Zlovoblachko commited on
Commit
1167506
1 Parent(s): 72a8e48

Add SetFit model

Browse files
1_Pooling/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 384,
3
+ "pooling_mode_cls_token": false,
4
+ "pooling_mode_mean_tokens": true,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true
10
+ }
README.md ADDED
@@ -0,0 +1,193 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: sentence-transformers/all-MiniLM-L6-v2
3
+ library_name: setfit
4
+ metrics:
5
+ - f1
6
+ pipeline_tag: text-classification
7
+ tags:
8
+ - setfit
9
+ - sentence-transformers
10
+ - text-classification
11
+ - generated_from_setfit_trainer
12
+ widget: []
13
+ inference: true
14
+ model-index:
15
+ - name: SetFit with sentence-transformers/all-MiniLM-L6-v2
16
+ results:
17
+ - task:
18
+ type: text-classification
19
+ name: Text Classification
20
+ dataset:
21
+ name: Unknown
22
+ type: unknown
23
+ split: test
24
+ metrics:
25
+ - type: f1
26
+ value: 0.3076923076923077
27
+ name: F1
28
+ ---
29
+
30
+ # SetFit with sentence-transformers/all-MiniLM-L6-v2
31
+
32
+ This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Text Classification. This SetFit model uses [sentence-transformers/all-MiniLM-L6-v2](https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2) as the Sentence Transformer embedding model. A [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance is used for classification.
33
+
34
+ The model has been trained using an efficient few-shot learning technique that involves:
35
+
36
+ 1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning.
37
+ 2. Training a classification head with features from the fine-tuned Sentence Transformer.
38
+
39
+ ## Model Details
40
+
41
+ ### Model Description
42
+ - **Model Type:** SetFit
43
+ - **Sentence Transformer body:** [sentence-transformers/all-MiniLM-L6-v2](https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2)
44
+ - **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance
45
+ - **Maximum Sequence Length:** 256 tokens
46
+ - **Number of Classes:** 2 classes
47
+ <!-- - **Training Dataset:** [Unknown](https://huggingface.co/datasets/unknown) -->
48
+ <!-- - **Language:** Unknown -->
49
+ <!-- - **License:** Unknown -->
50
+
51
+ ### Model Sources
52
+
53
+ - **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit)
54
+ - **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055)
55
+ - **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit)
56
+
57
+ ## Evaluation
58
+
59
+ ### Metrics
60
+ | Label | F1 |
61
+ |:--------|:-------|
62
+ | **all** | 0.3077 |
63
+
64
+ ## Uses
65
+
66
+ ### Direct Use for Inference
67
+
68
+ First install the SetFit library:
69
+
70
+ ```bash
71
+ pip install setfit
72
+ ```
73
+
74
+ Then you can load this model and run inference.
75
+
76
+ ```python
77
+ from setfit import SetFitModel
78
+
79
+ # Download from the 🤗 Hub
80
+ model = SetFitModel.from_pretrained("Zlovoblachko/dimension2_wo_thesis_setfit")
81
+ # Run inference
82
+ preds = model("I loved the spiderman movie!")
83
+ ```
84
+
85
+ <!--
86
+ ### Downstream Use
87
+
88
+ *List how someone could finetune this model on their own dataset.*
89
+ -->
90
+
91
+ <!--
92
+ ### Out-of-Scope Use
93
+
94
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
95
+ -->
96
+
97
+ <!--
98
+ ## Bias, Risks and Limitations
99
+
100
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
101
+ -->
102
+
103
+ <!--
104
+ ### Recommendations
105
+
106
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
107
+ -->
108
+
109
+ ## Training Details
110
+
111
+ ### Training Hyperparameters
112
+ - batch_size: (32, 32)
113
+ - num_epochs: (1, 1)
114
+ - max_steps: -1
115
+ - sampling_strategy: oversampling
116
+ - body_learning_rate: (0.0005826157974558045, 0.0005826157974558045)
117
+ - head_learning_rate: 0.01
118
+ - loss: CosineSimilarityLoss
119
+ - distance_metric: cosine_distance
120
+ - margin: 0.25
121
+ - end_to_end: False
122
+ - use_amp: False
123
+ - warmup_proportion: 0.1
124
+ - l2_weight: 0.01
125
+ - seed: 42
126
+ - eval_max_steps: -1
127
+ - load_best_model_at_end: False
128
+
129
+ ### Training Results
130
+ | Epoch | Step | Training Loss | Validation Loss |
131
+ |:------:|:----:|:-------------:|:---------------:|
132
+ | 0.0011 | 1 | 0.2753 | - |
133
+ | 0.0546 | 50 | 0.2992 | - |
134
+ | 0.1093 | 100 | 0.2833 | - |
135
+ | 0.1639 | 150 | 0.2872 | - |
136
+ | 0.2186 | 200 | 0.2953 | - |
137
+ | 0.2732 | 250 | 0.2892 | - |
138
+ | 0.3279 | 300 | 0.2933 | - |
139
+ | 0.3825 | 350 | 0.2921 | - |
140
+ | 0.4372 | 400 | 0.2806 | - |
141
+ | 0.4918 | 450 | 0.281 | - |
142
+ | 0.5464 | 500 | 0.2865 | - |
143
+ | 0.6011 | 550 | 0.2807 | - |
144
+ | 0.6557 | 600 | 0.2812 | - |
145
+ | 0.7104 | 650 | 0.2857 | - |
146
+ | 0.7650 | 700 | 0.2843 | - |
147
+ | 0.8197 | 750 | 0.2932 | - |
148
+ | 0.8743 | 800 | 0.2946 | - |
149
+ | 0.9290 | 850 | 0.2877 | - |
150
+ | 0.9836 | 900 | 0.2875 | - |
151
+
152
+ ### Framework Versions
153
+ - Python: 3.10.12
154
+ - SetFit: 1.1.0
155
+ - Sentence Transformers: 3.2.1
156
+ - Transformers: 4.44.2
157
+ - PyTorch: 2.5.0+cu121
158
+ - Datasets: 3.0.2
159
+ - Tokenizers: 0.19.1
160
+
161
+ ## Citation
162
+
163
+ ### BibTeX
164
+ ```bibtex
165
+ @article{https://doi.org/10.48550/arxiv.2209.11055,
166
+ doi = {10.48550/ARXIV.2209.11055},
167
+ url = {https://arxiv.org/abs/2209.11055},
168
+ author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
169
+ keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
170
+ title = {Efficient Few-Shot Learning Without Prompts},
171
+ publisher = {arXiv},
172
+ year = {2022},
173
+ copyright = {Creative Commons Attribution 4.0 International}
174
+ }
175
+ ```
176
+
177
+ <!--
178
+ ## Glossary
179
+
180
+ *Clearly define terms in order to be accessible across audiences.*
181
+ -->
182
+
183
+ <!--
184
+ ## Model Card Authors
185
+
186
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
187
+ -->
188
+
189
+ <!--
190
+ ## Model Card Contact
191
+
192
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
193
+ -->
config.json ADDED
@@ -0,0 +1,26 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "sentence-transformers/all-MiniLM-L6-v2",
3
+ "architectures": [
4
+ "BertModel"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "classifier_dropout": null,
8
+ "gradient_checkpointing": false,
9
+ "hidden_act": "gelu",
10
+ "hidden_dropout_prob": 0.1,
11
+ "hidden_size": 384,
12
+ "initializer_range": 0.02,
13
+ "intermediate_size": 1536,
14
+ "layer_norm_eps": 1e-12,
15
+ "max_position_embeddings": 512,
16
+ "model_type": "bert",
17
+ "num_attention_heads": 12,
18
+ "num_hidden_layers": 6,
19
+ "pad_token_id": 0,
20
+ "position_embedding_type": "absolute",
21
+ "torch_dtype": "float32",
22
+ "transformers_version": "4.44.2",
23
+ "type_vocab_size": 2,
24
+ "use_cache": true,
25
+ "vocab_size": 30522
26
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "3.2.1",
4
+ "transformers": "4.44.2",
5
+ "pytorch": "2.5.0+cu121"
6
+ },
7
+ "prompts": {},
8
+ "default_prompt_name": null,
9
+ "similarity_fn_name": null
10
+ }
config_setfit.json ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ {
2
+ "labels": [
3
+ "H",
4
+ "L"
5
+ ],
6
+ "normalize_embeddings": false
7
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1377e9af0ca0b016a9f2aa584d6fc71ab3ea6804fae21ef9fb1416e2944057ac
3
+ size 90864192
model_head.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:fd9d18426aadd8c40d4da59b31f5f189534123374ab19c6a9f2bc947f2c913bb
3
+ size 3935
modules.json ADDED
@@ -0,0 +1,20 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ },
14
+ {
15
+ "idx": 2,
16
+ "name": "2",
17
+ "path": "2_Normalize",
18
+ "type": "sentence_transformers.models.Normalize"
19
+ }
20
+ ]
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 256,
3
+ "do_lower_case": false
4
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "cls_token": {
3
+ "content": "[CLS]",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "mask_token": {
10
+ "content": "[MASK]",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": {
17
+ "content": "[PAD]",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "sep_token": {
24
+ "content": "[SEP]",
25
+ "lstrip": false,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "unk_token": {
31
+ "content": "[UNK]",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ }
37
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,64 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "[PAD]",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "100": {
12
+ "content": "[UNK]",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "101": {
20
+ "content": "[CLS]",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "102": {
28
+ "content": "[SEP]",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "103": {
36
+ "content": "[MASK]",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "clean_up_tokenization_spaces": true,
45
+ "cls_token": "[CLS]",
46
+ "do_basic_tokenize": true,
47
+ "do_lower_case": true,
48
+ "mask_token": "[MASK]",
49
+ "max_length": 128,
50
+ "model_max_length": 256,
51
+ "never_split": null,
52
+ "pad_to_multiple_of": null,
53
+ "pad_token": "[PAD]",
54
+ "pad_token_type_id": 0,
55
+ "padding_side": "right",
56
+ "sep_token": "[SEP]",
57
+ "stride": 0,
58
+ "strip_accents": null,
59
+ "tokenize_chinese_chars": true,
60
+ "tokenizer_class": "BertTokenizer",
61
+ "truncation_side": "right",
62
+ "truncation_strategy": "longest_first",
63
+ "unk_token": "[UNK]"
64
+ }
vocab.txt ADDED
The diff for this file is too large to render. See raw diff