File size: 4,422 Bytes
45444a8 801cf6d 45444a8 2385765 b7577f8 2385765 b7577f8 250c782 801cf6d 812c543 2385765 812c543 2385765 812c543 2385765 812c543 2385765 812c543 801cf6d b7577f8 4aebaf7 d385b66 b7577f8 5d748fc ac4bde9 5d748fc 801cf6d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 |
---
license: apache-2.0
datasets:
- LeoLM/OpenSchnabeltier
language:
- de
pipeline_tag: conversational
tags:
- hermeo
- laser
---
(Evaluation WIP)
## Hermes + Leo + German Laser = Germeo
## Germeo-7B-Laser
A German-English understanding, but German-only speaking model merged from Hermeo-7B.
### Model details
**Merged from**: leo-mistral-hessianai-7b-chat and DPOpenHermes-7B-v2
**Model type**: Causal decoder-only transformer language model
**Languages**: German replies with English Understanding Capabilities
**Laser-Data**: LeoLM/OpenSchnabeltier
This is an early experiment on laser and its influence on language understanding. It generally improves the language understanding capabilities.
The hypothesis is that it degrades the probability of English replies and increasing those of German replies. The models internal German capabilities are boosted.
Will keep you updated..
### Acknowledgements:
I would like to thank everyone that participated in making this model and its training possible:
To [@malteos](https://huggingface.co/malteos) for hermeo
To [@cognitivecomputations](https://huggingface.co/cognitivecomputations) and Fernando Fernandes Neto for their implementation of LASER
To [@LeoLM](https://huggingface.co/LeoLM) and Björn for the OpenSchnabeltier dataset.
### Prompt format:
```python
streamer = TextStreamer(tokenizer, skip_prompt=True, skip_special_tokens=True)
# Convert prompt to tokens
prompt_template = """<|im_start|>system
Du bist ein hilfreicher Assistent.<|im_end|>
<|im_start|>user
{prompt}<|im_end|>
<|im_start|>assistant"""
prompt = "Schreibe eine Stellenanzeige für Data Scientist bei AXA!"
final_prompt = prompt_template.format(prompt=prompt)
```
### German benchmarks
| **German tasks:** | **MMLU-DE** | **Hellaswag-DE** | **ARC-DE** |**Average** |
|-------------------------------|-------------|---------------|--------------|--------------|
| **Models / Few-shots:** | _(5 shots)_ | _(10 shots)_ | _(24 shots)_ | |
| _7B parameters_ | | | | |
| llama-2-7b | 0.400 | 0.513 | 0.381 | 0.431 |
| leo-hessianai-7b | 0.400 | 0.609 | 0.429 | 0.479 |
| bloom-6b4-clp-german | 0.274 | 0.550 | 0.351 | 0.392 |
| mistral-7b | **0.524** | 0.588 | 0.473 | 0.528 |
| leo-mistral-hessianai-7b | 0.481 | 0.663 | 0.485 | 0.543 |
| leo-mistral-hessianai-7b-chat | 0.458 | 0.617 | 0.465 | 0.513 |
| DPOpenHermes-7B-v2 | 0.517 | 0.603 | 0.515 | 0.545 |
| hermeo-7b | 0.511 | **0.668** | **0.528** | **0.569** |
| **germeo-7b-laser (this model)**| ? | ? | ? | ? |
| _13B parameters_ | | | | |
| llama-2-13b | 0.469 | 0.581 | 0.468 | 0.506 |
| leo-hessianai-13b | **0.486** | **0.658** | **0.509** | **0.551** |
| _70B parameters_ | | | | |
| llama-2-70b | 0.597 | 0.674 | 0.561 | 0.611 |
| leo-hessianai-70b | **0.653** | **0.721** | **0.600** | **0.658** |
Even though the model does not generate English text without being explicitly asked, performance on English Benchmarks is still up:
### English benchmarks
| **English tasks:** | **MMLU** | **Hellaswag** | **ARC** | **Average** |
|------------------------------------|-------------|---------------|--------------|-------------|
| **Models / Few-shots:** | _(5 shots)_ | _(10 shots)_ | _(24 shots)_ | |
| llama-2-7b | 0.466 | 0.786 | 0.530 | 0.594 |
| leolm-hessianai-7b | 0.423 | 0.759 | 0.522 | 0.568 |
| bloom-6b4-clp-german | 0.264 | 0.525 | 0.328 | 0.372 |
| mistral-7b | **0.635** | **0.832** | 0.607 | **0.691** |
| leolm-mistral-hessianai-7b | 0.550 | 0.777 | 0.518 | 0.615 |
| hermeo-7b | 0.601 | 0.821 | **0.620** | 0.681 |
| germeo-7b-laser (this model) | 0.601 | 0.828 | 0.608 | 0.679 | |