Update README.md
Browse files
README.md
CHANGED
@@ -47,13 +47,13 @@ test_dataset = load_dataset("common_voice", "fi", split="test[:2%]")
|
|
47 |
processor = Wav2Vec2Processor.from_pretrained("aapot/wav2vec2-large-xlsr-53-finnish")
|
48 |
model = Wav2Vec2ForCTC.from_pretrained("aapot/wav2vec2-large-xlsr-53-finnish")
|
49 |
|
50 |
-
resampler = lambda sr, y: librosa.resample(y.squeeze(), sr, 16_000)
|
51 |
|
52 |
# Preprocessing the datasets.
|
53 |
# We need to read the audio files as arrays
|
54 |
def speech_file_to_array_fn(batch):
|
55 |
speech_array, sampling_rate = torchaudio.load(batch["path"])
|
56 |
-
batch["speech"] = resampler(sampling_rate, speech_array
|
57 |
return batch
|
58 |
|
59 |
test_dataset = test_dataset.map(speech_file_to_array_fn)
|
@@ -90,14 +90,14 @@ model = Wav2Vec2ForCTC.from_pretrained("aapot/wav2vec2-large-xlsr-53-finnish")
|
|
90 |
model.to("cuda")
|
91 |
|
92 |
chars_to_ignore_regex = '[\,\?\.\!\-\;\:\"\“\%\‘\”\�\'\...\…\–\é]'
|
93 |
-
resampler = lambda sr
|
94 |
|
95 |
# Preprocessing the datasets.
|
96 |
# We need to read the audio files as arrays
|
97 |
def speech_file_to_array_fn(batch):
|
98 |
batch["sentence"] = re.sub(chars_to_ignore_regex, '', batch["sentence"]).lower()
|
99 |
speech_array, sampling_rate = torchaudio.load(batch["path"])
|
100 |
-
batch["speech"] = resampler(sampling_rate
|
101 |
return batch
|
102 |
|
103 |
test_dataset = test_dataset.map(speech_file_to_array_fn)
|
|
|
47 |
processor = Wav2Vec2Processor.from_pretrained("aapot/wav2vec2-large-xlsr-53-finnish")
|
48 |
model = Wav2Vec2ForCTC.from_pretrained("aapot/wav2vec2-large-xlsr-53-finnish")
|
49 |
|
50 |
+
resampler = lambda sr, y: librosa.resample(y.numpy().squeeze(), sr, 16_000)
|
51 |
|
52 |
# Preprocessing the datasets.
|
53 |
# We need to read the audio files as arrays
|
54 |
def speech_file_to_array_fn(batch):
|
55 |
speech_array, sampling_rate = torchaudio.load(batch["path"])
|
56 |
+
batch["speech"] = resampler(sampling_rate, speech_array).squeeze()
|
57 |
return batch
|
58 |
|
59 |
test_dataset = test_dataset.map(speech_file_to_array_fn)
|
|
|
90 |
model.to("cuda")
|
91 |
|
92 |
chars_to_ignore_regex = '[\,\?\.\!\-\;\:\"\“\%\‘\”\�\'\...\…\–\é]'
|
93 |
+
resampler = lambda sr, y: librosa.resample(y.numpy().squeeze(), sr, 16_000)
|
94 |
|
95 |
# Preprocessing the datasets.
|
96 |
# We need to read the audio files as arrays
|
97 |
def speech_file_to_array_fn(batch):
|
98 |
batch["sentence"] = re.sub(chars_to_ignore_regex, '', batch["sentence"]).lower()
|
99 |
speech_array, sampling_rate = torchaudio.load(batch["path"])
|
100 |
+
batch["speech"] = resampler(sampling_rate, speech_array).squeeze()
|
101 |
return batch
|
102 |
|
103 |
test_dataset = test_dataset.map(speech_file_to_array_fn)
|