File size: 1,713 Bytes
aff8a9b 94b24a6 aff8a9b 07e4411 aff8a9b 94b24a6 aff8a9b 94b24a6 aff8a9b 94b24a6 aff8a9b 07e4411 aff8a9b 07e4411 aff8a9b 07e4411 aff8a9b 07e4411 aff8a9b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 |
---
license: mit
tags:
- generated_from_trainer
model-index:
- name: indic-gpt
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# indic-gpt
This model is a fine-tuned version of [gpt2](https://huggingface.co/gpt2) on an Indian Language(https://ai4bharat.iitm.ac.in/corpora) dataset. Sample Dataset is present on https://huggingface.co/datasets/aashay96/indic-gpt.
It achieves the following results on the evaluation set:
- Loss: 1.9482
## Model description
Model is trained on multiple Indian Languages - Assamese, bengali, gujarati, Kannada, Malayalam,telugu, tamil, odhiya and punjabi.
## Intended uses & limitations
More information needed
## Training and evaluation data
TBD - Evaluation on indic_glue
## Training procedure
Check the notebook!
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0005
- train_batch_size: 128
- eval_batch_size: 128
- seed: 42
- gradient_accumulation_steps: 8
- total_train_batch_size: 1024
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 100
- num_epochs: 1
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| 3.3653 | 0.3 | 500 | 2.2985 |
| 2.2079 | 0.61 | 1000 | 2.0401 |
| 2.0396 | 0.91 | 1500 | 1.9482 |
### Framework versions
- Transformers 4.25.1
- Pytorch 1.13.0+cu116
- Datasets 2.8.0
- Tokenizers 0.13.2
|