ppo-LunarLander-v2 / config.json
Zionamsalem's picture
Fine-tuning and try to minimize the mean error!
58d500e verified
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7cb895f8ec00>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7cb895f8eca0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7cb895f8ed40>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7cb895f8ede0>", "_build": "<function ActorCriticPolicy._build at 0x7cb895f8ee80>", "forward": "<function ActorCriticPolicy.forward at 0x7cb895f8ef20>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7cb895f8efc0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7cb895f8f060>", "_predict": "<function ActorCriticPolicy._predict at 0x7cb895f8f100>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7cb895f8f1a0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7cb895f8f240>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7cb895f8f2e0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7cb895f14e00>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1802240, "_total_timesteps": 1800000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1739699336601452733, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAADMX/zu9aQ885ZS8PbSqX77Td568c9AIPQAAAAAAAAAAmnDgvBQikbp1pQ+zz5B6MMQXDzvkFaszAACAPwAAgD9A7No9J/TLPnBEW77yJ9y++NcyPQy1KL4AAAAAAAAAALMIyT0pdHK6pgx5ugt2tbW993w7XsSQOQAAgD8AAAAAs5w6PS55qz9BhT0/F/gXv3S/wLxCh208AAAAAAAAAACNyc89KfBQukQdHLjmBWmzioJ8OQ4lNjcAAIA/AAAAAAAEdT3R6sY+bBOUvbFk1b7XsnO9YQ83vQAAAAAAAAAAZkyIvPYwJ7yYPtY9pbJMPCwCib0mRyk9AACAPwAAgD8A/KM7j+Zfum0E2bqebQe2xDVgO4pV/zkAAIA/AACAPxojYj0JqAM9e2hDvgxbs76uVJu+Bjw7vQAAAAAAAAAAZu3NvK59mbpSVLe25FmpsZ01hzr2KNg1AACAPwAAgD/zxcO9lJTbPpszFD6Rwoa+n9kyPPpSMLwAAAAAAAAAAA1xnr0APLA/+6Ocvsl5wr7oWvK9lg61vQAAAAAAAAAAc17RPRR6kLpeW5u5Oj7kta77BLuxZbI4AACAPwAAAADmzFe9ys3mPlNMsb1JKKm+ECmOvR6erDwAAAAAAAAAAJNdGr5f3oI+1UdkPstLXb7uMMS8ol7bvAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.0012444444444443814, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVBgwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHCMOqNp/PSMAWyUTTIBjAF0lEdAvM6xapxWDHV9lChoBkdAbqdy2hIvrWgHS+doCEdAvM7LYJ3PiXV9lChoBkdAbx3p9JBgNWgHTQ8BaAhHQLzO4sAvL5h1fZQoaAZHQHLjfvF3pwFoB0vXaAhHQLzO6eVLSNR1fZQoaAZHQG4nFi8WbgFoB0vZaAhHQLzPFaDPGAF1fZQoaAZHQHIz+Iyj59FoB0vqaAhHQLzPH51vETB1fZQoaAZHQHDf8V+I/JNoB0v1aAhHQLzPMERaouR1fZQoaAZHQHL1L17IDHRoB0v6aAhHQLzPMS3LFGZ1fZQoaAZHQHGq8WsRxtJoB00aAWgIR0C8z0ky57PZdX2UKGgGR0ByqUHPeHi4aAdL72gIR0C8z4G4mTkidX2UKGgGR0Bzu+gwoLG8aAdLwWgIR0C8z/3N9ph4dX2UKGgGR0BuhMvmHP/raAdL6WgIR0C80Aa86FM7dX2UKGgGR0Bxc7wrlNlAaAdNCAFoCEdAvNAMX40uUXV9lChoBkdAceqnctXgcmgHTVcBaAhHQLzQbhKlHjJ1fZQoaAZHQHKM5j6N2kloB0vXaAhHQLzQjbTc6/91fZQoaAZHQGfY21D0DlpoB03oA2gIR0C80KK+WWyDdX2UKGgGR0BtjipJf6XTaAdL3WgIR0C80KLaIvaldX2UKGgGR0BxvA+r2g3+aAdL/2gIR0C80KbI5o4/dX2UKGgGR0BwvksRQJokaAdL1WgIR0C80KbUG3WndX2UKGgGR0BwQlHmRvFWaAdNDgFoCEdAvNCrqY7aI3V9lChoBkdAciyjXnQpnmgHTUIBaAhHQLzQ0tT1kDp1fZQoaAZHQHFxBC6Ymb9oB00YAWgIR0C80NLaAWi2dX2UKGgGR0Bw9ATBZZB+aAdNGQFoCEdAvNELxPO6d3V9lChoBkdAcVZcmShakmgHS9VoCEdAvNF63DvVmXV9lChoBkdAcjIEm6XjVGgHTTEBaAhHQLzRkLSeAd51fZQoaAZHQHAlVf/m1Y1oB0vuaAhHQLzRpDJ2dNF1fZQoaAZHQHFcRaTwDvFoB0v5aAhHQLzRr0k4WDZ1fZQoaAZHQHD58kD6nBNoB0u+aAhHQLzR2WSlnAZ1fZQoaAZHQC7HPkaMrEtoB0vKaAhHQLzR7b/wRXh1fZQoaAZHQG7u54fOlftoB0vwaAhHQLzR/93bEgp1fZQoaAZHQHGZRNEgGKRoB0vhaAhHQLzSAeHSF491fZQoaAZHQGPTPRiPQv9oB03oA2gIR0C80gjguRLcdX2UKGgGR0BxQwJKJ2t/aAdL6GgIR0C80iJMpPRBdX2UKGgGR0BwnYZ1mrbQaAdL3WgIR0C80jtEsrd4dX2UKGgGR0ByQjGrCFbnaAdNDAFoCEdAvNJVNh3JP3V9lChoBkdAcV8chkiD/WgHTR8BaAhHQLzSdQvYe1d1fZQoaAZHQHIqEBXCCSRoB00dAWgIR0C80pf0mMOxdX2UKGgGR0BxsBrLyMDPaAdLz2gIR0C80r0hA4XGdX2UKGgGR0By6VjkMkQgaAdLyWgIR0C80sawpvxZdX2UKGgGR0BuA1XFLnLaaAdNNAFoCEdAvNL2+M6zV3V9lChoBkdAcSP1ie/Ya2gHTQQBaAhHQLzatTuv2Xd1fZQoaAZHQHDUaXOW0JFoB0vOaAhHQLzawzdk8Rt1fZQoaAZHQHEKrqIJqqRoB00SAWgIR0C82toJJGvwdX2UKGgGR0BwEiGpMpPRaAdL9WgIR0C82up1A7gbdX2UKGgGR0Bw/POVxCIDaAdLyWgIR0C82vRInSfEdX2UKGgGR0BwN6LcbiqAaAdNGAFoCEdAvNsPlT3qRnV9lChoBkdAcDK433pOe2gHTQQBaAhHQLzbFtNSIgx1fZQoaAZHQHFZRIe5nUVoB00YAWgIR0C82zRnJ1aGdX2UKGgGR0BwkKx4Y77saAdNDAFoCEdAvNtCS4e9z3V9lChoBkdAcEXPCEYfn2gHTQcBaAhHQLzbdNI9TxZ1fZQoaAZHQHLnPhybQTpoB0v0aAhHQLzbnzD4xlB1fZQoaAZHQG5NnrQgLZ1oB0vwaAhHQLzbwMVUMod1fZQoaAZHQG9EIj4YaYNoB0vzaAhHQLzbz5fdAPd1fZQoaAZHQHDFxYFJQLxoB00sAWgIR0C829LuhK15dX2UKGgGR0BxuovM8ox6aAdLv2gIR0C83BkiD/VBdX2UKGgGR0BxR/Pqs2ehaAdNDwFoCEdAvNwqdat9yHV9lChoBkdAcV2OdXko4WgHS/loCEdAvNxGbiIcinV9lChoBkdAcjx/sE7nxWgHS81oCEdAvNxVByCFsnV9lChoBkdAcR9wUQCjlGgHS/JoCEdAvNx2w5eZ5XV9lChoBkdAcVo1c+qzaGgHS9poCEdAvNyefywwCnV9lChoBkdAcrPK8+Roy2gHTScBaAhHQLzcs+iJwbV1fZQoaAZHQG99LbYbsGBoB0v8aAhHQLzcyL/0dzZ1fZQoaAZHQHD3etnwob5oB01PAWgIR0C83OEvK2a2dX2UKGgGR0BznQMoc7yQaAdLzWgIR0C83OmqYJE6dX2UKGgGR0Bi38XP7el9aAdN6ANoCEdAvN0n73wkPnV9lChoBkdAcsKacZtNz2gHS9poCEdAvN0uyTpxFXV9lChoBkdAcN9Gp++dsmgHS/NoCEdAvN1IrTYukHV9lChoBkdAbKvwRXfZVWgHTSUBaAhHQLzdS/e+Eh91fZQoaAZHQHICLSJCSidoB01hAWgIR0C83U59iMHbdX2UKGgGR0ButkG7jDKpaAdNDgFoCEdAvN2AYm9g4XV9lChoBkdAb3w8Yht+C2gHS/hoCEdAvN3RrYXfqHV9lChoBkdAclXJ9y925mgHS89oCEdAvN38xQBPsXV9lChoBkdAO3awQlKK52gHS7NoCEdAvN38Fr2xp3V9lChoBkdAcGwhje9BbGgHS99oCEdAvN4C4SYgJXV9lChoBkdAcc63uNPxhGgHTSgBaAhHQLzeBWn0kGB1fZQoaAZHQHEjxj8UEgZoB00XAWgIR0C83hNKNAC5dX2UKGgGR0BymqvOhTOxaAdNQQFoCEdAvN4bCj1wpHV9lChoBkdAcq5+zdDYy2gHS8NoCEdAvN4cMjNY83V9lChoBkdAUeeVNYbKimgHS4NoCEdAvN6hG/etS3V9lChoBkdAcuI+3pfQbGgHS+doCEdAvN64h8pkPXV9lChoBkdAbcB4cm0E5mgHS/poCEdAvN63/uLJjnV9lChoBkdAb8G/Z/Tb4GgHS+toCEdAvN6541P3z3V9lChoBkdAcqfBHkLhJmgHS+9oCEdAvN7C9ytFKHV9lChoBkdAcYd37UG3WmgHTRABaAhHQLze1G47Rv51fZQoaAZHQHErI9Pk7wNoB0vmaAhHQLze7F5v9+B1fZQoaAZHQHDeFYuCf6JoB0vWaAhHQLzfbzZHuqp1fZQoaAZHQHEBLvb48EFoB0vXaAhHQLzffXqZ+hJ1fZQoaAZHQHGnPiLl3hZoB0vbaAhHQLzfhrrgOz91fZQoaAZHQHHUCGnGbTdoB0v0aAhHQLzfjfgrH2h1fZQoaAZHQHHX8HB1s+FoB0v4aAhHQLzfm7jkuHx1fZQoaAZHQHI6+ZXuE25oB00DAWgIR0C837C5iExqdX2UKGgGR0ByVV9ORDCxaAdNMQFoCEdAvN/2Wkadc3V9lChoBkdAcIKjua4MF2gHS8xoCEdAvOA1YGMXJ3V9lChoBkdAbbOfI0ZWJmgHS+VoCEdAvOBCx1PnCHV9lChoBkdAcseM+/xlQWgHTQQBaAhHQLzgZCAMDwJ1fZQoaAZHQHBVCADq4YtoB0v4aAhHQLzgZj7ALzB1fZQoaAZHQHRdD101ZT1oB0v3aAhHQLzgZcQRPGh1fZQoaAZHQG90zQVsUItoB0v3aAhHQLzgbxSYPXl1fZQoaAZHQHG5PjGT9sJoB0vWaAhHQLzg6FyJbdJ1fZQoaAZHQHB1t29tdiVoB0vjaAhHQLzhDXK8tf51ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 660, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV2wAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.998, "gae_lambda": 0.99, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 6, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWV1gIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwiVAZcAiQFTAJROhZQpjAFflIWUjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjExL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUS4RDCPiAANgPEogKlEMAlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTEvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpRoAIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCF9lH2UKGgYjARmdW5jlIwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBmMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP8mZmZmZmZqFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWV1gIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwiVAZcAiQFTAJROhZQpjAFflIWUjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjExL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUS4RDCPiAANgPEogKlEMAlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTEvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpRoAIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCF9lH2UKGgYjARmdW5jlIwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBmMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHPzOpKjBVMmGFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="}, "system_info": {"OS": "Linux-6.1.85+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Thu Jun 27 21:05:47 UTC 2024", "Python": "3.11.11", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.5.1+cu124", "GPU Enabled": "True", "Numpy": "1.26.4", "Cloudpickle": "3.1.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}