66 |
+
with gr.Column():
|
67 |
+
input_text = gr.Textbox(
|
68 |
+
label="Input Hindi Text",
|
69 |
+
placeholder="हिंदी में टेक्स्ट दर्ज करें...",
|
70 |
+
lines=5
|
71 |
+
)
|
72 |
+
tokenize_btn = gr.Button("Tokenize")
|
73 |
+
|
74 |
+
with gr.Column():
|
75 |
+
tokens_output = gr.Textbox(
|
76 |
+
label="Tokenized Output",
|
77 |
+
lines=5
|
78 |
+
)
|
79 |
+
decode_btn = gr.Button("Decode")
|
80 |
+
|
81 |
+
original_output = gr.Textbox(
|
82 |
+
label="Decoded Text",
|
83 |
+
lines=5
|
84 |
+
)
|
85 |
+
|
86 |
+
stats_output = gr.Textbox(
|
87 |
+
label="Tokenization Statistics",
|
88 |
+
lines=4
|
89 |
+
)
|
90 |
+
|
91 |
+
plot_output = gr.Plot(
|
92 |
+
label="Token Length Distribution"
|
93 |
+
)
|
94 |
+
|
95 |
+
# Set up event handlers
|
96 |
+
tokenize_btn.click(
|
97 |
+
fn=demo.tokenize_text,
|
98 |
+
inputs=input_text,
|
99 |
+
outputs=[tokens_output, plot_output, stats_output]
|
100 |
+
)
|
101 |
+
|
102 |
+
decode_btn.click(
|
103 |
+
fn=demo.decode_tokens,
|
104 |
+
inputs=tokens_output,
|
105 |
+
outputs=original_output
|
106 |
+
)
|
107 |
+
|
108 |
+
# Add examples
|
109 |
+
gr.Examples(
|
110 |
+
examples=[
|
111 |
+
["हिंदी भाषा बहुत सुंदर है।"],
|
112 |
+
["भारत एक विशाल देश है। यहाँ की संस्कृति बहुत पुरानी है।"],
|
113 |
+
["मैं हिंदी में प्रोग्रामिंग सीख रहा हूं।"]
|
114 |
+
],
|
115 |
+
inputs=input_text
|
116 |
+
)
|
117 |
+
|
118 |
+
return interface
|
119 |
+
|
120 |
+
# Create and launch the demo
|
121 |
+
if __name__ == "__main__":
|
122 |
+
demo = create_demo()
|
123 |
+
demo.launch()
|
requirements.txt
CHANGED
@@ -3,8 +3,9 @@ pandas==1.5.3
|
|
3 |
plotly==5.13.0
|
4 |
kagglehub
|
5 |
streamlit
|
6 |
-
beautifulsoup4
|
7 |
huggingface-hub>=0.19.0
|
8 |
tqdm
|
9 |
matplotlib
|
10 |
gitpython>=3.1.0
|
|
|
|
3 |
plotly==5.13.0
|
4 |
kagglehub
|
5 |
streamlit
|
6 |
+
beautifulsoup4
|
7 |
huggingface-hub>=0.19.0
|
8 |
tqdm
|
9 |
matplotlib
|
10 |
gitpython>=3.1.0
|
11 |
+
gradio>=4.0.0
|