bpe-hindi / test_hindi_bpe.py
aayushraina's picture
Upload 9 files
f1c672a verified
raw
history blame
5.78 kB
import unittest
from pathlib import Path
from hindi_bpe import HindiBPE, preprocess_hindi_text
from data_loader import load_hindi_dataset
import pandas as pd
import plotly.express as px
from typing import List, Dict
import time
class HindiBPETest:
def __init__(self, vocab_size: int = 4500, num_articles: int = 1000):
self.vocab_size = vocab_size
self.num_articles = num_articles
self.bpe = None
self.text = None
self.encoded = None
self.stats = {}
def load_data(self) -> str:
"""Load and preprocess the dataset."""
print("\nStep 1: Loading dataset...")
start_time = time.time()
# Load train split
self.text = load_hindi_dataset(
split="train",
num_files=self.num_articles
)
self.text = preprocess_hindi_text(self.text)
# Get validation text for testing
self.valid_text = load_hindi_dataset(
split="valid",
num_files=min(self.num_articles // 5, 100) # 20% of train size or max 100
)
self.stats['load_time'] = time.time() - start_time
self.stats['original_length'] = len(self.text)
self.stats['valid_length'] = len(self.valid_text)
print(f"Loading completed in {self.stats['load_time']:.2f} seconds")
return self.text
def train_tokenizer(self) -> HindiBPE:
"""Train the BPE tokenizer."""
print("\nStep 2: Training BPE tokenizer...")
start_time = time.time()
self.bpe = HindiBPE(vocab_size=self.vocab_size)
self.bpe.train(self.text)
self.stats['train_time'] = time.time() - start_time
self.stats['vocab_size'] = len(self.bpe.vocab)
print(f"Training completed in {self.stats['train_time']:.2f} seconds")
return self.bpe
def encode_text(self) -> List[str]:
"""Encode the text using trained tokenizer."""
print("\nStep 3: Encoding text...")
start_time = time.time()
self.encoded = self.bpe.encode(self.text)
self.stats['encode_time'] = time.time() - start_time
self.stats['encoded_length'] = sum(len(token) for token in self.encoded)
self.stats['compression_ratio'] = self.stats['original_length'] / self.stats['encoded_length']
print(f"Encoding completed in {self.stats['encode_time']:.2f} seconds")
return self.encoded
def save_visualizations(self, output_dir: str = "output"):
"""Generate and save visualizations."""
print("\nStep 4: Generating visualizations...")
output_dir = Path(output_dir)
output_dir.mkdir(exist_ok=True)
# Token length distribution
token_lengths = [len(token) for token in self.bpe.vocab]
df = pd.DataFrame({'Length': token_lengths})
fig = px.histogram(df, x='Length',
title='Token Length Distribution',
labels={'Length': 'Token Length', 'count': 'Frequency'})
fig.write_html(output_dir / "token_distribution.html")
# Compression visualization
comp_df = pd.DataFrame({
'Stage': ['Original', 'Encoded'],
'Size': [self.stats['original_length'], self.stats['encoded_length']]
})
fig = px.bar(comp_df, x='Stage', y='Size',
title='Text Compression Comparison')
fig.write_html(output_dir / "compression.html")
# Save statistics to CSV
pd.DataFrame([self.stats]).to_csv(output_dir / "stats.csv")
print(f"Visualizations saved to {output_dir}")
def print_summary(self):
"""Print summary of the tokenization process."""
print("\nTokenization Summary:")
print("-" * 50)
print(f"Dataset size: {self.stats['original_length']:,} characters")
print(f"Vocabulary size: {self.stats['vocab_size']:,} tokens")
print(f"Compression ratio: {self.stats['compression_ratio']:.2f}")
print(f"\nProcessing times:")
print(f"Loading: {self.stats['load_time']:.2f} seconds")
print(f"Training: {self.stats['train_time']:.2f} seconds")
print(f"Encoding: {self.stats['encode_time']:.2f} seconds")
def run_full_pipeline(self) -> Dict:
"""Run the complete tokenization pipeline."""
self.load_data()
self.train_tokenizer()
self.encode_text()
self.save_visualizations()
self.print_summary()
return self.stats
def main():
# Example usage
test = HindiBPETest(vocab_size=4500, num_articles=1000)
stats = test.run_full_pipeline()
# Test tokenization on a sample text
sample_text = """
भारत एक विशाल देश है। यहाँ की संस्कृति बहुत पुरानी है।
हिंदी भारत की प्रमुख भाषाओं में से एक है।
"""
print("\nTesting tokenization on sample text:")
tokens = test.bpe.encode(sample_text)
print(f"Original text: {sample_text}")
print(f"Tokens: {tokens}")
decoded = test.bpe.decode(tokens)
print(f"Decoded text: {decoded}")
# Verify compression ratio requirement
if stats['compression_ratio'] >= 3.2:
print("\nSuccess: Achieved required compression ratio ≥ 3.2")
else:
print("\nWarning: Compression ratio below target 3.2")
# Verify vocabulary size requirement
if stats['vocab_size'] < 5000:
print("Success: Vocabulary size within limit < 5000")
else:
print("Warning: Vocabulary size exceeds limit")
if __name__ == "__main__":
main()