ZhengPeng7
commited on
Commit
·
d6ffbb8
1
Parent(s):
d2056e8
Add guideline to use BiRefNet. Remove codes of model.
Browse files- BiRefNet_config.py +0 -9
- BiRefNet_pipe.py +0 -9
- README.md +74 -1
- birefnet.py +0 -287
- config.json +0 -18
- config.py +0 -156
- dataset.py +0 -112
- models/__init__.py +0 -6
- models/aspp.py +0 -119
- models/attentions.py +0 -93
- models/backbones/__init__.py +0 -6
- models/build_backbone.py +0 -44
- models/decoder_blocks.py +0 -101
- models/deform_conv.py +0 -66
- models/ing.py +0 -29
- models/lateral_blocks.py +0 -21
- models/mlp.py +0 -118
- models/modules/__init__.py +0 -6
- models/modules/refinement/__init__.py +0 -6
- models/modules/refinement/refiner.py +0 -253
- models/modules/refinement/stem_layer.py +0 -45
- models/prompt_encoder.py +0 -222
- models/pvt_v2.py +0 -435
- models/refinement/__init__.py +0 -6
- models/refiner.py +0 -253
- models/stem_layer.py +0 -45
- models/swin_v1.py +0 -627
- models/utils.py +0 -54
- preproc.py +0 -85
- train.sh +0 -41
- utils.py +0 -97
BiRefNet_config.py
DELETED
@@ -1,9 +0,0 @@
|
|
1 |
-
from transformers import PretrainedConfig
|
2 |
-
|
3 |
-
class BiRefNetConfig(PretrainedConfig):
|
4 |
-
model_type = "SegformerForSemanticSegmentation"
|
5 |
-
def __init__(
|
6 |
-
self,
|
7 |
-
**kwargs
|
8 |
-
):
|
9 |
-
super().__init__(**kwargs)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
BiRefNet_pipe.py
DELETED
@@ -1,9 +0,0 @@
|
|
1 |
-
import torch
|
2 |
-
from transformers import Pipeline
|
3 |
-
|
4 |
-
|
5 |
-
class BiRefNetPipe(Pipeline):
|
6 |
-
def __init__(self, **kwargs):
|
7 |
-
Pipeline.__init__(self, **kwargs)
|
8 |
-
self.model.to(['cpu', 0][torch.cuda.is_available()])
|
9 |
-
self.model.eval()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
README.md
CHANGED
@@ -14,4 +14,77 @@ pipeline_tag: image-segmentation
|
|
14 |
|
15 |
This model has been pushed to the Hub using **birefnet**:
|
16 |
- Repo: https://github.com/ZhengPeng7/BiRefNet
|
17 |
-
- Docs:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
14 |
|
15 |
This model has been pushed to the Hub using **birefnet**:
|
16 |
- Repo: https://github.com/ZhengPeng7/BiRefNet
|
17 |
+
- Docs: https://www.birefnet.top
|
18 |
+
|
19 |
+
## How to use
|
20 |
+
|
21 |
+
```shell
|
22 |
+
# Download Codes
|
23 |
+
git clone https://github.com/ZhengPeng7/BiRefNet.git
|
24 |
+
cd BiRefNet
|
25 |
+
```
|
26 |
+
|
27 |
+
```python
|
28 |
+
# Imports
|
29 |
+
from PIL import Image
|
30 |
+
import matplotlib.pyplot as plt
|
31 |
+
import torch
|
32 |
+
from torchvision import transforms
|
33 |
+
|
34 |
+
# Input Data
|
35 |
+
transform_image = transforms.Compose([
|
36 |
+
transforms.Resize((256, 256)),
|
37 |
+
transforms.ToTensor(),
|
38 |
+
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
|
39 |
+
])
|
40 |
+
imagepath = 'PATH-TO-YOUR_IMAGE.jpg'
|
41 |
+
image = Image.open(imagepath)
|
42 |
+
input_images = transform_image(image).unsqueeze(0).to('cuda')
|
43 |
+
|
44 |
+
# Load Model
|
45 |
+
device = '0'
|
46 |
+
torch.set_float32_matmul_precision(['high', 'highest'][0])
|
47 |
+
model = BiRefNet.from_pretrained('zhengpeng7/birefnet')
|
48 |
+
model.to(device)
|
49 |
+
model.eval()
|
50 |
+
print('BiRefNet is ready to use.')
|
51 |
+
|
52 |
+
# Prediction
|
53 |
+
with torch.no_grad():
|
54 |
+
preds = model(input_images)[-1].sigmoid().cpu()
|
55 |
+
pred = preds[0].squeeze()
|
56 |
+
|
57 |
+
# Show Results
|
58 |
+
plt.imshow(pred, cmap='gray')
|
59 |
+
plt.show()
|
60 |
+
|
61 |
+
```
|
62 |
+
|
63 |
+
|
64 |
+
> This BiRefNet for standard dichotomous image segmentation (DIS) is trained on **DIS-TR** and validated on **DIS-TEs and DIS-VD**.
|
65 |
+
|
66 |
+
## This repo holds the official model weights of "[<ins>Bilateral Reference for High-Resolution Dichotomous Image Segmentation</ins>](https://arxiv.org/pdf/2401.03407)" (_arXiv 2024_).
|
67 |
+
|
68 |
+
This repo contains the weights of BiRefNet proposed in our paper, which has achieved the SOTA performance on three tasks (DIS, HRSOD, and COD).
|
69 |
+
|
70 |
+
Go to my GitHub page for BiRefNet codes and the latest updates: https://github.com/ZhengPeng7/BiRefNet :)
|
71 |
+
|
72 |
+
|
73 |
+
#### Try our online demos for inference:
|
74 |
+
|
75 |
+
+ Online **Single Image Inference** on Colab: [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/drive/14Dqg7oeBkFEtchaHLNpig2BcdkZEogba?usp=drive_link)
|
76 |
+
<img src="https://drive.google.com/thumbnail?id=12XmDhKtO1o2fEvBu4OE4ULVB2BK0ecWi&sz=w1620" />
|
77 |
+
+ **Inference and evaluation** of your given weights: [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/drive/1MaEiBfJ4xIaZZn0DqKrhydHB8X97hNXl#scrollTo=DJ4meUYjia6S)
|
78 |
+
+ **Online Inference with GUI on Hugging Face** with adjustable resolutions: [![Hugging Face Spaces](https://img.shields.io/badge/%F0%9F%A4%97%20Hugging%20Face-Spaces-blue)](https://huggingface.co/spaces/ZhengPeng7/BiRefNet_demo)
|
79 |
+
<img src="https://drive.google.com/thumbnail?id=12XmDhKtO1o2fEvBu4OE4ULVB2BK0ecWi&sz=w1080" />
|
80 |
+
|
81 |
+
## Citation
|
82 |
+
|
83 |
+
```
|
84 |
+
@article{zheng2024birefnet,
|
85 |
+
title={Bilateral Reference for High-Resolution Dichotomous Image Segmentation},
|
86 |
+
author={Zheng, Peng and Gao, Dehong and Fan, Deng-Ping and Liu, Li and Laaksonen, Jorma and Ouyang, Wanli and Sebe, Nicu},
|
87 |
+
journal={arXiv},
|
88 |
+
year={2024}
|
89 |
+
}
|
90 |
+
```
|
birefnet.py
DELETED
@@ -1,287 +0,0 @@
|
|
1 |
-
import torch
|
2 |
-
import torch.nn as nn
|
3 |
-
import torch.nn.functional as F
|
4 |
-
from kornia.filters import laplacian
|
5 |
-
from huggingface_hub import PyTorchModelHubMixin
|
6 |
-
|
7 |
-
from config import Config
|
8 |
-
from dataset import class_labels_TR_sorted
|
9 |
-
from models.build_backbone import build_backbone
|
10 |
-
from models.decoder_blocks import BasicDecBlk, ResBlk, HierarAttDecBlk
|
11 |
-
from models.lateral_blocks import BasicLatBlk
|
12 |
-
from models.aspp import ASPP, ASPPDeformable
|
13 |
-
from models.ing import *
|
14 |
-
from models.refiner import Refiner, RefinerPVTInChannels4, RefUNet
|
15 |
-
from models.stem_layer import StemLayer
|
16 |
-
|
17 |
-
|
18 |
-
class BiRefNet(
|
19 |
-
nn.Module,
|
20 |
-
PyTorchModelHubMixin,
|
21 |
-
library_name="birefnet",
|
22 |
-
repo_url="https://github.com/ZhengPeng7/BiRefNet",
|
23 |
-
tags=['Image Segmentation', 'Background Removal', 'Mask Generation', 'Dichotomous Image Segmentation', 'Camouflaged Object Detection', 'Salient Object Detection']
|
24 |
-
):
|
25 |
-
def __init__(self, bb_pretrained=True):
|
26 |
-
super(BiRefNet, self).__init__()
|
27 |
-
self.config = Config()
|
28 |
-
self.epoch = 1
|
29 |
-
self.bb = build_backbone(self.config.bb, pretrained=bb_pretrained)
|
30 |
-
|
31 |
-
channels = self.config.lateral_channels_in_collection
|
32 |
-
|
33 |
-
if self.config.auxiliary_classification:
|
34 |
-
self.avgpool = nn.AdaptiveAvgPool2d((1, 1))
|
35 |
-
self.cls_head = nn.Sequential(
|
36 |
-
nn.Linear(channels[0], len(class_labels_TR_sorted))
|
37 |
-
)
|
38 |
-
|
39 |
-
if self.config.squeeze_block:
|
40 |
-
self.squeeze_module = nn.Sequential(*[
|
41 |
-
eval(self.config.squeeze_block.split('_x')[0])(channels[0]+sum(self.config.cxt), channels[0])
|
42 |
-
for _ in range(eval(self.config.squeeze_block.split('_x')[1]))
|
43 |
-
])
|
44 |
-
|
45 |
-
self.decoder = Decoder(channels)
|
46 |
-
|
47 |
-
if self.config.ender:
|
48 |
-
self.dec_end = nn.Sequential(
|
49 |
-
nn.Conv2d(1, 16, 3, 1, 1),
|
50 |
-
nn.Conv2d(16, 1, 3, 1, 1),
|
51 |
-
nn.ReLU(inplace=True),
|
52 |
-
)
|
53 |
-
|
54 |
-
# refine patch-level segmentation
|
55 |
-
if self.config.refine:
|
56 |
-
if self.config.refine == 'itself':
|
57 |
-
self.stem_layer = StemLayer(in_channels=3+1, inter_channels=48, out_channels=3, norm_layer='BN' if self.config.batch_size > 1 else 'LN')
|
58 |
-
else:
|
59 |
-
self.refiner = eval('{}({})'.format(self.config.refine, 'in_channels=3+1'))
|
60 |
-
|
61 |
-
if self.config.freeze_bb:
|
62 |
-
# Freeze the backbone...
|
63 |
-
print(self.named_parameters())
|
64 |
-
for key, value in self.named_parameters():
|
65 |
-
if 'bb.' in key and 'refiner.' not in key:
|
66 |
-
value.requires_grad = False
|
67 |
-
|
68 |
-
def forward_enc(self, x):
|
69 |
-
if self.config.bb in ['vgg16', 'vgg16bn', 'resnet50']:
|
70 |
-
x1 = self.bb.conv1(x); x2 = self.bb.conv2(x1); x3 = self.bb.conv3(x2); x4 = self.bb.conv4(x3)
|
71 |
-
else:
|
72 |
-
x1, x2, x3, x4 = self.bb(x)
|
73 |
-
if self.config.mul_scl_ipt == 'cat':
|
74 |
-
B, C, H, W = x.shape
|
75 |
-
x1_, x2_, x3_, x4_ = self.bb(F.interpolate(x, size=(H//2, W//2), mode='bilinear', align_corners=True))
|
76 |
-
x1 = torch.cat([x1, F.interpolate(x1_, size=x1.shape[2:], mode='bilinear', align_corners=True)], dim=1)
|
77 |
-
x2 = torch.cat([x2, F.interpolate(x2_, size=x2.shape[2:], mode='bilinear', align_corners=True)], dim=1)
|
78 |
-
x3 = torch.cat([x3, F.interpolate(x3_, size=x3.shape[2:], mode='bilinear', align_corners=True)], dim=1)
|
79 |
-
x4 = torch.cat([x4, F.interpolate(x4_, size=x4.shape[2:], mode='bilinear', align_corners=True)], dim=1)
|
80 |
-
elif self.config.mul_scl_ipt == 'add':
|
81 |
-
B, C, H, W = x.shape
|
82 |
-
x1_, x2_, x3_, x4_ = self.bb(F.interpolate(x, size=(H//2, W//2), mode='bilinear', align_corners=True))
|
83 |
-
x1 = x1 + F.interpolate(x1_, size=x1.shape[2:], mode='bilinear', align_corners=True)
|
84 |
-
x2 = x2 + F.interpolate(x2_, size=x2.shape[2:], mode='bilinear', align_corners=True)
|
85 |
-
x3 = x3 + F.interpolate(x3_, size=x3.shape[2:], mode='bilinear', align_corners=True)
|
86 |
-
x4 = x4 + F.interpolate(x4_, size=x4.shape[2:], mode='bilinear', align_corners=True)
|
87 |
-
class_preds = self.cls_head(self.avgpool(x4).view(x4.shape[0], -1)) if self.training and self.config.auxiliary_classification else None
|
88 |
-
if self.config.cxt:
|
89 |
-
x4 = torch.cat(
|
90 |
-
(
|
91 |
-
*[
|
92 |
-
F.interpolate(x1, size=x4.shape[2:], mode='bilinear', align_corners=True),
|
93 |
-
F.interpolate(x2, size=x4.shape[2:], mode='bilinear', align_corners=True),
|
94 |
-
F.interpolate(x3, size=x4.shape[2:], mode='bilinear', align_corners=True),
|
95 |
-
][-len(self.config.cxt):],
|
96 |
-
x4
|
97 |
-
),
|
98 |
-
dim=1
|
99 |
-
)
|
100 |
-
return (x1, x2, x3, x4), class_preds
|
101 |
-
|
102 |
-
def forward_ori(self, x):
|
103 |
-
########## Encoder ##########
|
104 |
-
(x1, x2, x3, x4), class_preds = self.forward_enc(x)
|
105 |
-
if self.config.squeeze_block:
|
106 |
-
x4 = self.squeeze_module(x4)
|
107 |
-
########## Decoder ##########
|
108 |
-
features = [x, x1, x2, x3, x4]
|
109 |
-
if self.training and self.config.out_ref:
|
110 |
-
features.append(laplacian(torch.mean(x, dim=1).unsqueeze(1), kernel_size=5))
|
111 |
-
scaled_preds = self.decoder(features)
|
112 |
-
return scaled_preds, class_preds
|
113 |
-
|
114 |
-
def forward(self, x):
|
115 |
-
scaled_preds, class_preds = self.forward_ori(x)
|
116 |
-
class_preds_lst = [class_preds]
|
117 |
-
return [scaled_preds, class_preds_lst] if self.training else scaled_preds
|
118 |
-
|
119 |
-
|
120 |
-
class Decoder(nn.Module):
|
121 |
-
def __init__(self, channels):
|
122 |
-
super(Decoder, self).__init__()
|
123 |
-
self.config = Config()
|
124 |
-
DecoderBlock = eval(self.config.dec_blk)
|
125 |
-
LateralBlock = eval(self.config.lat_blk)
|
126 |
-
|
127 |
-
if self.config.dec_ipt:
|
128 |
-
self.split = self.config.dec_ipt_split
|
129 |
-
N_dec_ipt = 64
|
130 |
-
DBlock = SimpleConvs
|
131 |
-
ic = 64
|
132 |
-
ipt_cha_opt = 1
|
133 |
-
self.ipt_blk5 = DBlock(2**10*3 if self.split else 3, [N_dec_ipt, channels[0]//8][ipt_cha_opt], inter_channels=ic)
|
134 |
-
self.ipt_blk4 = DBlock(2**8*3 if self.split else 3, [N_dec_ipt, channels[0]//8][ipt_cha_opt], inter_channels=ic)
|
135 |
-
self.ipt_blk3 = DBlock(2**6*3 if self.split else 3, [N_dec_ipt, channels[1]//8][ipt_cha_opt], inter_channels=ic)
|
136 |
-
self.ipt_blk2 = DBlock(2**4*3 if self.split else 3, [N_dec_ipt, channels[2]//8][ipt_cha_opt], inter_channels=ic)
|
137 |
-
self.ipt_blk1 = DBlock(2**0*3 if self.split else 3, [N_dec_ipt, channels[3]//8][ipt_cha_opt], inter_channels=ic)
|
138 |
-
else:
|
139 |
-
self.split = None
|
140 |
-
|
141 |
-
self.decoder_block4 = DecoderBlock(channels[0]+([N_dec_ipt, channels[0]//8][ipt_cha_opt] if self.config.dec_ipt else 0), channels[1])
|
142 |
-
self.decoder_block3 = DecoderBlock(channels[1]+([N_dec_ipt, channels[0]//8][ipt_cha_opt] if self.config.dec_ipt else 0), channels[2])
|
143 |
-
self.decoder_block2 = DecoderBlock(channels[2]+([N_dec_ipt, channels[1]//8][ipt_cha_opt] if self.config.dec_ipt else 0), channels[3])
|
144 |
-
self.decoder_block1 = DecoderBlock(channels[3]+([N_dec_ipt, channels[2]//8][ipt_cha_opt] if self.config.dec_ipt else 0), channels[3]//2)
|
145 |
-
self.conv_out1 = nn.Sequential(nn.Conv2d(channels[3]//2+([N_dec_ipt, channels[3]//8][ipt_cha_opt] if self.config.dec_ipt else 0), 1, 1, 1, 0))
|
146 |
-
|
147 |
-
self.lateral_block4 = LateralBlock(channels[1], channels[1])
|
148 |
-
self.lateral_block3 = LateralBlock(channels[2], channels[2])
|
149 |
-
self.lateral_block2 = LateralBlock(channels[3], channels[3])
|
150 |
-
|
151 |
-
if self.config.ms_supervision:
|
152 |
-
self.conv_ms_spvn_4 = nn.Conv2d(channels[1], 1, 1, 1, 0)
|
153 |
-
self.conv_ms_spvn_3 = nn.Conv2d(channels[2], 1, 1, 1, 0)
|
154 |
-
self.conv_ms_spvn_2 = nn.Conv2d(channels[3], 1, 1, 1, 0)
|
155 |
-
|
156 |
-
if self.config.out_ref:
|
157 |
-
_N = 16
|
158 |
-
self.gdt_convs_4 = nn.Sequential(nn.Conv2d(channels[1], _N, 3, 1, 1), nn.BatchNorm2d(_N) if self.config.batch_size > 1 else nn.Identity(), nn.ReLU(inplace=True))
|
159 |
-
self.gdt_convs_3 = nn.Sequential(nn.Conv2d(channels[2], _N, 3, 1, 1), nn.BatchNorm2d(_N) if self.config.batch_size > 1 else nn.Identity(), nn.ReLU(inplace=True))
|
160 |
-
self.gdt_convs_2 = nn.Sequential(nn.Conv2d(channels[3], _N, 3, 1, 1), nn.BatchNorm2d(_N) if self.config.batch_size > 1 else nn.Identity(), nn.ReLU(inplace=True))
|
161 |
-
|
162 |
-
self.gdt_convs_pred_4 = nn.Sequential(nn.Conv2d(_N, 1, 1, 1, 0))
|
163 |
-
self.gdt_convs_pred_3 = nn.Sequential(nn.Conv2d(_N, 1, 1, 1, 0))
|
164 |
-
self.gdt_convs_pred_2 = nn.Sequential(nn.Conv2d(_N, 1, 1, 1, 0))
|
165 |
-
|
166 |
-
self.gdt_convs_attn_4 = nn.Sequential(nn.Conv2d(_N, 1, 1, 1, 0))
|
167 |
-
self.gdt_convs_attn_3 = nn.Sequential(nn.Conv2d(_N, 1, 1, 1, 0))
|
168 |
-
self.gdt_convs_attn_2 = nn.Sequential(nn.Conv2d(_N, 1, 1, 1, 0))
|
169 |
-
|
170 |
-
def get_patches_batch(self, x, p):
|
171 |
-
_size_h, _size_w = p.shape[2:]
|
172 |
-
patches_batch = []
|
173 |
-
for idx in range(x.shape[0]):
|
174 |
-
columns_x = torch.split(x[idx], split_size_or_sections=_size_w, dim=-1)
|
175 |
-
patches_x = []
|
176 |
-
for column_x in columns_x:
|
177 |
-
patches_x += [p.unsqueeze(0) for p in torch.split(column_x, split_size_or_sections=_size_h, dim=-2)]
|
178 |
-
patch_sample = torch.cat(patches_x, dim=1)
|
179 |
-
patches_batch.append(patch_sample)
|
180 |
-
return torch.cat(patches_batch, dim=0)
|
181 |
-
|
182 |
-
def forward(self, features):
|
183 |
-
if self.training and self.config.out_ref:
|
184 |
-
outs_gdt_pred = []
|
185 |
-
outs_gdt_label = []
|
186 |
-
x, x1, x2, x3, x4, gdt_gt = features
|
187 |
-
else:
|
188 |
-
x, x1, x2, x3, x4 = features
|
189 |
-
outs = []
|
190 |
-
|
191 |
-
if self.config.dec_ipt:
|
192 |
-
patches_batch = self.get_patches_batch(x, x4) if self.split else x
|
193 |
-
x4 = torch.cat((x4, self.ipt_blk5(F.interpolate(patches_batch, size=x4.shape[2:], mode='bilinear', align_corners=True))), 1)
|
194 |
-
p4 = self.decoder_block4(x4)
|
195 |
-
m4 = self.conv_ms_spvn_4(p4) if self.config.ms_supervision else None
|
196 |
-
if self.config.out_ref:
|
197 |
-
p4_gdt = self.gdt_convs_4(p4)
|
198 |
-
if self.training:
|
199 |
-
# >> GT:
|
200 |
-
m4_dia = m4
|
201 |
-
gdt_label_main_4 = gdt_gt * F.interpolate(m4_dia, size=gdt_gt.shape[2:], mode='bilinear', align_corners=True)
|
202 |
-
outs_gdt_label.append(gdt_label_main_4)
|
203 |
-
# >> Pred:
|
204 |
-
gdt_pred_4 = self.gdt_convs_pred_4(p4_gdt)
|
205 |
-
outs_gdt_pred.append(gdt_pred_4)
|
206 |
-
gdt_attn_4 = self.gdt_convs_attn_4(p4_gdt).sigmoid()
|
207 |
-
# >> Finally:
|
208 |
-
p4 = p4 * gdt_attn_4
|
209 |
-
_p4 = F.interpolate(p4, size=x3.shape[2:], mode='bilinear', align_corners=True)
|
210 |
-
_p3 = _p4 + self.lateral_block4(x3)
|
211 |
-
|
212 |
-
if self.config.dec_ipt:
|
213 |
-
patches_batch = self.get_patches_batch(x, _p3) if self.split else x
|
214 |
-
_p3 = torch.cat((_p3, self.ipt_blk4(F.interpolate(patches_batch, size=x3.shape[2:], mode='bilinear', align_corners=True))), 1)
|
215 |
-
p3 = self.decoder_block3(_p3)
|
216 |
-
m3 = self.conv_ms_spvn_3(p3) if self.config.ms_supervision else None
|
217 |
-
if self.config.out_ref:
|
218 |
-
p3_gdt = self.gdt_convs_3(p3)
|
219 |
-
if self.training:
|
220 |
-
# >> GT:
|
221 |
-
# m3 --dilation--> m3_dia
|
222 |
-
# G_3^gt * m3_dia --> G_3^m, which is the label of gradient
|
223 |
-
m3_dia = m3
|
224 |
-
gdt_label_main_3 = gdt_gt * F.interpolate(m3_dia, size=gdt_gt.shape[2:], mode='bilinear', align_corners=True)
|
225 |
-
outs_gdt_label.append(gdt_label_main_3)
|
226 |
-
# >> Pred:
|
227 |
-
# p3 --conv--BN--> F_3^G, where F_3^G predicts the \hat{G_3} with xx
|
228 |
-
# F_3^G --sigmoid--> A_3^G
|
229 |
-
gdt_pred_3 = self.gdt_convs_pred_3(p3_gdt)
|
230 |
-
outs_gdt_pred.append(gdt_pred_3)
|
231 |
-
gdt_attn_3 = self.gdt_convs_attn_3(p3_gdt).sigmoid()
|
232 |
-
# >> Finally:
|
233 |
-
# p3 = p3 * A_3^G
|
234 |
-
p3 = p3 * gdt_attn_3
|
235 |
-
_p3 = F.interpolate(p3, size=x2.shape[2:], mode='bilinear', align_corners=True)
|
236 |
-
_p2 = _p3 + self.lateral_block3(x2)
|
237 |
-
|
238 |
-
if self.config.dec_ipt:
|
239 |
-
patches_batch = self.get_patches_batch(x, _p2) if self.split else x
|
240 |
-
_p2 = torch.cat((_p2, self.ipt_blk3(F.interpolate(patches_batch, size=x2.shape[2:], mode='bilinear', align_corners=True))), 1)
|
241 |
-
p2 = self.decoder_block2(_p2)
|
242 |
-
m2 = self.conv_ms_spvn_2(p2) if self.config.ms_supervision else None
|
243 |
-
if self.config.out_ref:
|
244 |
-
p2_gdt = self.gdt_convs_2(p2)
|
245 |
-
if self.training:
|
246 |
-
# >> GT:
|
247 |
-
m2_dia = m2
|
248 |
-
gdt_label_main_2 = gdt_gt * F.interpolate(m2_dia, size=gdt_gt.shape[2:], mode='bilinear', align_corners=True)
|
249 |
-
outs_gdt_label.append(gdt_label_main_2)
|
250 |
-
# >> Pred:
|
251 |
-
gdt_pred_2 = self.gdt_convs_pred_2(p2_gdt)
|
252 |
-
outs_gdt_pred.append(gdt_pred_2)
|
253 |
-
gdt_attn_2 = self.gdt_convs_attn_2(p2_gdt).sigmoid()
|
254 |
-
# >> Finally:
|
255 |
-
p2 = p2 * gdt_attn_2
|
256 |
-
_p2 = F.interpolate(p2, size=x1.shape[2:], mode='bilinear', align_corners=True)
|
257 |
-
_p1 = _p2 + self.lateral_block2(x1)
|
258 |
-
|
259 |
-
if self.config.dec_ipt:
|
260 |
-
patches_batch = self.get_patches_batch(x, _p1) if self.split else x
|
261 |
-
_p1 = torch.cat((_p1, self.ipt_blk2(F.interpolate(patches_batch, size=x1.shape[2:], mode='bilinear', align_corners=True))), 1)
|
262 |
-
_p1 = self.decoder_block1(_p1)
|
263 |
-
_p1 = F.interpolate(_p1, size=x.shape[2:], mode='bilinear', align_corners=True)
|
264 |
-
|
265 |
-
if self.config.dec_ipt:
|
266 |
-
patches_batch = self.get_patches_batch(x, _p1) if self.split else x
|
267 |
-
_p1 = torch.cat((_p1, self.ipt_blk1(F.interpolate(patches_batch, size=x.shape[2:], mode='bilinear', align_corners=True))), 1)
|
268 |
-
p1_out = self.conv_out1(_p1)
|
269 |
-
|
270 |
-
if self.config.ms_supervision:
|
271 |
-
outs.append(m4)
|
272 |
-
outs.append(m3)
|
273 |
-
outs.append(m2)
|
274 |
-
outs.append(p1_out)
|
275 |
-
return outs if not (self.config.out_ref and self.training) else ([outs_gdt_pred, outs_gdt_label], outs)
|
276 |
-
|
277 |
-
|
278 |
-
class SimpleConvs(nn.Module):
|
279 |
-
def __init__(
|
280 |
-
self, in_channels: int, out_channels: int, inter_channels=64
|
281 |
-
) -> None:
|
282 |
-
super().__init__()
|
283 |
-
self.conv1 = nn.Conv2d(in_channels, inter_channels, 3, 1, 1)
|
284 |
-
self.conv_out = nn.Conv2d(inter_channels, out_channels, 3, 1, 1)
|
285 |
-
|
286 |
-
def forward(self, x):
|
287 |
-
return self.conv_out(self.conv1(x))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
config.json
CHANGED
@@ -1,21 +1,3 @@
|
|
1 |
{
|
2 |
-
"_name_or_path": "ZhengPeng7/BiRefNet",
|
3 |
-
"architectures": [
|
4 |
-
"BiRefNet"
|
5 |
-
],
|
6 |
-
"auto_map": {
|
7 |
-
"AutoConfig": "BiRefNet_config.BiRefNetConfig",
|
8 |
-
"AutoModelForImageSegmentation": "birefnet.BiRefNet"
|
9 |
-
},
|
10 |
-
"custom_pipelines": {
|
11 |
-
"image-segmentation": {
|
12 |
-
"impl": "BiRefNet_pipe.BiRefNetPipe",
|
13 |
-
"pt": [
|
14 |
-
"AutoModelForImageSegmentation"
|
15 |
-
],
|
16 |
-
"tf": [],
|
17 |
-
"type": "image"
|
18 |
-
}
|
19 |
-
},
|
20 |
"bb_pretrained": false
|
21 |
}
|
|
|
1 |
{
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2 |
"bb_pretrained": false
|
3 |
}
|
config.py
DELETED
@@ -1,156 +0,0 @@
|
|
1 |
-
import os
|
2 |
-
import math
|
3 |
-
|
4 |
-
|
5 |
-
class Config():
|
6 |
-
def __init__(self) -> None:
|
7 |
-
# PATH settings
|
8 |
-
self.sys_home_dir = os.environ['HOME'] # Make up your file system as: SYS_HOME_DIR/codes/dis/BiRefNet, SYS_HOME_DIR/datasets/dis/xx, SYS_HOME_DIR/weights/xx
|
9 |
-
|
10 |
-
# TASK settings
|
11 |
-
self.task = ['DIS5K', 'COD', 'HRSOD', 'DIS5K+HRSOD+HRS10K', 'P3M-10k'][0]
|
12 |
-
self.training_set = {
|
13 |
-
'DIS5K': ['DIS-TR', 'DIS-TR+DIS-TE1+DIS-TE2+DIS-TE3+DIS-TE4'][0],
|
14 |
-
'COD': 'TR-COD10K+TR-CAMO',
|
15 |
-
'HRSOD': ['TR-DUTS', 'TR-HRSOD', 'TR-UHRSD', 'TR-DUTS+TR-HRSOD', 'TR-DUTS+TR-UHRSD', 'TR-HRSOD+TR-UHRSD', 'TR-DUTS+TR-HRSOD+TR-UHRSD'][5],
|
16 |
-
'DIS5K+HRSOD+HRS10K': 'DIS-TE1+DIS-TE2+DIS-TE3+DIS-TE4+DIS-TR+TE-HRS10K+TE-HRSOD+TE-UHRSD+TR-HRS10K+TR-HRSOD+TR-UHRSD', # leave DIS-VD for evaluation.
|
17 |
-
'P3M-10k': 'TR-P3M-10k',
|
18 |
-
}[self.task]
|
19 |
-
self.prompt4loc = ['dense', 'sparse'][0]
|
20 |
-
|
21 |
-
# Faster-Training settings
|
22 |
-
self.load_all = True
|
23 |
-
self.compile = True # 1. Trigger CPU memory leak in some extend, which is an inherent problem of PyTorch.
|
24 |
-
# Machines with > 70GB CPU memory can run the whole training on DIS5K with default setting.
|
25 |
-
# 2. Higher PyTorch version may fix it: https://github.com/pytorch/pytorch/issues/119607.
|
26 |
-
# 3. But compile in Pytorch > 2.0.1 seems to bring no acceleration for training.
|
27 |
-
self.precisionHigh = True
|
28 |
-
|
29 |
-
# MODEL settings
|
30 |
-
self.ms_supervision = True
|
31 |
-
self.out_ref = self.ms_supervision and True
|
32 |
-
self.dec_ipt = True
|
33 |
-
self.dec_ipt_split = True
|
34 |
-
self.cxt_num = [0, 3][1] # multi-scale skip connections from encoder
|
35 |
-
self.mul_scl_ipt = ['', 'add', 'cat'][2]
|
36 |
-
self.dec_att = ['', 'ASPP', 'ASPPDeformable'][2]
|
37 |
-
self.squeeze_block = ['', 'BasicDecBlk_x1', 'ResBlk_x4', 'ASPP_x3', 'ASPPDeformable_x3'][1]
|
38 |
-
self.dec_blk = ['BasicDecBlk', 'ResBlk', 'HierarAttDecBlk'][0]
|
39 |
-
|
40 |
-
# TRAINING settings
|
41 |
-
self.batch_size = 4
|
42 |
-
self.IoU_finetune_last_epochs = [
|
43 |
-
0,
|
44 |
-
{
|
45 |
-
'DIS5K': -50,
|
46 |
-
'COD': -20,
|
47 |
-
'HRSOD': -20,
|
48 |
-
'DIS5K+HRSOD+HRS10K': -20,
|
49 |
-
'P3M-10k': -20,
|
50 |
-
}[self.task]
|
51 |
-
][1] # choose 0 to skip
|
52 |
-
self.lr = (1e-4 if 'DIS5K' in self.task else 1e-5) * math.sqrt(self.batch_size / 4) # DIS needs high lr to converge faster. Adapt the lr linearly
|
53 |
-
self.size = 1024
|
54 |
-
self.num_workers = max(4, self.batch_size) # will be decrease to min(it, batch_size) at the initialization of the data_loader
|
55 |
-
|
56 |
-
# Backbone settings
|
57 |
-
self.bb = [
|
58 |
-
'vgg16', 'vgg16bn', 'resnet50', # 0, 1, 2
|
59 |
-
'swin_v1_t', 'swin_v1_s', # 3, 4
|
60 |
-
'swin_v1_b', 'swin_v1_l', # 5-bs9, 6-bs4
|
61 |
-
'pvt_v2_b0', 'pvt_v2_b1', # 7, 8
|
62 |
-
'pvt_v2_b2', 'pvt_v2_b5', # 9-bs10, 10-bs5
|
63 |
-
][6]
|
64 |
-
self.lateral_channels_in_collection = {
|
65 |
-
'vgg16': [512, 256, 128, 64], 'vgg16bn': [512, 256, 128, 64], 'resnet50': [1024, 512, 256, 64],
|
66 |
-
'pvt_v2_b2': [512, 320, 128, 64], 'pvt_v2_b5': [512, 320, 128, 64],
|
67 |
-
'swin_v1_b': [1024, 512, 256, 128], 'swin_v1_l': [1536, 768, 384, 192],
|
68 |
-
'swin_v1_t': [768, 384, 192, 96], 'swin_v1_s': [768, 384, 192, 96],
|
69 |
-
'pvt_v2_b0': [256, 160, 64, 32], 'pvt_v2_b1': [512, 320, 128, 64],
|
70 |
-
}[self.bb]
|
71 |
-
if self.mul_scl_ipt == 'cat':
|
72 |
-
self.lateral_channels_in_collection = [channel * 2 for channel in self.lateral_channels_in_collection]
|
73 |
-
self.cxt = self.lateral_channels_in_collection[1:][::-1][-self.cxt_num:] if self.cxt_num else []
|
74 |
-
|
75 |
-
# MODEL settings - inactive
|
76 |
-
self.lat_blk = ['BasicLatBlk'][0]
|
77 |
-
self.dec_channels_inter = ['fixed', 'adap'][0]
|
78 |
-
self.refine = ['', 'itself', 'RefUNet', 'Refiner', 'RefinerPVTInChannels4'][0]
|
79 |
-
self.progressive_ref = self.refine and True
|
80 |
-
self.ender = self.progressive_ref and False
|
81 |
-
self.scale = self.progressive_ref and 2
|
82 |
-
self.auxiliary_classification = False # Only for DIS5K, where class labels are saved in `dataset.py`.
|
83 |
-
self.refine_iteration = 1
|
84 |
-
self.freeze_bb = False
|
85 |
-
self.model = [
|
86 |
-
'BiRefNet',
|
87 |
-
][0]
|
88 |
-
if self.dec_blk == 'HierarAttDecBlk':
|
89 |
-
self.batch_size = 2 ** [0, 1, 2, 3, 4][2]
|
90 |
-
|
91 |
-
# TRAINING settings - inactive
|
92 |
-
self.preproc_methods = ['flip', 'enhance', 'rotate', 'pepper', 'crop'][:4]
|
93 |
-
self.optimizer = ['Adam', 'AdamW'][1]
|
94 |
-
self.lr_decay_epochs = [1e5] # Set to negative N to decay the lr in the last N-th epoch.
|
95 |
-
self.lr_decay_rate = 0.5
|
96 |
-
# Loss
|
97 |
-
self.lambdas_pix_last = {
|
98 |
-
# not 0 means opening this loss
|
99 |
-
# original rate -- 1 : 30 : 1.5 : 0.2, bce x 30
|
100 |
-
'bce': 30 * 1, # high performance
|
101 |
-
'iou': 0.5 * 1, # 0 / 255
|
102 |
-
'iou_patch': 0.5 * 0, # 0 / 255, win_size = (64, 64)
|
103 |
-
'mse': 150 * 0, # can smooth the saliency map
|
104 |
-
'triplet': 3 * 0,
|
105 |
-
'reg': 100 * 0,
|
106 |
-
'ssim': 10 * 1, # help contours,
|
107 |
-
'cnt': 5 * 0, # help contours
|
108 |
-
'structure': 5 * 0, # structure loss from codes of MVANet. A little improvement on DIS-TE[1,2,3], a bit more decrease on DIS-TE4.
|
109 |
-
}
|
110 |
-
self.lambdas_cls = {
|
111 |
-
'ce': 5.0
|
112 |
-
}
|
113 |
-
# Adv
|
114 |
-
self.lambda_adv_g = 10. * 0 # turn to 0 to avoid adv training
|
115 |
-
self.lambda_adv_d = 3. * (self.lambda_adv_g > 0)
|
116 |
-
|
117 |
-
# PATH settings - inactive
|
118 |
-
self.data_root_dir = os.path.join(self.sys_home_dir, 'datasets/dis')
|
119 |
-
self.weights_root_dir = os.path.join(self.sys_home_dir, 'weights')
|
120 |
-
self.weights = {
|
121 |
-
'pvt_v2_b2': os.path.join(self.weights_root_dir, 'pvt_v2_b2.pth'),
|
122 |
-
'pvt_v2_b5': os.path.join(self.weights_root_dir, ['pvt_v2_b5.pth', 'pvt_v2_b5_22k.pth'][0]),
|
123 |
-
'swin_v1_b': os.path.join(self.weights_root_dir, ['swin_base_patch4_window12_384_22kto1k.pth', 'swin_base_patch4_window12_384_22k.pth'][0]),
|
124 |
-
'swin_v1_l': os.path.join(self.weights_root_dir, ['swin_large_patch4_window12_384_22kto1k.pth', 'swin_large_patch4_window12_384_22k.pth'][0]),
|
125 |
-
'swin_v1_t': os.path.join(self.weights_root_dir, ['swin_tiny_patch4_window7_224_22kto1k_finetune.pth'][0]),
|
126 |
-
'swin_v1_s': os.path.join(self.weights_root_dir, ['swin_small_patch4_window7_224_22kto1k_finetune.pth'][0]),
|
127 |
-
'pvt_v2_b0': os.path.join(self.weights_root_dir, ['pvt_v2_b0.pth'][0]),
|
128 |
-
'pvt_v2_b1': os.path.join(self.weights_root_dir, ['pvt_v2_b1.pth'][0]),
|
129 |
-
}
|
130 |
-
|
131 |
-
# Callbacks - inactive
|
132 |
-
self.verbose_eval = True
|
133 |
-
self.only_S_MAE = False
|
134 |
-
self.use_fp16 = False # Bugs. It may cause nan in training.
|
135 |
-
self.SDPA_enabled = False # Bugs. Slower and errors occur in multi-GPUs
|
136 |
-
|
137 |
-
# others
|
138 |
-
self.device = [0, 'cpu'][0] # .to(0) == .to('cuda:0')
|
139 |
-
|
140 |
-
self.batch_size_valid = 1
|
141 |
-
self.rand_seed = 7
|
142 |
-
run_sh_file = [f for f in os.listdir('.') if 'train.sh' == f] + [os.path.join('..', f) for f in os.listdir('..') if 'train.sh' == f]
|
143 |
-
with open(run_sh_file[0], 'r') as f:
|
144 |
-
lines = f.readlines()
|
145 |
-
self.save_last = int([l.strip() for l in lines if '"{}")'.format(self.task) in l and 'val_last=' in l][0].split('val_last=')[-1].split()[0])
|
146 |
-
self.save_step = int([l.strip() for l in lines if '"{}")'.format(self.task) in l and 'step=' in l][0].split('step=')[-1].split()[0])
|
147 |
-
self.val_step = [0, self.save_step][0]
|
148 |
-
|
149 |
-
def print_task(self) -> None:
|
150 |
-
# Return task for choosing settings in shell scripts.
|
151 |
-
print(self.task)
|
152 |
-
|
153 |
-
if __name__ == '__main__':
|
154 |
-
config = Config()
|
155 |
-
config.print_task()
|
156 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
dataset.py
DELETED
@@ -1,112 +0,0 @@
|
|
1 |
-
import os
|
2 |
-
import cv2
|
3 |
-
from tqdm import tqdm
|
4 |
-
from PIL import Image
|
5 |
-
from torch.utils import data
|
6 |
-
from torchvision import transforms
|
7 |
-
|
8 |
-
from preproc import preproc
|
9 |
-
from config import Config
|
10 |
-
from utils import path_to_image
|
11 |
-
|
12 |
-
|
13 |
-
Image.MAX_IMAGE_PIXELS = None # remove DecompressionBombWarning
|
14 |
-
config = Config()
|
15 |
-
_class_labels_TR_sorted = (
|
16 |
-
'Airplane, Ant, Antenna, Archery, Axe, BabyCarriage, Bag, BalanceBeam, Balcony, Balloon, Basket, BasketballHoop, Beatle, Bed, Bee, Bench, Bicycle, '
|
17 |
-
'BicycleFrame, BicycleStand, Boat, Bonsai, BoomLift, Bridge, BunkBed, Butterfly, Button, Cable, CableLift, Cage, Camcorder, Cannon, Canoe, Car, '
|
18 |
-
'CarParkDropArm, Carriage, Cart, Caterpillar, CeilingLamp, Centipede, Chair, Clip, Clock, Clothes, CoatHanger, Comb, ConcretePumpTruck, Crack, Crane, '
|
19 |
-
'Cup, DentalChair, Desk, DeskChair, Diagram, DishRack, DoorHandle, Dragonfish, Dragonfly, Drum, Earphone, Easel, ElectricIron, Excavator, Eyeglasses, '
|
20 |
-
'Fan, Fence, Fencing, FerrisWheel, FireExtinguisher, Fishing, Flag, FloorLamp, Forklift, GasStation, Gate, Gear, Goal, Golf, GymEquipment, Hammock, '
|
21 |
-
'Handcart, Handcraft, Handrail, HangGlider, Harp, Harvester, Headset, Helicopter, Helmet, Hook, HorizontalBar, Hydrovalve, IroningTable, Jewelry, Key, '
|
22 |
-
'KidsPlayground, Kitchenware, Kite, Knife, Ladder, LaundryRack, Lightning, Lobster, Locust, Machine, MachineGun, MagazineRack, Mantis, Medal, MemorialArchway, '
|
23 |
-
'Microphone, Missile, MobileHolder, Monitor, Mosquito, Motorcycle, MovingTrolley, Mower, MusicPlayer, MusicStand, ObservationTower, Octopus, OilWell, '
|
24 |
-
'OlympicLogo, OperatingTable, OutdoorFitnessEquipment, Parachute, Pavilion, Piano, Pipe, PlowHarrow, PoleVault, Punchbag, Rack, Racket, Rifle, Ring, Robot, '
|
25 |
-
'RockClimbing, Rope, Sailboat, Satellite, Scaffold, Scale, Scissor, Scooter, Sculpture, Seadragon, Seahorse, Seal, SewingMachine, Ship, Shoe, ShoppingCart, '
|
26 |
-
'ShoppingTrolley, Shower, Shrimp, Signboard, Skateboarding, Skeleton, Skiing, Spade, SpeedBoat, Spider, Spoon, Stair, Stand, Stationary, SteeringWheel, '
|
27 |
-
'Stethoscope, Stool, Stove, StreetLamp, SweetStand, Swing, Sword, TV, Table, TableChair, TableLamp, TableTennis, Tank, Tapeline, Teapot, Telescope, Tent, '
|
28 |
-
'TobaccoPipe, Toy, Tractor, TrafficLight, TrafficSign, Trampoline, TransmissionTower, Tree, Tricycle, TrimmerCover, Tripod, Trombone, Truck, Trumpet, Tuba, '
|
29 |
-
'UAV, Umbrella, UnevenBars, UtilityPole, VacuumCleaner, Violin, Wakesurfing, Watch, WaterTower, WateringPot, Well, WellLid, Wheel, Wheelchair, WindTurbine, Windmill, WineGlass, WireWhisk, Yacht'
|
30 |
-
)
|
31 |
-
class_labels_TR_sorted = _class_labels_TR_sorted.split(', ')
|
32 |
-
|
33 |
-
|
34 |
-
class MyData(data.Dataset):
|
35 |
-
def __init__(self, datasets, image_size, is_train=True):
|
36 |
-
self.size_train = image_size
|
37 |
-
self.size_test = image_size
|
38 |
-
self.keep_size = not config.size
|
39 |
-
self.data_size = (config.size, config.size)
|
40 |
-
self.is_train = is_train
|
41 |
-
self.load_all = config.load_all
|
42 |
-
self.device = config.device
|
43 |
-
if self.is_train and config.auxiliary_classification:
|
44 |
-
self.cls_name2id = {_name: _id for _id, _name in enumerate(class_labels_TR_sorted)}
|
45 |
-
self.transform_image = transforms.Compose([
|
46 |
-
transforms.Resize(self.data_size),
|
47 |
-
transforms.ToTensor(),
|
48 |
-
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]),
|
49 |
-
][self.load_all or self.keep_size:])
|
50 |
-
self.transform_label = transforms.Compose([
|
51 |
-
transforms.Resize(self.data_size),
|
52 |
-
transforms.ToTensor(),
|
53 |
-
][self.load_all or self.keep_size:])
|
54 |
-
dataset_root = os.path.join(config.data_root_dir, config.task)
|
55 |
-
# datasets can be a list of different datasets for training on combined sets.
|
56 |
-
self.image_paths = []
|
57 |
-
for dataset in datasets.split('+'):
|
58 |
-
image_root = os.path.join(dataset_root, dataset, 'im')
|
59 |
-
self.image_paths += [os.path.join(image_root, p) for p in os.listdir(image_root)]
|
60 |
-
self.label_paths = []
|
61 |
-
for p in self.image_paths:
|
62 |
-
for ext in ['.png', '.jpg', '.PNG', '.JPG', '.JPEG']:
|
63 |
-
## 'im' and 'gt' may need modifying
|
64 |
-
p_gt = p.replace('/im/', '/gt/')[:-(len(p.split('.')[-1])+1)] + ext
|
65 |
-
file_exists = False
|
66 |
-
if os.path.exists(p_gt):
|
67 |
-
self.label_paths.append(p_gt)
|
68 |
-
file_exists = True
|
69 |
-
break
|
70 |
-
if not file_exists:
|
71 |
-
print('Not exists:', p_gt)
|
72 |
-
if self.load_all:
|
73 |
-
self.images_loaded, self.labels_loaded = [], []
|
74 |
-
self.class_labels_loaded = []
|
75 |
-
# for image_path, label_path in zip(self.image_paths, self.label_paths):
|
76 |
-
for image_path, label_path in tqdm(zip(self.image_paths, self.label_paths), total=len(self.image_paths)):
|
77 |
-
_image = path_to_image(image_path, size=(config.size, config.size), color_type='rgb')
|
78 |
-
_label = path_to_image(label_path, size=(config.size, config.size), color_type='gray')
|
79 |
-
self.images_loaded.append(_image)
|
80 |
-
self.labels_loaded.append(_label)
|
81 |
-
self.class_labels_loaded.append(
|
82 |
-
self.cls_name2id[label_path.split('/')[-1].split('#')[3]] if self.is_train and config.auxiliary_classification else -1
|
83 |
-
)
|
84 |
-
|
85 |
-
def __getitem__(self, index):
|
86 |
-
|
87 |
-
if self.load_all:
|
88 |
-
image = self.images_loaded[index]
|
89 |
-
label = self.labels_loaded[index]
|
90 |
-
class_label = self.class_labels_loaded[index] if self.is_train and config.auxiliary_classification else -1
|
91 |
-
else:
|
92 |
-
image = path_to_image(self.image_paths[index], size=(config.size, config.size), color_type='rgb')
|
93 |
-
label = path_to_image(self.label_paths[index], size=(config.size, config.size), color_type='gray')
|
94 |
-
class_label = self.cls_name2id[self.label_paths[index].split('/')[-1].split('#')[3]] if self.is_train and config.auxiliary_classification else -1
|
95 |
-
|
96 |
-
# loading image and label
|
97 |
-
if self.is_train:
|
98 |
-
image, label = preproc(image, label, preproc_methods=config.preproc_methods)
|
99 |
-
# else:
|
100 |
-
# if _label.shape[0] > 2048 or _label.shape[1] > 2048:
|
101 |
-
# _image = cv2.resize(_image, (2048, 2048), interpolation=cv2.INTER_LINEAR)
|
102 |
-
# _label = cv2.resize(_label, (2048, 2048), interpolation=cv2.INTER_LINEAR)
|
103 |
-
|
104 |
-
image, label = self.transform_image(image), self.transform_label(label)
|
105 |
-
|
106 |
-
if self.is_train:
|
107 |
-
return image, label, class_label
|
108 |
-
else:
|
109 |
-
return image, label, self.label_paths[index]
|
110 |
-
|
111 |
-
def __len__(self):
|
112 |
-
return len(self.image_paths)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
models/__init__.py
DELETED
@@ -1,6 +0,0 @@
|
|
1 |
-
from os.path import dirname, basename, isfile, join
|
2 |
-
import glob
|
3 |
-
|
4 |
-
|
5 |
-
modules = glob.glob(join(dirname(__file__), "*.py"))
|
6 |
-
__all__ = [ basename(f)[:-3] for f in modules if isfile(f) and not f.endswith('__init__.py')]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
models/aspp.py
DELETED
@@ -1,119 +0,0 @@
|
|
1 |
-
import torch
|
2 |
-
import torch.nn as nn
|
3 |
-
import torch.nn.functional as F
|
4 |
-
from models.deform_conv import DeformableConv2d
|
5 |
-
from config import Config
|
6 |
-
|
7 |
-
|
8 |
-
config = Config()
|
9 |
-
|
10 |
-
|
11 |
-
class _ASPPModule(nn.Module):
|
12 |
-
def __init__(self, in_channels, planes, kernel_size, padding, dilation):
|
13 |
-
super(_ASPPModule, self).__init__()
|
14 |
-
self.atrous_conv = nn.Conv2d(in_channels, planes, kernel_size=kernel_size,
|
15 |
-
stride=1, padding=padding, dilation=dilation, bias=False)
|
16 |
-
self.bn = nn.BatchNorm2d(planes) if config.batch_size > 1 else nn.Identity()
|
17 |
-
self.relu = nn.ReLU(inplace=True)
|
18 |
-
|
19 |
-
def forward(self, x):
|
20 |
-
x = self.atrous_conv(x)
|
21 |
-
x = self.bn(x)
|
22 |
-
|
23 |
-
return self.relu(x)
|
24 |
-
|
25 |
-
|
26 |
-
class ASPP(nn.Module):
|
27 |
-
def __init__(self, in_channels=64, out_channels=None, output_stride=16):
|
28 |
-
super(ASPP, self).__init__()
|
29 |
-
self.down_scale = 1
|
30 |
-
if out_channels is None:
|
31 |
-
out_channels = in_channels
|
32 |
-
self.in_channelster = 256 // self.down_scale
|
33 |
-
if output_stride == 16:
|
34 |
-
dilations = [1, 6, 12, 18]
|
35 |
-
elif output_stride == 8:
|
36 |
-
dilations = [1, 12, 24, 36]
|
37 |
-
else:
|
38 |
-
raise NotImplementedError
|
39 |
-
|
40 |
-
self.aspp1 = _ASPPModule(in_channels, self.in_channelster, 1, padding=0, dilation=dilations[0])
|
41 |
-
self.aspp2 = _ASPPModule(in_channels, self.in_channelster, 3, padding=dilations[1], dilation=dilations[1])
|
42 |
-
self.aspp3 = _ASPPModule(in_channels, self.in_channelster, 3, padding=dilations[2], dilation=dilations[2])
|
43 |
-
self.aspp4 = _ASPPModule(in_channels, self.in_channelster, 3, padding=dilations[3], dilation=dilations[3])
|
44 |
-
|
45 |
-
self.global_avg_pool = nn.Sequential(nn.AdaptiveAvgPool2d((1, 1)),
|
46 |
-
nn.Conv2d(in_channels, self.in_channelster, 1, stride=1, bias=False),
|
47 |
-
nn.BatchNorm2d(self.in_channelster) if config.batch_size > 1 else nn.Identity(),
|
48 |
-
nn.ReLU(inplace=True))
|
49 |
-
self.conv1 = nn.Conv2d(self.in_channelster * 5, out_channels, 1, bias=False)
|
50 |
-
self.bn1 = nn.BatchNorm2d(out_channels) if config.batch_size > 1 else nn.Identity()
|
51 |
-
self.relu = nn.ReLU(inplace=True)
|
52 |
-
self.dropout = nn.Dropout(0.5)
|
53 |
-
|
54 |
-
def forward(self, x):
|
55 |
-
x1 = self.aspp1(x)
|
56 |
-
x2 = self.aspp2(x)
|
57 |
-
x3 = self.aspp3(x)
|
58 |
-
x4 = self.aspp4(x)
|
59 |
-
x5 = self.global_avg_pool(x)
|
60 |
-
x5 = F.interpolate(x5, size=x1.size()[2:], mode='bilinear', align_corners=True)
|
61 |
-
x = torch.cat((x1, x2, x3, x4, x5), dim=1)
|
62 |
-
|
63 |
-
x = self.conv1(x)
|
64 |
-
x = self.bn1(x)
|
65 |
-
x = self.relu(x)
|
66 |
-
|
67 |
-
return self.dropout(x)
|
68 |
-
|
69 |
-
|
70 |
-
##################### Deformable
|
71 |
-
class _ASPPModuleDeformable(nn.Module):
|
72 |
-
def __init__(self, in_channels, planes, kernel_size, padding):
|
73 |
-
super(_ASPPModuleDeformable, self).__init__()
|
74 |
-
self.atrous_conv = DeformableConv2d(in_channels, planes, kernel_size=kernel_size,
|
75 |
-
stride=1, padding=padding, bias=False)
|
76 |
-
self.bn = nn.BatchNorm2d(planes) if config.batch_size > 1 else nn.Identity()
|
77 |
-
self.relu = nn.ReLU(inplace=True)
|
78 |
-
|
79 |
-
def forward(self, x):
|
80 |
-
x = self.atrous_conv(x)
|
81 |
-
x = self.bn(x)
|
82 |
-
|
83 |
-
return self.relu(x)
|
84 |
-
|
85 |
-
|
86 |
-
class ASPPDeformable(nn.Module):
|
87 |
-
def __init__(self, in_channels, out_channels=None, parallel_block_sizes=[1, 3, 7]):
|
88 |
-
super(ASPPDeformable, self).__init__()
|
89 |
-
self.down_scale = 1
|
90 |
-
if out_channels is None:
|
91 |
-
out_channels = in_channels
|
92 |
-
self.in_channelster = 256 // self.down_scale
|
93 |
-
|
94 |
-
self.aspp1 = _ASPPModuleDeformable(in_channels, self.in_channelster, 1, padding=0)
|
95 |
-
self.aspp_deforms = nn.ModuleList([
|
96 |
-
_ASPPModuleDeformable(in_channels, self.in_channelster, conv_size, padding=int(conv_size//2)) for conv_size in parallel_block_sizes
|
97 |
-
])
|
98 |
-
|
99 |
-
self.global_avg_pool = nn.Sequential(nn.AdaptiveAvgPool2d((1, 1)),
|
100 |
-
nn.Conv2d(in_channels, self.in_channelster, 1, stride=1, bias=False),
|
101 |
-
nn.BatchNorm2d(self.in_channelster) if config.batch_size > 1 else nn.Identity(),
|
102 |
-
nn.ReLU(inplace=True))
|
103 |
-
self.conv1 = nn.Conv2d(self.in_channelster * (2 + len(self.aspp_deforms)), out_channels, 1, bias=False)
|
104 |
-
self.bn1 = nn.BatchNorm2d(out_channels) if config.batch_size > 1 else nn.Identity()
|
105 |
-
self.relu = nn.ReLU(inplace=True)
|
106 |
-
self.dropout = nn.Dropout(0.5)
|
107 |
-
|
108 |
-
def forward(self, x):
|
109 |
-
x1 = self.aspp1(x)
|
110 |
-
x_aspp_deforms = [aspp_deform(x) for aspp_deform in self.aspp_deforms]
|
111 |
-
x5 = self.global_avg_pool(x)
|
112 |
-
x5 = F.interpolate(x5, size=x1.size()[2:], mode='bilinear', align_corners=True)
|
113 |
-
x = torch.cat((x1, *x_aspp_deforms, x5), dim=1)
|
114 |
-
|
115 |
-
x = self.conv1(x)
|
116 |
-
x = self.bn1(x)
|
117 |
-
x = self.relu(x)
|
118 |
-
|
119 |
-
return self.dropout(x)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
models/attentions.py
DELETED
@@ -1,93 +0,0 @@
|
|
1 |
-
import numpy as np
|
2 |
-
import torch
|
3 |
-
from torch import nn
|
4 |
-
from torch.nn import init
|
5 |
-
|
6 |
-
|
7 |
-
class SEWeightModule(nn.Module):
|
8 |
-
def __init__(self, channels, reduction=16):
|
9 |
-
super(SEWeightModule, self).__init__()
|
10 |
-
self.avg_pool = nn.AdaptiveAvgPool2d(1)
|
11 |
-
self.fc1 = nn.Conv2d(channels, channels//reduction, kernel_size=1, padding=0)
|
12 |
-
self.relu = nn.ReLU(inplace=True)
|
13 |
-
self.fc2 = nn.Conv2d(channels//reduction, channels, kernel_size=1, padding=0)
|
14 |
-
self.sigmoid = nn.Sigmoid()
|
15 |
-
|
16 |
-
def forward(self, x):
|
17 |
-
out = self.avg_pool(x)
|
18 |
-
out = self.fc1(out)
|
19 |
-
out = self.relu(out)
|
20 |
-
out = self.fc2(out)
|
21 |
-
weight = self.sigmoid(out)
|
22 |
-
return weight
|
23 |
-
|
24 |
-
|
25 |
-
class PSA(nn.Module):
|
26 |
-
|
27 |
-
def __init__(self, in_channels, S=4, reduction=4):
|
28 |
-
super().__init__()
|
29 |
-
self.S = S
|
30 |
-
|
31 |
-
_convs = []
|
32 |
-
for i in range(S):
|
33 |
-
_convs.append(nn.Conv2d(in_channels//S, in_channels//S, kernel_size=2*(i+1)+1, padding=i+1))
|
34 |
-
self.convs = nn.ModuleList(_convs)
|
35 |
-
|
36 |
-
self.se_block = SEWeightModule(in_channels//S, reduction=S*reduction)
|
37 |
-
|
38 |
-
self.softmax = nn.Softmax(dim=1)
|
39 |
-
|
40 |
-
def forward(self, x):
|
41 |
-
b, c, h, w = x.size()
|
42 |
-
|
43 |
-
# Step1: SPC module
|
44 |
-
SPC_out = x.view(b, self.S, c//self.S, h, w) #bs,s,ci,h,w
|
45 |
-
for idx, conv in enumerate(self.convs):
|
46 |
-
SPC_out[:,idx,:,:,:] = conv(SPC_out[:,idx,:,:,:].clone())
|
47 |
-
|
48 |
-
# Step2: SE weight
|
49 |
-
se_out=[]
|
50 |
-
for idx in range(self.S):
|
51 |
-
se_out.append(self.se_block(SPC_out[:, idx, :, :, :]))
|
52 |
-
SE_out = torch.stack(se_out, dim=1)
|
53 |
-
SE_out = SE_out.expand_as(SPC_out)
|
54 |
-
|
55 |
-
# Step3: Softmax
|
56 |
-
softmax_out = self.softmax(SE_out)
|
57 |
-
|
58 |
-
# Step4: SPA
|
59 |
-
PSA_out = SPC_out * softmax_out
|
60 |
-
PSA_out = PSA_out.view(b, -1, h, w)
|
61 |
-
|
62 |
-
return PSA_out
|
63 |
-
|
64 |
-
|
65 |
-
class SGE(nn.Module):
|
66 |
-
|
67 |
-
def __init__(self, groups):
|
68 |
-
super().__init__()
|
69 |
-
self.groups=groups
|
70 |
-
self.avg_pool = nn.AdaptiveAvgPool2d(1)
|
71 |
-
self.weight=nn.Parameter(torch.zeros(1,groups,1,1))
|
72 |
-
self.bias=nn.Parameter(torch.zeros(1,groups,1,1))
|
73 |
-
self.sig=nn.Sigmoid()
|
74 |
-
|
75 |
-
def forward(self, x):
|
76 |
-
b, c, h,w=x.shape
|
77 |
-
x=x.view(b*self.groups,-1,h,w) #bs*g,dim//g,h,w
|
78 |
-
xn=x*self.avg_pool(x) #bs*g,dim//g,h,w
|
79 |
-
xn=xn.sum(dim=1,keepdim=True) #bs*g,1,h,w
|
80 |
-
t=xn.view(b*self.groups,-1) #bs*g,h*w
|
81 |
-
|
82 |
-
t=t-t.mean(dim=1,keepdim=True) #bs*g,h*w
|
83 |
-
std=t.std(dim=1,keepdim=True)+1e-5
|
84 |
-
t=t/std #bs*g,h*w
|
85 |
-
t=t.view(b,self.groups,h,w) #bs,g,h*w
|
86 |
-
|
87 |
-
t=t*self.weight+self.bias #bs,g,h*w
|
88 |
-
t=t.view(b*self.groups,1,h,w) #bs*g,1,h*w
|
89 |
-
x=x*self.sig(t)
|
90 |
-
x=x.view(b,c,h,w)
|
91 |
-
|
92 |
-
return x
|
93 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
models/backbones/__init__.py
DELETED
@@ -1,6 +0,0 @@
|
|
1 |
-
from os.path import dirname, basename, isfile, join
|
2 |
-
import glob
|
3 |
-
|
4 |
-
|
5 |
-
modules = glob.glob(join(dirname(__file__), "*.py"))
|
6 |
-
__all__ = [ basename(f)[:-3] for f in modules if isfile(f) and not f.endswith('__init__.py')]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
models/build_backbone.py
DELETED
@@ -1,44 +0,0 @@
|
|
1 |
-
import torch
|
2 |
-
import torch.nn as nn
|
3 |
-
from collections import OrderedDict
|
4 |
-
from torchvision.models import vgg16, vgg16_bn, VGG16_Weights, VGG16_BN_Weights, resnet50, ResNet50_Weights
|
5 |
-
from models.pvt_v2 import pvt_v2_b0, pvt_v2_b1, pvt_v2_b2, pvt_v2_b5
|
6 |
-
from models.swin_v1 import swin_v1_t, swin_v1_s, swin_v1_b, swin_v1_l
|
7 |
-
from config import Config
|
8 |
-
|
9 |
-
|
10 |
-
config = Config()
|
11 |
-
|
12 |
-
def build_backbone(bb_name, pretrained=True, params_settings=''):
|
13 |
-
if bb_name == 'vgg16':
|
14 |
-
bb_net = list(vgg16(pretrained=VGG16_Weights.DEFAULT if pretrained else None).children())[0]
|
15 |
-
bb = nn.Sequential(OrderedDict({'conv1': bb_net[:4], 'conv2': bb_net[4:9], 'conv3': bb_net[9:16], 'conv4': bb_net[16:23]}))
|
16 |
-
elif bb_name == 'vgg16bn':
|
17 |
-
bb_net = list(vgg16_bn(pretrained=VGG16_BN_Weights.DEFAULT if pretrained else None).children())[0]
|
18 |
-
bb = nn.Sequential(OrderedDict({'conv1': bb_net[:6], 'conv2': bb_net[6:13], 'conv3': bb_net[13:23], 'conv4': bb_net[23:33]}))
|
19 |
-
elif bb_name == 'resnet50':
|
20 |
-
bb_net = list(resnet50(pretrained=ResNet50_Weights.DEFAULT if pretrained else None).children())
|
21 |
-
bb = nn.Sequential(OrderedDict({'conv1': nn.Sequential(*bb_net[0:3]), 'conv2': bb_net[4], 'conv3': bb_net[5], 'conv4': bb_net[6]}))
|
22 |
-
else:
|
23 |
-
bb = eval('{}({})'.format(bb_name, params_settings))
|
24 |
-
if pretrained:
|
25 |
-
bb = load_weights(bb, bb_name)
|
26 |
-
return bb
|
27 |
-
|
28 |
-
def load_weights(model, model_name):
|
29 |
-
save_model = torch.load(config.weights[model_name], map_location='cpu')
|
30 |
-
model_dict = model.state_dict()
|
31 |
-
state_dict = {k: v if v.size() == model_dict[k].size() else model_dict[k] for k, v in save_model.items() if k in model_dict.keys()}
|
32 |
-
# to ignore the weights with mismatched size when I modify the backbone itself.
|
33 |
-
if not state_dict:
|
34 |
-
save_model_keys = list(save_model.keys())
|
35 |
-
sub_item = save_model_keys[0] if len(save_model_keys) == 1 else None
|
36 |
-
state_dict = {k: v if v.size() == model_dict[k].size() else model_dict[k] for k, v in save_model[sub_item].items() if k in model_dict.keys()}
|
37 |
-
if not state_dict or not sub_item:
|
38 |
-
print('Weights are not successully loaded. Check the state dict of weights file.')
|
39 |
-
return None
|
40 |
-
else:
|
41 |
-
print('Found correct weights in the "{}" item of loaded state_dict.'.format(sub_item))
|
42 |
-
model_dict.update(state_dict)
|
43 |
-
model.load_state_dict(model_dict)
|
44 |
-
return model
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
models/decoder_blocks.py
DELETED
@@ -1,101 +0,0 @@
|
|
1 |
-
import torch
|
2 |
-
import torch.nn as nn
|
3 |
-
from models.aspp import ASPP, ASPPDeformable
|
4 |
-
from models.attentions import PSA, SGE
|
5 |
-
from config import Config
|
6 |
-
|
7 |
-
|
8 |
-
config = Config()
|
9 |
-
|
10 |
-
|
11 |
-
class BasicDecBlk(nn.Module):
|
12 |
-
def __init__(self, in_channels=64, out_channels=64, inter_channels=64):
|
13 |
-
super(BasicDecBlk, self).__init__()
|
14 |
-
inter_channels = in_channels // 4 if config.dec_channels_inter == 'adap' else 64
|
15 |
-
self.conv_in = nn.Conv2d(in_channels, inter_channels, 3, 1, padding=1)
|
16 |
-
self.relu_in = nn.ReLU(inplace=True)
|
17 |
-
if config.dec_att == 'ASPP':
|
18 |
-
self.dec_att = ASPP(in_channels=inter_channels)
|
19 |
-
elif config.dec_att == 'ASPPDeformable':
|
20 |
-
self.dec_att = ASPPDeformable(in_channels=inter_channels)
|
21 |
-
self.conv_out = nn.Conv2d(inter_channels, out_channels, 3, 1, padding=1)
|
22 |
-
self.bn_in = nn.BatchNorm2d(inter_channels) if config.batch_size > 1 else nn.Identity()
|
23 |
-
self.bn_out = nn.BatchNorm2d(out_channels) if config.batch_size > 1 else nn.Identity()
|
24 |
-
|
25 |
-
def forward(self, x):
|
26 |
-
x = self.conv_in(x)
|
27 |
-
x = self.bn_in(x)
|
28 |
-
x = self.relu_in(x)
|
29 |
-
if hasattr(self, 'dec_att'):
|
30 |
-
x = self.dec_att(x)
|
31 |
-
x = self.conv_out(x)
|
32 |
-
x = self.bn_out(x)
|
33 |
-
return x
|
34 |
-
|
35 |
-
|
36 |
-
class ResBlk(nn.Module):
|
37 |
-
def __init__(self, in_channels=64, out_channels=None, inter_channels=64):
|
38 |
-
super(ResBlk, self).__init__()
|
39 |
-
if out_channels is None:
|
40 |
-
out_channels = in_channels
|
41 |
-
inter_channels = in_channels // 4 if config.dec_channels_inter == 'adap' else 64
|
42 |
-
|
43 |
-
self.conv_in = nn.Conv2d(in_channels, inter_channels, 3, 1, padding=1)
|
44 |
-
self.bn_in = nn.BatchNorm2d(inter_channels) if config.batch_size > 1 else nn.Identity()
|
45 |
-
self.relu_in = nn.ReLU(inplace=True)
|
46 |
-
|
47 |
-
if config.dec_att == 'ASPP':
|
48 |
-
self.dec_att = ASPP(in_channels=inter_channels)
|
49 |
-
elif config.dec_att == 'ASPPDeformable':
|
50 |
-
self.dec_att = ASPPDeformable(in_channels=inter_channels)
|
51 |
-
|
52 |
-
self.conv_out = nn.Conv2d(inter_channels, out_channels, 3, 1, padding=1)
|
53 |
-
self.bn_out = nn.BatchNorm2d(out_channels) if config.batch_size > 1 else nn.Identity()
|
54 |
-
|
55 |
-
self.conv_resi = nn.Conv2d(in_channels, out_channels, 1, 1, 0)
|
56 |
-
|
57 |
-
def forward(self, x):
|
58 |
-
_x = self.conv_resi(x)
|
59 |
-
x = self.conv_in(x)
|
60 |
-
x = self.bn_in(x)
|
61 |
-
x = self.relu_in(x)
|
62 |
-
if hasattr(self, 'dec_att'):
|
63 |
-
x = self.dec_att(x)
|
64 |
-
x = self.conv_out(x)
|
65 |
-
x = self.bn_out(x)
|
66 |
-
return x + _x
|
67 |
-
|
68 |
-
|
69 |
-
class HierarAttDecBlk(nn.Module):
|
70 |
-
def __init__(self, in_channels=64, out_channels=None, inter_channels=64):
|
71 |
-
super(HierarAttDecBlk, self).__init__()
|
72 |
-
if out_channels is None:
|
73 |
-
out_channels = in_channels
|
74 |
-
inter_channels = in_channels // 4 if config.dec_channels_inter == 'adap' else 64
|
75 |
-
self.split_y = 8 # must be divided by channels of all intermediate features
|
76 |
-
self.split_x = 8
|
77 |
-
|
78 |
-
self.conv_in = nn.Conv2d(in_channels, inter_channels, 3, 1, 1)
|
79 |
-
|
80 |
-
self.psa = PSA(inter_channels*self.split_y*self.split_x, S=config.batch_size)
|
81 |
-
self.sge = SGE(groups=config.batch_size)
|
82 |
-
|
83 |
-
if config.dec_att == 'ASPP':
|
84 |
-
self.dec_att = ASPP(in_channels=inter_channels)
|
85 |
-
elif config.dec_att == 'ASPPDeformable':
|
86 |
-
self.dec_att = ASPPDeformable(in_channels=inter_channels)
|
87 |
-
self.conv_out = nn.Conv2d(inter_channels, out_channels, 3, 1, 1)
|
88 |
-
|
89 |
-
def forward(self, x):
|
90 |
-
x = self.conv_in(x)
|
91 |
-
N, C, H, W = x.shape
|
92 |
-
x_patchs = x.reshape(N, -1, H//self.split_y, W//self.split_x)
|
93 |
-
|
94 |
-
# Hierarchical attention: group attention X patch spatial attention
|
95 |
-
x_patchs = self.psa(x_patchs) # Group Channel Attention -- each group is a single image
|
96 |
-
x_patchs = self.sge(x_patchs) # Patch Spatial Attention
|
97 |
-
x = x.reshape(N, C, H, W)
|
98 |
-
if hasattr(self, 'dec_att'):
|
99 |
-
x = self.dec_att(x)
|
100 |
-
x = self.conv_out(x)
|
101 |
-
return x
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
models/deform_conv.py
DELETED
@@ -1,66 +0,0 @@
|
|
1 |
-
import torch
|
2 |
-
import torch.nn as nn
|
3 |
-
from torchvision.ops import deform_conv2d
|
4 |
-
|
5 |
-
|
6 |
-
class DeformableConv2d(nn.Module):
|
7 |
-
def __init__(self,
|
8 |
-
in_channels,
|
9 |
-
out_channels,
|
10 |
-
kernel_size=3,
|
11 |
-
stride=1,
|
12 |
-
padding=1,
|
13 |
-
bias=False):
|
14 |
-
|
15 |
-
super(DeformableConv2d, self).__init__()
|
16 |
-
|
17 |
-
assert type(kernel_size) == tuple or type(kernel_size) == int
|
18 |
-
|
19 |
-
kernel_size = kernel_size if type(kernel_size) == tuple else (kernel_size, kernel_size)
|
20 |
-
self.stride = stride if type(stride) == tuple else (stride, stride)
|
21 |
-
self.padding = padding
|
22 |
-
|
23 |
-
self.offset_conv = nn.Conv2d(in_channels,
|
24 |
-
2 * kernel_size[0] * kernel_size[1],
|
25 |
-
kernel_size=kernel_size,
|
26 |
-
stride=stride,
|
27 |
-
padding=self.padding,
|
28 |
-
bias=True)
|
29 |
-
|
30 |
-
nn.init.constant_(self.offset_conv.weight, 0.)
|
31 |
-
nn.init.constant_(self.offset_conv.bias, 0.)
|
32 |
-
|
33 |
-
self.modulator_conv = nn.Conv2d(in_channels,
|
34 |
-
1 * kernel_size[0] * kernel_size[1],
|
35 |
-
kernel_size=kernel_size,
|
36 |
-
stride=stride,
|
37 |
-
padding=self.padding,
|
38 |
-
bias=True)
|
39 |
-
|
40 |
-
nn.init.constant_(self.modulator_conv.weight, 0.)
|
41 |
-
nn.init.constant_(self.modulator_conv.bias, 0.)
|
42 |
-
|
43 |
-
self.regular_conv = nn.Conv2d(in_channels,
|
44 |
-
out_channels=out_channels,
|
45 |
-
kernel_size=kernel_size,
|
46 |
-
stride=stride,
|
47 |
-
padding=self.padding,
|
48 |
-
bias=bias)
|
49 |
-
|
50 |
-
def forward(self, x):
|
51 |
-
#h, w = x.shape[2:]
|
52 |
-
#max_offset = max(h, w)/4.
|
53 |
-
|
54 |
-
offset = self.offset_conv(x)#.clamp(-max_offset, max_offset)
|
55 |
-
modulator = 2. * torch.sigmoid(self.modulator_conv(x))
|
56 |
-
|
57 |
-
x = deform_conv2d(
|
58 |
-
input=x,
|
59 |
-
offset=offset,
|
60 |
-
weight=self.regular_conv.weight,
|
61 |
-
bias=self.regular_conv.bias,
|
62 |
-
padding=self.padding,
|
63 |
-
mask=modulator,
|
64 |
-
stride=self.stride,
|
65 |
-
)
|
66 |
-
return x
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
models/ing.py
DELETED
@@ -1,29 +0,0 @@
|
|
1 |
-
import torch.nn as nn
|
2 |
-
from models.mlp import MLPLayer
|
3 |
-
|
4 |
-
|
5 |
-
class BlockA(nn.Module):
|
6 |
-
def __init__(self, in_channels=64, out_channels=64, inter_channels=64, mlp_ratio=4.):
|
7 |
-
super(BlockA, self).__init__()
|
8 |
-
inter_channels = in_channels
|
9 |
-
self.conv = nn.Conv2d(in_channels, inter_channels, 3, 1, 1)
|
10 |
-
self.norm1 = nn.LayerNorm(inter_channels)
|
11 |
-
self.ffn = MLPLayer(in_features=inter_channels,
|
12 |
-
hidden_features=int(inter_channels * mlp_ratio),
|
13 |
-
act_layer=nn.GELU,
|
14 |
-
drop=0.)
|
15 |
-
self.norm2 = nn.LayerNorm(inter_channels)
|
16 |
-
|
17 |
-
def forward(self, x):
|
18 |
-
B, C, H, W = x.shape
|
19 |
-
_x = self.conv(x)
|
20 |
-
_x = _x.flatten(2).transpose(1, 2)
|
21 |
-
_x = self.norm1(_x)
|
22 |
-
x = x.reshape(B, H, W, -1).permute(0, 3, 1, 2).contiguous()
|
23 |
-
|
24 |
-
x = x + _x
|
25 |
-
_x1 = self.ffn(x)
|
26 |
-
_x1 = self.norm2(_x1)
|
27 |
-
_x1 = _x1.reshape(B, H, W, -1).permute(0, 3, 1, 2).contiguous()
|
28 |
-
x = x + _x1
|
29 |
-
return x
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
models/lateral_blocks.py
DELETED
@@ -1,21 +0,0 @@
|
|
1 |
-
import numpy as np
|
2 |
-
import torch
|
3 |
-
import torch.nn as nn
|
4 |
-
import torch.nn.functional as F
|
5 |
-
from functools import partial
|
6 |
-
|
7 |
-
from config import Config
|
8 |
-
|
9 |
-
|
10 |
-
config = Config()
|
11 |
-
|
12 |
-
|
13 |
-
class BasicLatBlk(nn.Module):
|
14 |
-
def __init__(self, in_channels=64, out_channels=64, inter_channels=64):
|
15 |
-
super(BasicLatBlk, self).__init__()
|
16 |
-
inter_channels = in_channels // 4 if config.dec_channels_inter == 'adap' else 64
|
17 |
-
self.conv = nn.Conv2d(in_channels, out_channels, 1, 1, 0)
|
18 |
-
|
19 |
-
def forward(self, x):
|
20 |
-
x = self.conv(x)
|
21 |
-
return x
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
models/mlp.py
DELETED
@@ -1,118 +0,0 @@
|
|
1 |
-
import torch
|
2 |
-
import torch.nn as nn
|
3 |
-
from functools import partial
|
4 |
-
|
5 |
-
from timm.models.layers import DropPath, to_2tuple, trunc_normal_
|
6 |
-
from timm.models.registry import register_model
|
7 |
-
|
8 |
-
import math
|
9 |
-
|
10 |
-
|
11 |
-
class MLPLayer(nn.Module):
|
12 |
-
def __init__(self, in_features, hidden_features=None, out_features=None, act_layer=nn.GELU, drop=0.):
|
13 |
-
super().__init__()
|
14 |
-
out_features = out_features or in_features
|
15 |
-
hidden_features = hidden_features or in_features
|
16 |
-
self.fc1 = nn.Linear(in_features, hidden_features)
|
17 |
-
self.act = act_layer()
|
18 |
-
self.fc2 = nn.Linear(hidden_features, out_features)
|
19 |
-
self.drop = nn.Dropout(drop)
|
20 |
-
|
21 |
-
def forward(self, x):
|
22 |
-
x = self.fc1(x)
|
23 |
-
x = self.act(x)
|
24 |
-
x = self.drop(x)
|
25 |
-
x = self.fc2(x)
|
26 |
-
x = self.drop(x)
|
27 |
-
return x
|
28 |
-
|
29 |
-
|
30 |
-
class Attention(nn.Module):
|
31 |
-
def __init__(self, dim, num_heads=8, qkv_bias=False, qk_scale=None, attn_drop=0., proj_drop=0., sr_ratio=1):
|
32 |
-
super().__init__()
|
33 |
-
assert dim % num_heads == 0, f"dim {dim} should be divided by num_heads {num_heads}."
|
34 |
-
|
35 |
-
self.dim = dim
|
36 |
-
self.num_heads = num_heads
|
37 |
-
head_dim = dim // num_heads
|
38 |
-
self.scale = qk_scale or head_dim ** -0.5
|
39 |
-
|
40 |
-
self.q = nn.Linear(dim, dim, bias=qkv_bias)
|
41 |
-
self.kv = nn.Linear(dim, dim * 2, bias=qkv_bias)
|
42 |
-
self.attn_drop = nn.Dropout(attn_drop)
|
43 |
-
self.proj = nn.Linear(dim, dim)
|
44 |
-
self.proj_drop = nn.Dropout(proj_drop)
|
45 |
-
|
46 |
-
self.sr_ratio = sr_ratio
|
47 |
-
if sr_ratio > 1:
|
48 |
-
self.sr = nn.Conv2d(dim, dim, kernel_size=sr_ratio, stride=sr_ratio)
|
49 |
-
self.norm = nn.LayerNorm(dim)
|
50 |
-
|
51 |
-
def forward(self, x, H, W):
|
52 |
-
B, N, C = x.shape
|
53 |
-
q = self.q(x).reshape(B, N, self.num_heads, C // self.num_heads).permute(0, 2, 1, 3)
|
54 |
-
|
55 |
-
if self.sr_ratio > 1:
|
56 |
-
x_ = x.permute(0, 2, 1).reshape(B, C, H, W)
|
57 |
-
x_ = self.sr(x_).reshape(B, C, -1).permute(0, 2, 1)
|
58 |
-
x_ = self.norm(x_)
|
59 |
-
kv = self.kv(x_).reshape(B, -1, 2, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4)
|
60 |
-
else:
|
61 |
-
kv = self.kv(x).reshape(B, -1, 2, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4)
|
62 |
-
k, v = kv[0], kv[1]
|
63 |
-
|
64 |
-
attn = (q @ k.transpose(-2, -1)) * self.scale
|
65 |
-
attn = attn.softmax(dim=-1)
|
66 |
-
attn = self.attn_drop(attn)
|
67 |
-
|
68 |
-
x = (attn @ v).transpose(1, 2).reshape(B, N, C)
|
69 |
-
x = self.proj(x)
|
70 |
-
x = self.proj_drop(x)
|
71 |
-
return x
|
72 |
-
|
73 |
-
|
74 |
-
class Block(nn.Module):
|
75 |
-
def __init__(self, dim, num_heads, mlp_ratio=4., qkv_bias=False, qk_scale=None, drop=0., attn_drop=0.,
|
76 |
-
drop_path=0., act_layer=nn.GELU, norm_layer=nn.LayerNorm, sr_ratio=1):
|
77 |
-
super().__init__()
|
78 |
-
self.norm1 = norm_layer(dim)
|
79 |
-
self.attn = Attention(
|
80 |
-
dim,
|
81 |
-
num_heads=num_heads, qkv_bias=qkv_bias, qk_scale=qk_scale,
|
82 |
-
attn_drop=attn_drop, proj_drop=drop, sr_ratio=sr_ratio)
|
83 |
-
# NOTE: drop path for stochastic depth, we shall see if this is better than dropout here
|
84 |
-
self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity()
|
85 |
-
self.norm2 = norm_layer(dim)
|
86 |
-
mlp_hidden_dim = int(dim * mlp_ratio)
|
87 |
-
self.mlp = MLPLayer(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop)
|
88 |
-
|
89 |
-
def forward(self, x, H, W):
|
90 |
-
x = x + self.drop_path(self.attn(self.norm1(x), H, W))
|
91 |
-
x = x + self.drop_path(self.mlp(self.norm2(x), H, W))
|
92 |
-
return x
|
93 |
-
|
94 |
-
|
95 |
-
class OverlapPatchEmbed(nn.Module):
|
96 |
-
""" Image to Patch Embedding
|
97 |
-
"""
|
98 |
-
|
99 |
-
def __init__(self, img_size=224, patch_size=7, stride=4, in_channels=3, embed_dim=768):
|
100 |
-
super().__init__()
|
101 |
-
img_size = to_2tuple(img_size)
|
102 |
-
patch_size = to_2tuple(patch_size)
|
103 |
-
|
104 |
-
self.img_size = img_size
|
105 |
-
self.patch_size = patch_size
|
106 |
-
self.H, self.W = img_size[0] // patch_size[0], img_size[1] // patch_size[1]
|
107 |
-
self.num_patches = self.H * self.W
|
108 |
-
self.proj = nn.Conv2d(in_channels, embed_dim, kernel_size=patch_size, stride=stride,
|
109 |
-
padding=(patch_size[0] // 2, patch_size[1] // 2))
|
110 |
-
self.norm = nn.LayerNorm(embed_dim)
|
111 |
-
|
112 |
-
def forward(self, x):
|
113 |
-
x = self.proj(x)
|
114 |
-
_, _, H, W = x.shape
|
115 |
-
x = x.flatten(2).transpose(1, 2)
|
116 |
-
x = self.norm(x)
|
117 |
-
return x, H, W
|
118 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
models/modules/__init__.py
DELETED
@@ -1,6 +0,0 @@
|
|
1 |
-
from os.path import dirname, basename, isfile, join
|
2 |
-
import glob
|
3 |
-
|
4 |
-
|
5 |
-
modules = glob.glob(join(dirname(__file__), "*.py"))
|
6 |
-
__all__ = [ basename(f)[:-3] for f in modules if isfile(f) and not f.endswith('__init__.py')]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
models/modules/refinement/__init__.py
DELETED
@@ -1,6 +0,0 @@
|
|
1 |
-
from os.path import dirname, basename, isfile, join
|
2 |
-
import glob
|
3 |
-
|
4 |
-
|
5 |
-
modules = glob.glob(join(dirname(__file__), "*.py"))
|
6 |
-
__all__ = [ basename(f)[:-3] for f in modules if isfile(f) and not f.endswith('__init__.py')]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
models/modules/refinement/refiner.py
DELETED
@@ -1,253 +0,0 @@
|
|
1 |
-
import torch
|
2 |
-
import torch.nn as nn
|
3 |
-
from collections import OrderedDict
|
4 |
-
import torch
|
5 |
-
import torch.nn as nn
|
6 |
-
import torch.nn.functional as F
|
7 |
-
from torchvision.models import vgg16, vgg16_bn
|
8 |
-
from torchvision.models import resnet50
|
9 |
-
|
10 |
-
from config import Config
|
11 |
-
from dataset import class_labels_TR_sorted
|
12 |
-
from models.build_backbone import build_backbone
|
13 |
-
from models.decoder_blocks import BasicDecBlk
|
14 |
-
from models.lateral_blocks import BasicLatBlk
|
15 |
-
from models.ing import *
|
16 |
-
from models.stem_layer import StemLayer
|
17 |
-
|
18 |
-
|
19 |
-
class RefinerPVTInChannels4(nn.Module):
|
20 |
-
def __init__(self, in_channels=3+1):
|
21 |
-
super(RefinerPVTInChannels4, self).__init__()
|
22 |
-
self.config = Config()
|
23 |
-
self.epoch = 1
|
24 |
-
self.bb = build_backbone(self.config.bb, params_settings='in_channels=4')
|
25 |
-
|
26 |
-
lateral_channels_in_collection = {
|
27 |
-
'vgg16': [512, 256, 128, 64], 'vgg16bn': [512, 256, 128, 64], 'resnet50': [1024, 512, 256, 64],
|
28 |
-
'pvt_v2_b2': [512, 320, 128, 64], 'pvt_v2_b5': [512, 320, 128, 64],
|
29 |
-
'swin_v1_b': [1024, 512, 256, 128], 'swin_v1_l': [1536, 768, 384, 192],
|
30 |
-
}
|
31 |
-
channels = lateral_channels_in_collection[self.config.bb]
|
32 |
-
self.squeeze_module = BasicDecBlk(channels[0], channels[0])
|
33 |
-
|
34 |
-
self.decoder = Decoder(channels)
|
35 |
-
|
36 |
-
if 0:
|
37 |
-
for key, value in self.named_parameters():
|
38 |
-
if 'bb.' in key:
|
39 |
-
value.requires_grad = False
|
40 |
-
|
41 |
-
def forward(self, x):
|
42 |
-
if isinstance(x, list):
|
43 |
-
x = torch.cat(x, dim=1)
|
44 |
-
########## Encoder ##########
|
45 |
-
if self.config.bb in ['vgg16', 'vgg16bn', 'resnet50']:
|
46 |
-
x1 = self.bb.conv1(x)
|
47 |
-
x2 = self.bb.conv2(x1)
|
48 |
-
x3 = self.bb.conv3(x2)
|
49 |
-
x4 = self.bb.conv4(x3)
|
50 |
-
else:
|
51 |
-
x1, x2, x3, x4 = self.bb(x)
|
52 |
-
|
53 |
-
x4 = self.squeeze_module(x4)
|
54 |
-
|
55 |
-
########## Decoder ##########
|
56 |
-
|
57 |
-
features = [x, x1, x2, x3, x4]
|
58 |
-
scaled_preds = self.decoder(features)
|
59 |
-
|
60 |
-
return scaled_preds
|
61 |
-
|
62 |
-
|
63 |
-
class Refiner(nn.Module):
|
64 |
-
def __init__(self, in_channels=3+1):
|
65 |
-
super(Refiner, self).__init__()
|
66 |
-
self.config = Config()
|
67 |
-
self.epoch = 1
|
68 |
-
self.stem_layer = StemLayer(in_channels=in_channels, inter_channels=48, out_channels=3, norm_layer='BN' if self.config.batch_size > 1 else 'LN')
|
69 |
-
self.bb = build_backbone(self.config.bb)
|
70 |
-
|
71 |
-
lateral_channels_in_collection = {
|
72 |
-
'vgg16': [512, 256, 128, 64], 'vgg16bn': [512, 256, 128, 64], 'resnet50': [1024, 512, 256, 64],
|
73 |
-
'pvt_v2_b2': [512, 320, 128, 64], 'pvt_v2_b5': [512, 320, 128, 64],
|
74 |
-
'swin_v1_b': [1024, 512, 256, 128], 'swin_v1_l': [1536, 768, 384, 192],
|
75 |
-
}
|
76 |
-
channels = lateral_channels_in_collection[self.config.bb]
|
77 |
-
self.squeeze_module = BasicDecBlk(channels[0], channels[0])
|
78 |
-
|
79 |
-
self.decoder = Decoder(channels)
|
80 |
-
|
81 |
-
if 0:
|
82 |
-
for key, value in self.named_parameters():
|
83 |
-
if 'bb.' in key:
|
84 |
-
value.requires_grad = False
|
85 |
-
|
86 |
-
def forward(self, x):
|
87 |
-
if isinstance(x, list):
|
88 |
-
x = torch.cat(x, dim=1)
|
89 |
-
x = self.stem_layer(x)
|
90 |
-
########## Encoder ##########
|
91 |
-
if self.config.bb in ['vgg16', 'vgg16bn', 'resnet50']:
|
92 |
-
x1 = self.bb.conv1(x)
|
93 |
-
x2 = self.bb.conv2(x1)
|
94 |
-
x3 = self.bb.conv3(x2)
|
95 |
-
x4 = self.bb.conv4(x3)
|
96 |
-
else:
|
97 |
-
x1, x2, x3, x4 = self.bb(x)
|
98 |
-
|
99 |
-
x4 = self.squeeze_module(x4)
|
100 |
-
|
101 |
-
########## Decoder ##########
|
102 |
-
|
103 |
-
features = [x, x1, x2, x3, x4]
|
104 |
-
scaled_preds = self.decoder(features)
|
105 |
-
|
106 |
-
return scaled_preds
|
107 |
-
|
108 |
-
|
109 |
-
class Decoder(nn.Module):
|
110 |
-
def __init__(self, channels):
|
111 |
-
super(Decoder, self).__init__()
|
112 |
-
self.config = Config()
|
113 |
-
DecoderBlock = eval('BasicDecBlk')
|
114 |
-
LateralBlock = eval('BasicLatBlk')
|
115 |
-
|
116 |
-
self.decoder_block4 = DecoderBlock(channels[0], channels[1])
|
117 |
-
self.decoder_block3 = DecoderBlock(channels[1], channels[2])
|
118 |
-
self.decoder_block2 = DecoderBlock(channels[2], channels[3])
|
119 |
-
self.decoder_block1 = DecoderBlock(channels[3], channels[3]//2)
|
120 |
-
|
121 |
-
self.lateral_block4 = LateralBlock(channels[1], channels[1])
|
122 |
-
self.lateral_block3 = LateralBlock(channels[2], channels[2])
|
123 |
-
self.lateral_block2 = LateralBlock(channels[3], channels[3])
|
124 |
-
|
125 |
-
if self.config.ms_supervision:
|
126 |
-
self.conv_ms_spvn_4 = nn.Conv2d(channels[1], 1, 1, 1, 0)
|
127 |
-
self.conv_ms_spvn_3 = nn.Conv2d(channels[2], 1, 1, 1, 0)
|
128 |
-
self.conv_ms_spvn_2 = nn.Conv2d(channels[3], 1, 1, 1, 0)
|
129 |
-
self.conv_out1 = nn.Sequential(nn.Conv2d(channels[3]//2, 1, 1, 1, 0))
|
130 |
-
|
131 |
-
def forward(self, features):
|
132 |
-
x, x1, x2, x3, x4 = features
|
133 |
-
outs = []
|
134 |
-
p4 = self.decoder_block4(x4)
|
135 |
-
_p4 = F.interpolate(p4, size=x3.shape[2:], mode='bilinear', align_corners=True)
|
136 |
-
_p3 = _p4 + self.lateral_block4(x3)
|
137 |
-
|
138 |
-
p3 = self.decoder_block3(_p3)
|
139 |
-
_p3 = F.interpolate(p3, size=x2.shape[2:], mode='bilinear', align_corners=True)
|
140 |
-
_p2 = _p3 + self.lateral_block3(x2)
|
141 |
-
|
142 |
-
p2 = self.decoder_block2(_p2)
|
143 |
-
_p2 = F.interpolate(p2, size=x1.shape[2:], mode='bilinear', align_corners=True)
|
144 |
-
_p1 = _p2 + self.lateral_block2(x1)
|
145 |
-
|
146 |
-
_p1 = self.decoder_block1(_p1)
|
147 |
-
_p1 = F.interpolate(_p1, size=x.shape[2:], mode='bilinear', align_corners=True)
|
148 |
-
p1_out = self.conv_out1(_p1)
|
149 |
-
|
150 |
-
if self.config.ms_supervision:
|
151 |
-
outs.append(self.conv_ms_spvn_4(p4))
|
152 |
-
outs.append(self.conv_ms_spvn_3(p3))
|
153 |
-
outs.append(self.conv_ms_spvn_2(p2))
|
154 |
-
outs.append(p1_out)
|
155 |
-
return outs
|
156 |
-
|
157 |
-
|
158 |
-
class RefUNet(nn.Module):
|
159 |
-
# Refinement
|
160 |
-
def __init__(self, in_channels=3+1):
|
161 |
-
super(RefUNet, self).__init__()
|
162 |
-
self.encoder_1 = nn.Sequential(
|
163 |
-
nn.Conv2d(in_channels, 64, 3, 1, 1),
|
164 |
-
nn.Conv2d(64, 64, 3, 1, 1),
|
165 |
-
nn.BatchNorm2d(64),
|
166 |
-
nn.ReLU(inplace=True)
|
167 |
-
)
|
168 |
-
|
169 |
-
self.encoder_2 = nn.Sequential(
|
170 |
-
nn.MaxPool2d(2, 2, ceil_mode=True),
|
171 |
-
nn.Conv2d(64, 64, 3, 1, 1),
|
172 |
-
nn.BatchNorm2d(64),
|
173 |
-
nn.ReLU(inplace=True)
|
174 |
-
)
|
175 |
-
|
176 |
-
self.encoder_3 = nn.Sequential(
|
177 |
-
nn.MaxPool2d(2, 2, ceil_mode=True),
|
178 |
-
nn.Conv2d(64, 64, 3, 1, 1),
|
179 |
-
nn.BatchNorm2d(64),
|
180 |
-
nn.ReLU(inplace=True)
|
181 |
-
)
|
182 |
-
|
183 |
-
self.encoder_4 = nn.Sequential(
|
184 |
-
nn.MaxPool2d(2, 2, ceil_mode=True),
|
185 |
-
nn.Conv2d(64, 64, 3, 1, 1),
|
186 |
-
nn.BatchNorm2d(64),
|
187 |
-
nn.ReLU(inplace=True)
|
188 |
-
)
|
189 |
-
|
190 |
-
self.pool4 = nn.MaxPool2d(2, 2, ceil_mode=True)
|
191 |
-
#####
|
192 |
-
self.decoder_5 = nn.Sequential(
|
193 |
-
nn.Conv2d(64, 64, 3, 1, 1),
|
194 |
-
nn.BatchNorm2d(64),
|
195 |
-
nn.ReLU(inplace=True)
|
196 |
-
)
|
197 |
-
#####
|
198 |
-
self.decoder_4 = nn.Sequential(
|
199 |
-
nn.Conv2d(128, 64, 3, 1, 1),
|
200 |
-
nn.BatchNorm2d(64),
|
201 |
-
nn.ReLU(inplace=True)
|
202 |
-
)
|
203 |
-
|
204 |
-
self.decoder_3 = nn.Sequential(
|
205 |
-
nn.Conv2d(128, 64, 3, 1, 1),
|
206 |
-
nn.BatchNorm2d(64),
|
207 |
-
nn.ReLU(inplace=True)
|
208 |
-
)
|
209 |
-
|
210 |
-
self.decoder_2 = nn.Sequential(
|
211 |
-
nn.Conv2d(128, 64, 3, 1, 1),
|
212 |
-
nn.BatchNorm2d(64),
|
213 |
-
nn.ReLU(inplace=True)
|
214 |
-
)
|
215 |
-
|
216 |
-
self.decoder_1 = nn.Sequential(
|
217 |
-
nn.Conv2d(128, 64, 3, 1, 1),
|
218 |
-
nn.BatchNorm2d(64),
|
219 |
-
nn.ReLU(inplace=True)
|
220 |
-
)
|
221 |
-
|
222 |
-
self.conv_d0 = nn.Conv2d(64, 1, 3, 1, 1)
|
223 |
-
|
224 |
-
self.upscore2 = nn.Upsample(scale_factor=2, mode='bilinear', align_corners=True)
|
225 |
-
|
226 |
-
def forward(self, x):
|
227 |
-
outs = []
|
228 |
-
if isinstance(x, list):
|
229 |
-
x = torch.cat(x, dim=1)
|
230 |
-
hx = x
|
231 |
-
|
232 |
-
hx1 = self.encoder_1(hx)
|
233 |
-
hx2 = self.encoder_2(hx1)
|
234 |
-
hx3 = self.encoder_3(hx2)
|
235 |
-
hx4 = self.encoder_4(hx3)
|
236 |
-
|
237 |
-
hx = self.decoder_5(self.pool4(hx4))
|
238 |
-
hx = torch.cat((self.upscore2(hx), hx4), 1)
|
239 |
-
|
240 |
-
d4 = self.decoder_4(hx)
|
241 |
-
hx = torch.cat((self.upscore2(d4), hx3), 1)
|
242 |
-
|
243 |
-
d3 = self.decoder_3(hx)
|
244 |
-
hx = torch.cat((self.upscore2(d3), hx2), 1)
|
245 |
-
|
246 |
-
d2 = self.decoder_2(hx)
|
247 |
-
hx = torch.cat((self.upscore2(d2), hx1), 1)
|
248 |
-
|
249 |
-
d1 = self.decoder_1(hx)
|
250 |
-
|
251 |
-
x = self.conv_d0(d1)
|
252 |
-
outs.append(x)
|
253 |
-
return outs
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
models/modules/refinement/stem_layer.py
DELETED
@@ -1,45 +0,0 @@
|
|
1 |
-
import torch.nn as nn
|
2 |
-
from models.utils import build_act_layer, build_norm_layer
|
3 |
-
|
4 |
-
|
5 |
-
class StemLayer(nn.Module):
|
6 |
-
r""" Stem layer of InternImage
|
7 |
-
Args:
|
8 |
-
in_channels (int): number of input channels
|
9 |
-
out_channels (int): number of output channels
|
10 |
-
act_layer (str): activation layer
|
11 |
-
norm_layer (str): normalization layer
|
12 |
-
"""
|
13 |
-
|
14 |
-
def __init__(self,
|
15 |
-
in_channels=3+1,
|
16 |
-
inter_channels=48,
|
17 |
-
out_channels=96,
|
18 |
-
act_layer='GELU',
|
19 |
-
norm_layer='BN'):
|
20 |
-
super().__init__()
|
21 |
-
self.conv1 = nn.Conv2d(in_channels,
|
22 |
-
inter_channels,
|
23 |
-
kernel_size=3,
|
24 |
-
stride=1,
|
25 |
-
padding=1)
|
26 |
-
self.norm1 = build_norm_layer(
|
27 |
-
inter_channels, norm_layer, 'channels_first', 'channels_first'
|
28 |
-
)
|
29 |
-
self.act = build_act_layer(act_layer)
|
30 |
-
self.conv2 = nn.Conv2d(inter_channels,
|
31 |
-
out_channels,
|
32 |
-
kernel_size=3,
|
33 |
-
stride=1,
|
34 |
-
padding=1)
|
35 |
-
self.norm2 = build_norm_layer(
|
36 |
-
out_channels, norm_layer, 'channels_first', 'channels_first'
|
37 |
-
)
|
38 |
-
|
39 |
-
def forward(self, x):
|
40 |
-
x = self.conv1(x)
|
41 |
-
x = self.norm1(x)
|
42 |
-
x = self.act(x)
|
43 |
-
x = self.conv2(x)
|
44 |
-
x = self.norm2(x)
|
45 |
-
return x
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
models/prompt_encoder.py
DELETED
@@ -1,222 +0,0 @@
|
|
1 |
-
import numpy as np
|
2 |
-
import torch
|
3 |
-
import torch.nn as nn
|
4 |
-
from typing import Any, Optional, Tuple, Type
|
5 |
-
|
6 |
-
|
7 |
-
class PromptEncoder(nn.Module):
|
8 |
-
def __init__(
|
9 |
-
self,
|
10 |
-
embed_dim=256,
|
11 |
-
image_embedding_size=1024,
|
12 |
-
input_image_size=(1024, 1024),
|
13 |
-
mask_in_chans=16,
|
14 |
-
activation=nn.GELU
|
15 |
-
) -> None:
|
16 |
-
super().__init__()
|
17 |
-
"""
|
18 |
-
Codes are partially from SAM: https://github.com/facebookresearch/segment-anything/blob/6fdee8f2727f4506cfbbe553e23b895e27956588/segment_anything/modeling/prompt_encoder.py.
|
19 |
-
|
20 |
-
Arguments:
|
21 |
-
embed_dim (int): The prompts' embedding dimension
|
22 |
-
image_embedding_size (tuple(int, int)): The spatial size of the
|
23 |
-
image embedding, as (H, W).
|
24 |
-
input_image_size (int): The padded size of the image as input
|
25 |
-
to the image encoder, as (H, W).
|
26 |
-
mask_in_chans (int): The number of hidden channels used for
|
27 |
-
encoding input masks.
|
28 |
-
activation (nn.Module): The activation to use when encoding
|
29 |
-
input masks.
|
30 |
-
"""
|
31 |
-
super().__init__()
|
32 |
-
self.embed_dim = embed_dim
|
33 |
-
self.input_image_size = input_image_size
|
34 |
-
self.image_embedding_size = image_embedding_size
|
35 |
-
self.pe_layer = PositionEmbeddingRandom(embed_dim // 2)
|
36 |
-
|
37 |
-
self.num_point_embeddings: int = 4 # pos/neg point + 2 box corners
|
38 |
-
point_embeddings = [nn.Embedding(1, embed_dim) for i in range(self.num_point_embeddings)]
|
39 |
-
self.point_embeddings = nn.ModuleList(point_embeddings)
|
40 |
-
self.not_a_point_embed = nn.Embedding(1, embed_dim)
|
41 |
-
|
42 |
-
self.mask_input_size = (4 * image_embedding_size[0], 4 * image_embedding_size[1])
|
43 |
-
self.mask_downscaling = nn.Sequential(
|
44 |
-
nn.Conv2d(1, mask_in_chans // 4, kernel_size=2, stride=2),
|
45 |
-
LayerNorm2d(mask_in_chans // 4),
|
46 |
-
activation(),
|
47 |
-
nn.Conv2d(mask_in_chans // 4, mask_in_chans, kernel_size=2, stride=2),
|
48 |
-
LayerNorm2d(mask_in_chans),
|
49 |
-
activation(),
|
50 |
-
nn.Conv2d(mask_in_chans, embed_dim, kernel_size=1),
|
51 |
-
)
|
52 |
-
self.no_mask_embed = nn.Embedding(1, embed_dim)
|
53 |
-
|
54 |
-
def get_dense_pe(self) -> torch.Tensor:
|
55 |
-
"""
|
56 |
-
Returns the positional encoding used to encode point prompts,
|
57 |
-
applied to a dense set of points the shape of the image encoding.
|
58 |
-
|
59 |
-
Returns:
|
60 |
-
torch.Tensor: Positional encoding with shape
|
61 |
-
1x(embed_dim)x(embedding_h)x(embedding_w)
|
62 |
-
"""
|
63 |
-
return self.pe_layer(self.image_embedding_size).unsqueeze(0)
|
64 |
-
|
65 |
-
def _embed_points(
|
66 |
-
self,
|
67 |
-
points: torch.Tensor,
|
68 |
-
labels: torch.Tensor,
|
69 |
-
pad: bool,
|
70 |
-
) -> torch.Tensor:
|
71 |
-
"""Embeds point prompts."""
|
72 |
-
points = points + 0.5 # Shift to center of pixel
|
73 |
-
if pad:
|
74 |
-
padding_point = torch.zeros((points.shape[0], 1, 2), device=points.device)
|
75 |
-
padding_label = -torch.ones((labels.shape[0], 1), device=labels.device)
|
76 |
-
points = torch.cat([points, padding_point], dim=1)
|
77 |
-
labels = torch.cat([labels, padding_label], dim=1)
|
78 |
-
point_embedding = self.pe_layer.forward_with_coords(points, self.input_image_size)
|
79 |
-
point_embedding[labels == -1] = 0.0
|
80 |
-
point_embedding[labels == -1] += self.not_a_point_embed.weight
|
81 |
-
point_embedding[labels == 0] += self.point_embeddings[0].weight
|
82 |
-
point_embedding[labels == 1] += self.point_embeddings[1].weight
|
83 |
-
return point_embedding
|
84 |
-
|
85 |
-
def _embed_boxes(self, boxes: torch.Tensor) -> torch.Tensor:
|
86 |
-
"""Embeds box prompts."""
|
87 |
-
boxes = boxes + 0.5 # Shift to center of pixel
|
88 |
-
coords = boxes.reshape(-1, 2, 2)
|
89 |
-
corner_embedding = self.pe_layer.forward_with_coords(coords, self.input_image_size)
|
90 |
-
corner_embedding[:, 0, :] += self.point_embeddings[2].weight
|
91 |
-
corner_embedding[:, 1, :] += self.point_embeddings[3].weight
|
92 |
-
return corner_embedding
|
93 |
-
|
94 |
-
def _embed_masks(self, masks: torch.Tensor) -> torch.Tensor:
|
95 |
-
"""Embeds mask inputs."""
|
96 |
-
mask_embedding = self.mask_downscaling(masks)
|
97 |
-
return mask_embedding
|
98 |
-
|
99 |
-
def _get_batch_size(
|
100 |
-
self,
|
101 |
-
points: Optional[Tuple[torch.Tensor, torch.Tensor]],
|
102 |
-
boxes: Optional[torch.Tensor],
|
103 |
-
masks: Optional[torch.Tensor],
|
104 |
-
) -> int:
|
105 |
-
"""
|
106 |
-
Gets the batch size of the output given the batch size of the input prompts.
|
107 |
-
"""
|
108 |
-
if points is not None:
|
109 |
-
return points[0].shape[0]
|
110 |
-
elif boxes is not None:
|
111 |
-
return boxes.shape[0]
|
112 |
-
elif masks is not None:
|
113 |
-
return masks.shape[0]
|
114 |
-
else:
|
115 |
-
return 1
|
116 |
-
|
117 |
-
def _get_device(self) -> torch.device:
|
118 |
-
return self.point_embeddings[0].weight.device
|
119 |
-
|
120 |
-
def forward(
|
121 |
-
self,
|
122 |
-
points: Optional[Tuple[torch.Tensor, torch.Tensor]],
|
123 |
-
boxes: Optional[torch.Tensor],
|
124 |
-
masks: Optional[torch.Tensor],
|
125 |
-
) -> Tuple[torch.Tensor, torch.Tensor]:
|
126 |
-
"""
|
127 |
-
Embeds different types of prompts, returning both sparse and dense
|
128 |
-
embeddings.
|
129 |
-
|
130 |
-
Arguments:
|
131 |
-
points (tuple(torch.Tensor, torch.Tensor) or none): point coordinates
|
132 |
-
and labels to embed.
|
133 |
-
boxes (torch.Tensor or none): boxes to embed
|
134 |
-
masks (torch.Tensor or none): masks to embed
|
135 |
-
|
136 |
-
Returns:
|
137 |
-
torch.Tensor: sparse embeddings for the points and boxes, with shape
|
138 |
-
BxNx(embed_dim), where N is determined by the number of input points
|
139 |
-
and boxes.
|
140 |
-
torch.Tensor: dense embeddings for the masks, in the shape
|
141 |
-
Bx(embed_dim)x(embed_H)x(embed_W)
|
142 |
-
"""
|
143 |
-
bs = self._get_batch_size(points, boxes, masks)
|
144 |
-
sparse_embeddings = torch.empty((bs, 0, self.embed_dim), device=self._get_device())
|
145 |
-
if points is not None:
|
146 |
-
coords, labels = points
|
147 |
-
point_embeddings = self._embed_points(coords, labels, pad=(boxes is None))
|
148 |
-
sparse_embeddings = torch.cat([sparse_embeddings, point_embeddings], dim=1)
|
149 |
-
if boxes is not None:
|
150 |
-
box_embeddings = self._embed_boxes(boxes)
|
151 |
-
sparse_embeddings = torch.cat([sparse_embeddings, box_embeddings], dim=1)
|
152 |
-
|
153 |
-
if masks is not None:
|
154 |
-
dense_embeddings = self._embed_masks(masks)
|
155 |
-
else:
|
156 |
-
dense_embeddings = self.no_mask_embed.weight.reshape(1, -1, 1, 1).expand(
|
157 |
-
bs, -1, self.image_embedding_size[0], self.image_embedding_size[1]
|
158 |
-
)
|
159 |
-
|
160 |
-
return sparse_embeddings, dense_embeddings
|
161 |
-
|
162 |
-
|
163 |
-
class PositionEmbeddingRandom(nn.Module):
|
164 |
-
"""
|
165 |
-
Positional encoding using random spatial frequencies.
|
166 |
-
"""
|
167 |
-
|
168 |
-
def __init__(self, num_pos_feats: int = 64, scale: Optional[float] = None) -> None:
|
169 |
-
super().__init__()
|
170 |
-
if scale is None or scale <= 0.0:
|
171 |
-
scale = 1.0
|
172 |
-
self.register_buffer(
|
173 |
-
"positional_encoding_gaussian_matrix",
|
174 |
-
scale * torch.randn((2, num_pos_feats)),
|
175 |
-
)
|
176 |
-
|
177 |
-
def _pe_encoding(self, coords: torch.Tensor) -> torch.Tensor:
|
178 |
-
"""Positionally encode points that are normalized to [0,1]."""
|
179 |
-
# assuming coords are in [0, 1]^2 square and have d_1 x ... x d_n x 2 shape
|
180 |
-
coords = 2 * coords - 1
|
181 |
-
coords = coords @ self.positional_encoding_gaussian_matrix
|
182 |
-
coords = 2 * np.pi * coords
|
183 |
-
# outputs d_1 x ... x d_n x C shape
|
184 |
-
return torch.cat([torch.sin(coords), torch.cos(coords)], dim=-1)
|
185 |
-
|
186 |
-
def forward(self, size: Tuple[int, int]) -> torch.Tensor:
|
187 |
-
"""Generate positional encoding for a grid of the specified size."""
|
188 |
-
h, w = size
|
189 |
-
device: Any = self.positional_encoding_gaussian_matrix.device
|
190 |
-
grid = torch.ones((h, w), device=device, dtype=torch.float32)
|
191 |
-
y_embed = grid.cumsum(dim=0) - 0.5
|
192 |
-
x_embed = grid.cumsum(dim=1) - 0.5
|
193 |
-
y_embed = y_embed / h
|
194 |
-
x_embed = x_embed / w
|
195 |
-
|
196 |
-
pe = self._pe_encoding(torch.stack([x_embed, y_embed], dim=-1))
|
197 |
-
return pe.permute(2, 0, 1) # C x H x W
|
198 |
-
|
199 |
-
def forward_with_coords(
|
200 |
-
self, coords_input: torch.Tensor, image_size: Tuple[int, int]
|
201 |
-
) -> torch.Tensor:
|
202 |
-
"""Positionally encode points that are not normalized to [0,1]."""
|
203 |
-
coords = coords_input.clone()
|
204 |
-
coords[:, :, 0] = coords[:, :, 0] / image_size[1]
|
205 |
-
coords[:, :, 1] = coords[:, :, 1] / image_size[0]
|
206 |
-
return self._pe_encoding(coords.to(torch.float)) # B x N x C
|
207 |
-
|
208 |
-
|
209 |
-
class LayerNorm2d(nn.Module):
|
210 |
-
def __init__(self, num_channels: int, eps: float = 1e-6) -> None:
|
211 |
-
super().__init__()
|
212 |
-
self.weight = nn.Parameter(torch.ones(num_channels))
|
213 |
-
self.bias = nn.Parameter(torch.zeros(num_channels))
|
214 |
-
self.eps = eps
|
215 |
-
|
216 |
-
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
217 |
-
u = x.mean(1, keepdim=True)
|
218 |
-
s = (x - u).pow(2).mean(1, keepdim=True)
|
219 |
-
x = (x - u) / torch.sqrt(s + self.eps)
|
220 |
-
x = self.weight[:, None, None] * x + self.bias[:, None, None]
|
221 |
-
return x
|
222 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
models/pvt_v2.py
DELETED
@@ -1,435 +0,0 @@
|
|
1 |
-
import torch
|
2 |
-
import torch.nn as nn
|
3 |
-
from functools import partial
|
4 |
-
|
5 |
-
from timm.models.layers import DropPath, to_2tuple, trunc_normal_
|
6 |
-
from timm.models.registry import register_model
|
7 |
-
|
8 |
-
import math
|
9 |
-
|
10 |
-
from config import Config
|
11 |
-
|
12 |
-
config = Config()
|
13 |
-
|
14 |
-
class Mlp(nn.Module):
|
15 |
-
def __init__(self, in_features, hidden_features=None, out_features=None, act_layer=nn.GELU, drop=0.):
|
16 |
-
super().__init__()
|
17 |
-
out_features = out_features or in_features
|
18 |
-
hidden_features = hidden_features or in_features
|
19 |
-
self.fc1 = nn.Linear(in_features, hidden_features)
|
20 |
-
self.dwconv = DWConv(hidden_features)
|
21 |
-
self.act = act_layer()
|
22 |
-
self.fc2 = nn.Linear(hidden_features, out_features)
|
23 |
-
self.drop = nn.Dropout(drop)
|
24 |
-
|
25 |
-
self.apply(self._init_weights)
|
26 |
-
|
27 |
-
def _init_weights(self, m):
|
28 |
-
if isinstance(m, nn.Linear):
|
29 |
-
trunc_normal_(m.weight, std=.02)
|
30 |
-
if isinstance(m, nn.Linear) and m.bias is not None:
|
31 |
-
nn.init.constant_(m.bias, 0)
|
32 |
-
elif isinstance(m, nn.LayerNorm):
|
33 |
-
nn.init.constant_(m.bias, 0)
|
34 |
-
nn.init.constant_(m.weight, 1.0)
|
35 |
-
elif isinstance(m, nn.Conv2d):
|
36 |
-
fan_out = m.kernel_size[0] * m.kernel_size[1] * m.out_channels
|
37 |
-
fan_out //= m.groups
|
38 |
-
m.weight.data.normal_(0, math.sqrt(2.0 / fan_out))
|
39 |
-
if m.bias is not None:
|
40 |
-
m.bias.data.zero_()
|
41 |
-
|
42 |
-
def forward(self, x, H, W):
|
43 |
-
x = self.fc1(x)
|
44 |
-
x = self.dwconv(x, H, W)
|
45 |
-
x = self.act(x)
|
46 |
-
x = self.drop(x)
|
47 |
-
x = self.fc2(x)
|
48 |
-
x = self.drop(x)
|
49 |
-
return x
|
50 |
-
|
51 |
-
|
52 |
-
class Attention(nn.Module):
|
53 |
-
def __init__(self, dim, num_heads=8, qkv_bias=False, qk_scale=None, attn_drop=0., proj_drop=0., sr_ratio=1):
|
54 |
-
super().__init__()
|
55 |
-
assert dim % num_heads == 0, f"dim {dim} should be divided by num_heads {num_heads}."
|
56 |
-
|
57 |
-
self.dim = dim
|
58 |
-
self.num_heads = num_heads
|
59 |
-
head_dim = dim // num_heads
|
60 |
-
self.scale = qk_scale or head_dim ** -0.5
|
61 |
-
|
62 |
-
self.q = nn.Linear(dim, dim, bias=qkv_bias)
|
63 |
-
self.kv = nn.Linear(dim, dim * 2, bias=qkv_bias)
|
64 |
-
self.attn_drop_prob = attn_drop
|
65 |
-
self.attn_drop = nn.Dropout(attn_drop)
|
66 |
-
self.proj = nn.Linear(dim, dim)
|
67 |
-
self.proj_drop = nn.Dropout(proj_drop)
|
68 |
-
|
69 |
-
self.sr_ratio = sr_ratio
|
70 |
-
if sr_ratio > 1:
|
71 |
-
self.sr = nn.Conv2d(dim, dim, kernel_size=sr_ratio, stride=sr_ratio)
|
72 |
-
self.norm = nn.LayerNorm(dim)
|
73 |
-
|
74 |
-
self.apply(self._init_weights)
|
75 |
-
|
76 |
-
def _init_weights(self, m):
|
77 |
-
if isinstance(m, nn.Linear):
|
78 |
-
trunc_normal_(m.weight, std=.02)
|
79 |
-
if isinstance(m, nn.Linear) and m.bias is not None:
|
80 |
-
nn.init.constant_(m.bias, 0)
|
81 |
-
elif isinstance(m, nn.LayerNorm):
|
82 |
-
nn.init.constant_(m.bias, 0)
|
83 |
-
nn.init.constant_(m.weight, 1.0)
|
84 |
-
elif isinstance(m, nn.Conv2d):
|
85 |
-
fan_out = m.kernel_size[0] * m.kernel_size[1] * m.out_channels
|
86 |
-
fan_out //= m.groups
|
87 |
-
m.weight.data.normal_(0, math.sqrt(2.0 / fan_out))
|
88 |
-
if m.bias is not None:
|
89 |
-
m.bias.data.zero_()
|
90 |
-
|
91 |
-
def forward(self, x, H, W):
|
92 |
-
B, N, C = x.shape
|
93 |
-
q = self.q(x).reshape(B, N, self.num_heads, C // self.num_heads).permute(0, 2, 1, 3)
|
94 |
-
|
95 |
-
if self.sr_ratio > 1:
|
96 |
-
x_ = x.permute(0, 2, 1).reshape(B, C, H, W)
|
97 |
-
x_ = self.sr(x_).reshape(B, C, -1).permute(0, 2, 1)
|
98 |
-
x_ = self.norm(x_)
|
99 |
-
kv = self.kv(x_).reshape(B, -1, 2, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4)
|
100 |
-
else:
|
101 |
-
kv = self.kv(x).reshape(B, -1, 2, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4)
|
102 |
-
k, v = kv[0], kv[1]
|
103 |
-
|
104 |
-
if config.SDPA_enabled:
|
105 |
-
x = torch.nn.functional.scaled_dot_product_attention(
|
106 |
-
q, k, v,
|
107 |
-
attn_mask=None, dropout_p=self.attn_drop_prob, is_causal=False
|
108 |
-
).transpose(1, 2).reshape(B, N, C)
|
109 |
-
else:
|
110 |
-
attn = (q @ k.transpose(-2, -1)) * self.scale
|
111 |
-
attn = attn.softmax(dim=-1)
|
112 |
-
attn = self.attn_drop(attn)
|
113 |
-
|
114 |
-
x = (attn @ v).transpose(1, 2).reshape(B, N, C)
|
115 |
-
x = self.proj(x)
|
116 |
-
x = self.proj_drop(x)
|
117 |
-
|
118 |
-
return x
|
119 |
-
|
120 |
-
|
121 |
-
class Block(nn.Module):
|
122 |
-
|
123 |
-
def __init__(self, dim, num_heads, mlp_ratio=4., qkv_bias=False, qk_scale=None, drop=0., attn_drop=0.,
|
124 |
-
drop_path=0., act_layer=nn.GELU, norm_layer=nn.LayerNorm, sr_ratio=1):
|
125 |
-
super().__init__()
|
126 |
-
self.norm1 = norm_layer(dim)
|
127 |
-
self.attn = Attention(
|
128 |
-
dim,
|
129 |
-
num_heads=num_heads, qkv_bias=qkv_bias, qk_scale=qk_scale,
|
130 |
-
attn_drop=attn_drop, proj_drop=drop, sr_ratio=sr_ratio)
|
131 |
-
# NOTE: drop path for stochastic depth, we shall see if this is better than dropout here
|
132 |
-
self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity()
|
133 |
-
self.norm2 = norm_layer(dim)
|
134 |
-
mlp_hidden_dim = int(dim * mlp_ratio)
|
135 |
-
self.mlp = Mlp(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop)
|
136 |
-
|
137 |
-
self.apply(self._init_weights)
|
138 |
-
|
139 |
-
def _init_weights(self, m):
|
140 |
-
if isinstance(m, nn.Linear):
|
141 |
-
trunc_normal_(m.weight, std=.02)
|
142 |
-
if isinstance(m, nn.Linear) and m.bias is not None:
|
143 |
-
nn.init.constant_(m.bias, 0)
|
144 |
-
elif isinstance(m, nn.LayerNorm):
|
145 |
-
nn.init.constant_(m.bias, 0)
|
146 |
-
nn.init.constant_(m.weight, 1.0)
|
147 |
-
elif isinstance(m, nn.Conv2d):
|
148 |
-
fan_out = m.kernel_size[0] * m.kernel_size[1] * m.out_channels
|
149 |
-
fan_out //= m.groups
|
150 |
-
m.weight.data.normal_(0, math.sqrt(2.0 / fan_out))
|
151 |
-
if m.bias is not None:
|
152 |
-
m.bias.data.zero_()
|
153 |
-
|
154 |
-
def forward(self, x, H, W):
|
155 |
-
x = x + self.drop_path(self.attn(self.norm1(x), H, W))
|
156 |
-
x = x + self.drop_path(self.mlp(self.norm2(x), H, W))
|
157 |
-
|
158 |
-
return x
|
159 |
-
|
160 |
-
|
161 |
-
class OverlapPatchEmbed(nn.Module):
|
162 |
-
""" Image to Patch Embedding
|
163 |
-
"""
|
164 |
-
|
165 |
-
def __init__(self, img_size=224, patch_size=7, stride=4, in_channels=3, embed_dim=768):
|
166 |
-
super().__init__()
|
167 |
-
img_size = to_2tuple(img_size)
|
168 |
-
patch_size = to_2tuple(patch_size)
|
169 |
-
|
170 |
-
self.img_size = img_size
|
171 |
-
self.patch_size = patch_size
|
172 |
-
self.H, self.W = img_size[0] // patch_size[0], img_size[1] // patch_size[1]
|
173 |
-
self.num_patches = self.H * self.W
|
174 |
-
self.proj = nn.Conv2d(in_channels, embed_dim, kernel_size=patch_size, stride=stride,
|
175 |
-
padding=(patch_size[0] // 2, patch_size[1] // 2))
|
176 |
-
self.norm = nn.LayerNorm(embed_dim)
|
177 |
-
|
178 |
-
self.apply(self._init_weights)
|
179 |
-
|
180 |
-
def _init_weights(self, m):
|
181 |
-
if isinstance(m, nn.Linear):
|
182 |
-
trunc_normal_(m.weight, std=.02)
|
183 |
-
if isinstance(m, nn.Linear) and m.bias is not None:
|
184 |
-
nn.init.constant_(m.bias, 0)
|
185 |
-
elif isinstance(m, nn.LayerNorm):
|
186 |
-
nn.init.constant_(m.bias, 0)
|
187 |
-
nn.init.constant_(m.weight, 1.0)
|
188 |
-
elif isinstance(m, nn.Conv2d):
|
189 |
-
fan_out = m.kernel_size[0] * m.kernel_size[1] * m.out_channels
|
190 |
-
fan_out //= m.groups
|
191 |
-
m.weight.data.normal_(0, math.sqrt(2.0 / fan_out))
|
192 |
-
if m.bias is not None:
|
193 |
-
m.bias.data.zero_()
|
194 |
-
|
195 |
-
def forward(self, x):
|
196 |
-
x = self.proj(x)
|
197 |
-
_, _, H, W = x.shape
|
198 |
-
x = x.flatten(2).transpose(1, 2)
|
199 |
-
x = self.norm(x)
|
200 |
-
|
201 |
-
return x, H, W
|
202 |
-
|
203 |
-
|
204 |
-
class PyramidVisionTransformerImpr(nn.Module):
|
205 |
-
def __init__(self, img_size=224, patch_size=16, in_channels=3, num_classes=1000, embed_dims=[64, 128, 256, 512],
|
206 |
-
num_heads=[1, 2, 4, 8], mlp_ratios=[4, 4, 4, 4], qkv_bias=False, qk_scale=None, drop_rate=0.,
|
207 |
-
attn_drop_rate=0., drop_path_rate=0., norm_layer=nn.LayerNorm,
|
208 |
-
depths=[3, 4, 6, 3], sr_ratios=[8, 4, 2, 1]):
|
209 |
-
super().__init__()
|
210 |
-
self.num_classes = num_classes
|
211 |
-
self.depths = depths
|
212 |
-
|
213 |
-
# patch_embed
|
214 |
-
self.patch_embed1 = OverlapPatchEmbed(img_size=img_size, patch_size=7, stride=4, in_channels=in_channels,
|
215 |
-
embed_dim=embed_dims[0])
|
216 |
-
self.patch_embed2 = OverlapPatchEmbed(img_size=img_size // 4, patch_size=3, stride=2, in_channels=embed_dims[0],
|
217 |
-
embed_dim=embed_dims[1])
|
218 |
-
self.patch_embed3 = OverlapPatchEmbed(img_size=img_size // 8, patch_size=3, stride=2, in_channels=embed_dims[1],
|
219 |
-
embed_dim=embed_dims[2])
|
220 |
-
self.patch_embed4 = OverlapPatchEmbed(img_size=img_size // 16, patch_size=3, stride=2, in_channels=embed_dims[2],
|
221 |
-
embed_dim=embed_dims[3])
|
222 |
-
|
223 |
-
# transformer encoder
|
224 |
-
dpr = [x.item() for x in torch.linspace(0, drop_path_rate, sum(depths))] # stochastic depth decay rule
|
225 |
-
cur = 0
|
226 |
-
self.block1 = nn.ModuleList([Block(
|
227 |
-
dim=embed_dims[0], num_heads=num_heads[0], mlp_ratio=mlp_ratios[0], qkv_bias=qkv_bias, qk_scale=qk_scale,
|
228 |
-
drop=drop_rate, attn_drop=attn_drop_rate, drop_path=dpr[cur + i], norm_layer=norm_layer,
|
229 |
-
sr_ratio=sr_ratios[0])
|
230 |
-
for i in range(depths[0])])
|
231 |
-
self.norm1 = norm_layer(embed_dims[0])
|
232 |
-
|
233 |
-
cur += depths[0]
|
234 |
-
self.block2 = nn.ModuleList([Block(
|
235 |
-
dim=embed_dims[1], num_heads=num_heads[1], mlp_ratio=mlp_ratios[1], qkv_bias=qkv_bias, qk_scale=qk_scale,
|
236 |
-
drop=drop_rate, attn_drop=attn_drop_rate, drop_path=dpr[cur + i], norm_layer=norm_layer,
|
237 |
-
sr_ratio=sr_ratios[1])
|
238 |
-
for i in range(depths[1])])
|
239 |
-
self.norm2 = norm_layer(embed_dims[1])
|
240 |
-
|
241 |
-
cur += depths[1]
|
242 |
-
self.block3 = nn.ModuleList([Block(
|
243 |
-
dim=embed_dims[2], num_heads=num_heads[2], mlp_ratio=mlp_ratios[2], qkv_bias=qkv_bias, qk_scale=qk_scale,
|
244 |
-
drop=drop_rate, attn_drop=attn_drop_rate, drop_path=dpr[cur + i], norm_layer=norm_layer,
|
245 |
-
sr_ratio=sr_ratios[2])
|
246 |
-
for i in range(depths[2])])
|
247 |
-
self.norm3 = norm_layer(embed_dims[2])
|
248 |
-
|
249 |
-
cur += depths[2]
|
250 |
-
self.block4 = nn.ModuleList([Block(
|
251 |
-
dim=embed_dims[3], num_heads=num_heads[3], mlp_ratio=mlp_ratios[3], qkv_bias=qkv_bias, qk_scale=qk_scale,
|
252 |
-
drop=drop_rate, attn_drop=attn_drop_rate, drop_path=dpr[cur + i], norm_layer=norm_layer,
|
253 |
-
sr_ratio=sr_ratios[3])
|
254 |
-
for i in range(depths[3])])
|
255 |
-
self.norm4 = norm_layer(embed_dims[3])
|
256 |
-
|
257 |
-
# classification head
|
258 |
-
# self.head = nn.Linear(embed_dims[3], num_classes) if num_classes > 0 else nn.Identity()
|
259 |
-
|
260 |
-
self.apply(self._init_weights)
|
261 |
-
|
262 |
-
def _init_weights(self, m):
|
263 |
-
if isinstance(m, nn.Linear):
|
264 |
-
trunc_normal_(m.weight, std=.02)
|
265 |
-
if isinstance(m, nn.Linear) and m.bias is not None:
|
266 |
-
nn.init.constant_(m.bias, 0)
|
267 |
-
elif isinstance(m, nn.LayerNorm):
|
268 |
-
nn.init.constant_(m.bias, 0)
|
269 |
-
nn.init.constant_(m.weight, 1.0)
|
270 |
-
elif isinstance(m, nn.Conv2d):
|
271 |
-
fan_out = m.kernel_size[0] * m.kernel_size[1] * m.out_channels
|
272 |
-
fan_out //= m.groups
|
273 |
-
m.weight.data.normal_(0, math.sqrt(2.0 / fan_out))
|
274 |
-
if m.bias is not None:
|
275 |
-
m.bias.data.zero_()
|
276 |
-
|
277 |
-
def init_weights(self, pretrained=None):
|
278 |
-
if isinstance(pretrained, str):
|
279 |
-
logger = 1
|
280 |
-
#load_checkpoint(self, pretrained, map_location='cpu', strict=False, logger=logger)
|
281 |
-
|
282 |
-
def reset_drop_path(self, drop_path_rate):
|
283 |
-
dpr = [x.item() for x in torch.linspace(0, drop_path_rate, sum(self.depths))]
|
284 |
-
cur = 0
|
285 |
-
for i in range(self.depths[0]):
|
286 |
-
self.block1[i].drop_path.drop_prob = dpr[cur + i]
|
287 |
-
|
288 |
-
cur += self.depths[0]
|
289 |
-
for i in range(self.depths[1]):
|
290 |
-
self.block2[i].drop_path.drop_prob = dpr[cur + i]
|
291 |
-
|
292 |
-
cur += self.depths[1]
|
293 |
-
for i in range(self.depths[2]):
|
294 |
-
self.block3[i].drop_path.drop_prob = dpr[cur + i]
|
295 |
-
|
296 |
-
cur += self.depths[2]
|
297 |
-
for i in range(self.depths[3]):
|
298 |
-
self.block4[i].drop_path.drop_prob = dpr[cur + i]
|
299 |
-
|
300 |
-
def freeze_patch_emb(self):
|
301 |
-
self.patch_embed1.requires_grad = False
|
302 |
-
|
303 |
-
@torch.jit.ignore
|
304 |
-
def no_weight_decay(self):
|
305 |
-
return {'pos_embed1', 'pos_embed2', 'pos_embed3', 'pos_embed4', 'cls_token'} # has pos_embed may be better
|
306 |
-
|
307 |
-
def get_classifier(self):
|
308 |
-
return self.head
|
309 |
-
|
310 |
-
def reset_classifier(self, num_classes, global_pool=''):
|
311 |
-
self.num_classes = num_classes
|
312 |
-
self.head = nn.Linear(self.embed_dim, num_classes) if num_classes > 0 else nn.Identity()
|
313 |
-
|
314 |
-
def forward_features(self, x):
|
315 |
-
B = x.shape[0]
|
316 |
-
outs = []
|
317 |
-
|
318 |
-
# stage 1
|
319 |
-
x, H, W = self.patch_embed1(x)
|
320 |
-
for i, blk in enumerate(self.block1):
|
321 |
-
x = blk(x, H, W)
|
322 |
-
x = self.norm1(x)
|
323 |
-
x = x.reshape(B, H, W, -1).permute(0, 3, 1, 2).contiguous()
|
324 |
-
outs.append(x)
|
325 |
-
|
326 |
-
# stage 2
|
327 |
-
x, H, W = self.patch_embed2(x)
|
328 |
-
for i, blk in enumerate(self.block2):
|
329 |
-
x = blk(x, H, W)
|
330 |
-
x = self.norm2(x)
|
331 |
-
x = x.reshape(B, H, W, -1).permute(0, 3, 1, 2).contiguous()
|
332 |
-
outs.append(x)
|
333 |
-
|
334 |
-
# stage 3
|
335 |
-
x, H, W = self.patch_embed3(x)
|
336 |
-
for i, blk in enumerate(self.block3):
|
337 |
-
x = blk(x, H, W)
|
338 |
-
x = self.norm3(x)
|
339 |
-
x = x.reshape(B, H, W, -1).permute(0, 3, 1, 2).contiguous()
|
340 |
-
outs.append(x)
|
341 |
-
|
342 |
-
# stage 4
|
343 |
-
x, H, W = self.patch_embed4(x)
|
344 |
-
for i, blk in enumerate(self.block4):
|
345 |
-
x = blk(x, H, W)
|
346 |
-
x = self.norm4(x)
|
347 |
-
x = x.reshape(B, H, W, -1).permute(0, 3, 1, 2).contiguous()
|
348 |
-
outs.append(x)
|
349 |
-
|
350 |
-
return outs
|
351 |
-
|
352 |
-
# return x.mean(dim=1)
|
353 |
-
|
354 |
-
def forward(self, x):
|
355 |
-
x = self.forward_features(x)
|
356 |
-
# x = self.head(x)
|
357 |
-
|
358 |
-
return x
|
359 |
-
|
360 |
-
|
361 |
-
class DWConv(nn.Module):
|
362 |
-
def __init__(self, dim=768):
|
363 |
-
super(DWConv, self).__init__()
|
364 |
-
self.dwconv = nn.Conv2d(dim, dim, 3, 1, 1, bias=True, groups=dim)
|
365 |
-
|
366 |
-
def forward(self, x, H, W):
|
367 |
-
B, N, C = x.shape
|
368 |
-
x = x.transpose(1, 2).view(B, C, H, W).contiguous()
|
369 |
-
x = self.dwconv(x)
|
370 |
-
x = x.flatten(2).transpose(1, 2)
|
371 |
-
|
372 |
-
return x
|
373 |
-
|
374 |
-
|
375 |
-
def _conv_filter(state_dict, patch_size=16):
|
376 |
-
""" convert patch embedding weight from manual patchify + linear proj to conv"""
|
377 |
-
out_dict = {}
|
378 |
-
for k, v in state_dict.items():
|
379 |
-
if 'patch_embed.proj.weight' in k:
|
380 |
-
v = v.reshape((v.shape[0], 3, patch_size, patch_size))
|
381 |
-
out_dict[k] = v
|
382 |
-
|
383 |
-
return out_dict
|
384 |
-
|
385 |
-
|
386 |
-
## @register_model
|
387 |
-
class pvt_v2_b0(PyramidVisionTransformerImpr):
|
388 |
-
def __init__(self, **kwargs):
|
389 |
-
super(pvt_v2_b0, self).__init__(
|
390 |
-
patch_size=4, embed_dims=[32, 64, 160, 256], num_heads=[1, 2, 5, 8], mlp_ratios=[8, 8, 4, 4],
|
391 |
-
qkv_bias=True, norm_layer=partial(nn.LayerNorm, eps=1e-6), depths=[2, 2, 2, 2], sr_ratios=[8, 4, 2, 1],
|
392 |
-
drop_rate=0.0, drop_path_rate=0.1)
|
393 |
-
|
394 |
-
|
395 |
-
|
396 |
-
## @register_model
|
397 |
-
class pvt_v2_b1(PyramidVisionTransformerImpr):
|
398 |
-
def __init__(self, **kwargs):
|
399 |
-
super(pvt_v2_b1, self).__init__(
|
400 |
-
patch_size=4, embed_dims=[64, 128, 320, 512], num_heads=[1, 2, 5, 8], mlp_ratios=[8, 8, 4, 4],
|
401 |
-
qkv_bias=True, norm_layer=partial(nn.LayerNorm, eps=1e-6), depths=[2, 2, 2, 2], sr_ratios=[8, 4, 2, 1],
|
402 |
-
drop_rate=0.0, drop_path_rate=0.1)
|
403 |
-
|
404 |
-
## @register_model
|
405 |
-
class pvt_v2_b2(PyramidVisionTransformerImpr):
|
406 |
-
def __init__(self, in_channels=3, **kwargs):
|
407 |
-
super(pvt_v2_b2, self).__init__(
|
408 |
-
patch_size=4, embed_dims=[64, 128, 320, 512], num_heads=[1, 2, 5, 8], mlp_ratios=[8, 8, 4, 4],
|
409 |
-
qkv_bias=True, norm_layer=partial(nn.LayerNorm, eps=1e-6), depths=[3, 4, 6, 3], sr_ratios=[8, 4, 2, 1],
|
410 |
-
drop_rate=0.0, drop_path_rate=0.1, in_channels=in_channels)
|
411 |
-
|
412 |
-
## @register_model
|
413 |
-
class pvt_v2_b3(PyramidVisionTransformerImpr):
|
414 |
-
def __init__(self, **kwargs):
|
415 |
-
super(pvt_v2_b3, self).__init__(
|
416 |
-
patch_size=4, embed_dims=[64, 128, 320, 512], num_heads=[1, 2, 5, 8], mlp_ratios=[8, 8, 4, 4],
|
417 |
-
qkv_bias=True, norm_layer=partial(nn.LayerNorm, eps=1e-6), depths=[3, 4, 18, 3], sr_ratios=[8, 4, 2, 1],
|
418 |
-
drop_rate=0.0, drop_path_rate=0.1)
|
419 |
-
|
420 |
-
## @register_model
|
421 |
-
class pvt_v2_b4(PyramidVisionTransformerImpr):
|
422 |
-
def __init__(self, **kwargs):
|
423 |
-
super(pvt_v2_b4, self).__init__(
|
424 |
-
patch_size=4, embed_dims=[64, 128, 320, 512], num_heads=[1, 2, 5, 8], mlp_ratios=[8, 8, 4, 4],
|
425 |
-
qkv_bias=True, norm_layer=partial(nn.LayerNorm, eps=1e-6), depths=[3, 8, 27, 3], sr_ratios=[8, 4, 2, 1],
|
426 |
-
drop_rate=0.0, drop_path_rate=0.1)
|
427 |
-
|
428 |
-
|
429 |
-
## @register_model
|
430 |
-
class pvt_v2_b5(PyramidVisionTransformerImpr):
|
431 |
-
def __init__(self, **kwargs):
|
432 |
-
super(pvt_v2_b5, self).__init__(
|
433 |
-
patch_size=4, embed_dims=[64, 128, 320, 512], num_heads=[1, 2, 5, 8], mlp_ratios=[4, 4, 4, 4],
|
434 |
-
qkv_bias=True, norm_layer=partial(nn.LayerNorm, eps=1e-6), depths=[3, 6, 40, 3], sr_ratios=[8, 4, 2, 1],
|
435 |
-
drop_rate=0.0, drop_path_rate=0.1)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
models/refinement/__init__.py
DELETED
@@ -1,6 +0,0 @@
|
|
1 |
-
from os.path import dirname, basename, isfile, join
|
2 |
-
import glob
|
3 |
-
|
4 |
-
|
5 |
-
modules = glob.glob(join(dirname(__file__), "*.py"))
|
6 |
-
__all__ = [ basename(f)[:-3] for f in modules if isfile(f) and not f.endswith('__init__.py')]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
models/refiner.py
DELETED
@@ -1,253 +0,0 @@
|
|
1 |
-
import torch
|
2 |
-
import torch.nn as nn
|
3 |
-
from collections import OrderedDict
|
4 |
-
import torch
|
5 |
-
import torch.nn as nn
|
6 |
-
import torch.nn.functional as F
|
7 |
-
from torchvision.models import vgg16, vgg16_bn
|
8 |
-
from torchvision.models import resnet50
|
9 |
-
|
10 |
-
from config import Config
|
11 |
-
from dataset import class_labels_TR_sorted
|
12 |
-
from models.build_backbone import build_backbone
|
13 |
-
from models.decoder_blocks import BasicDecBlk
|
14 |
-
from models.lateral_blocks import BasicLatBlk
|
15 |
-
from models.ing import *
|
16 |
-
from models.stem_layer import StemLayer
|
17 |
-
|
18 |
-
|
19 |
-
class RefinerPVTInChannels4(nn.Module):
|
20 |
-
def __init__(self, in_channels=3+1):
|
21 |
-
super(RefinerPVTInChannels4, self).__init__()
|
22 |
-
self.config = Config()
|
23 |
-
self.epoch = 1
|
24 |
-
self.bb = build_backbone(self.config.bb, params_settings='in_channels=4')
|
25 |
-
|
26 |
-
lateral_channels_in_collection = {
|
27 |
-
'vgg16': [512, 256, 128, 64], 'vgg16bn': [512, 256, 128, 64], 'resnet50': [1024, 512, 256, 64],
|
28 |
-
'pvt_v2_b2': [512, 320, 128, 64], 'pvt_v2_b5': [512, 320, 128, 64],
|
29 |
-
'swin_v1_b': [1024, 512, 256, 128], 'swin_v1_l': [1536, 768, 384, 192],
|
30 |
-
}
|
31 |
-
channels = lateral_channels_in_collection[self.config.bb]
|
32 |
-
self.squeeze_module = BasicDecBlk(channels[0], channels[0])
|
33 |
-
|
34 |
-
self.decoder = Decoder(channels)
|
35 |
-
|
36 |
-
if 0:
|
37 |
-
for key, value in self.named_parameters():
|
38 |
-
if 'bb.' in key:
|
39 |
-
value.requires_grad = False
|
40 |
-
|
41 |
-
def forward(self, x):
|
42 |
-
if isinstance(x, list):
|
43 |
-
x = torch.cat(x, dim=1)
|
44 |
-
########## Encoder ##########
|
45 |
-
if self.config.bb in ['vgg16', 'vgg16bn', 'resnet50']:
|
46 |
-
x1 = self.bb.conv1(x)
|
47 |
-
x2 = self.bb.conv2(x1)
|
48 |
-
x3 = self.bb.conv3(x2)
|
49 |
-
x4 = self.bb.conv4(x3)
|
50 |
-
else:
|
51 |
-
x1, x2, x3, x4 = self.bb(x)
|
52 |
-
|
53 |
-
x4 = self.squeeze_module(x4)
|
54 |
-
|
55 |
-
########## Decoder ##########
|
56 |
-
|
57 |
-
features = [x, x1, x2, x3, x4]
|
58 |
-
scaled_preds = self.decoder(features)
|
59 |
-
|
60 |
-
return scaled_preds
|
61 |
-
|
62 |
-
|
63 |
-
class Refiner(nn.Module):
|
64 |
-
def __init__(self, in_channels=3+1):
|
65 |
-
super(Refiner, self).__init__()
|
66 |
-
self.config = Config()
|
67 |
-
self.epoch = 1
|
68 |
-
self.stem_layer = StemLayer(in_channels=in_channels, inter_channels=48, out_channels=3, norm_layer='BN' if self.config.batch_size > 1 else 'LN')
|
69 |
-
self.bb = build_backbone(self.config.bb)
|
70 |
-
|
71 |
-
lateral_channels_in_collection = {
|
72 |
-
'vgg16': [512, 256, 128, 64], 'vgg16bn': [512, 256, 128, 64], 'resnet50': [1024, 512, 256, 64],
|
73 |
-
'pvt_v2_b2': [512, 320, 128, 64], 'pvt_v2_b5': [512, 320, 128, 64],
|
74 |
-
'swin_v1_b': [1024, 512, 256, 128], 'swin_v1_l': [1536, 768, 384, 192],
|
75 |
-
}
|
76 |
-
channels = lateral_channels_in_collection[self.config.bb]
|
77 |
-
self.squeeze_module = BasicDecBlk(channels[0], channels[0])
|
78 |
-
|
79 |
-
self.decoder = Decoder(channels)
|
80 |
-
|
81 |
-
if 0:
|
82 |
-
for key, value in self.named_parameters():
|
83 |
-
if 'bb.' in key:
|
84 |
-
value.requires_grad = False
|
85 |
-
|
86 |
-
def forward(self, x):
|
87 |
-
if isinstance(x, list):
|
88 |
-
x = torch.cat(x, dim=1)
|
89 |
-
x = self.stem_layer(x)
|
90 |
-
########## Encoder ##########
|
91 |
-
if self.config.bb in ['vgg16', 'vgg16bn', 'resnet50']:
|
92 |
-
x1 = self.bb.conv1(x)
|
93 |
-
x2 = self.bb.conv2(x1)
|
94 |
-
x3 = self.bb.conv3(x2)
|
95 |
-
x4 = self.bb.conv4(x3)
|
96 |
-
else:
|
97 |
-
x1, x2, x3, x4 = self.bb(x)
|
98 |
-
|
99 |
-
x4 = self.squeeze_module(x4)
|
100 |
-
|
101 |
-
########## Decoder ##########
|
102 |
-
|
103 |
-
features = [x, x1, x2, x3, x4]
|
104 |
-
scaled_preds = self.decoder(features)
|
105 |
-
|
106 |
-
return scaled_preds
|
107 |
-
|
108 |
-
|
109 |
-
class Decoder(nn.Module):
|
110 |
-
def __init__(self, channels):
|
111 |
-
super(Decoder, self).__init__()
|
112 |
-
self.config = Config()
|
113 |
-
DecoderBlock = eval('BasicDecBlk')
|
114 |
-
LateralBlock = eval('BasicLatBlk')
|
115 |
-
|
116 |
-
self.decoder_block4 = DecoderBlock(channels[0], channels[1])
|
117 |
-
self.decoder_block3 = DecoderBlock(channels[1], channels[2])
|
118 |
-
self.decoder_block2 = DecoderBlock(channels[2], channels[3])
|
119 |
-
self.decoder_block1 = DecoderBlock(channels[3], channels[3]//2)
|
120 |
-
|
121 |
-
self.lateral_block4 = LateralBlock(channels[1], channels[1])
|
122 |
-
self.lateral_block3 = LateralBlock(channels[2], channels[2])
|
123 |
-
self.lateral_block2 = LateralBlock(channels[3], channels[3])
|
124 |
-
|
125 |
-
if self.config.ms_supervision:
|
126 |
-
self.conv_ms_spvn_4 = nn.Conv2d(channels[1], 1, 1, 1, 0)
|
127 |
-
self.conv_ms_spvn_3 = nn.Conv2d(channels[2], 1, 1, 1, 0)
|
128 |
-
self.conv_ms_spvn_2 = nn.Conv2d(channels[3], 1, 1, 1, 0)
|
129 |
-
self.conv_out1 = nn.Sequential(nn.Conv2d(channels[3]//2, 1, 1, 1, 0))
|
130 |
-
|
131 |
-
def forward(self, features):
|
132 |
-
x, x1, x2, x3, x4 = features
|
133 |
-
outs = []
|
134 |
-
p4 = self.decoder_block4(x4)
|
135 |
-
_p4 = F.interpolate(p4, size=x3.shape[2:], mode='bilinear', align_corners=True)
|
136 |
-
_p3 = _p4 + self.lateral_block4(x3)
|
137 |
-
|
138 |
-
p3 = self.decoder_block3(_p3)
|
139 |
-
_p3 = F.interpolate(p3, size=x2.shape[2:], mode='bilinear', align_corners=True)
|
140 |
-
_p2 = _p3 + self.lateral_block3(x2)
|
141 |
-
|
142 |
-
p2 = self.decoder_block2(_p2)
|
143 |
-
_p2 = F.interpolate(p2, size=x1.shape[2:], mode='bilinear', align_corners=True)
|
144 |
-
_p1 = _p2 + self.lateral_block2(x1)
|
145 |
-
|
146 |
-
_p1 = self.decoder_block1(_p1)
|
147 |
-
_p1 = F.interpolate(_p1, size=x.shape[2:], mode='bilinear', align_corners=True)
|
148 |
-
p1_out = self.conv_out1(_p1)
|
149 |
-
|
150 |
-
if self.config.ms_supervision:
|
151 |
-
outs.append(self.conv_ms_spvn_4(p4))
|
152 |
-
outs.append(self.conv_ms_spvn_3(p3))
|
153 |
-
outs.append(self.conv_ms_spvn_2(p2))
|
154 |
-
outs.append(p1_out)
|
155 |
-
return outs
|
156 |
-
|
157 |
-
|
158 |
-
class RefUNet(nn.Module):
|
159 |
-
# Refinement
|
160 |
-
def __init__(self, in_channels=3+1):
|
161 |
-
super(RefUNet, self).__init__()
|
162 |
-
self.encoder_1 = nn.Sequential(
|
163 |
-
nn.Conv2d(in_channels, 64, 3, 1, 1),
|
164 |
-
nn.Conv2d(64, 64, 3, 1, 1),
|
165 |
-
nn.BatchNorm2d(64),
|
166 |
-
nn.ReLU(inplace=True)
|
167 |
-
)
|
168 |
-
|
169 |
-
self.encoder_2 = nn.Sequential(
|
170 |
-
nn.MaxPool2d(2, 2, ceil_mode=True),
|
171 |
-
nn.Conv2d(64, 64, 3, 1, 1),
|
172 |
-
nn.BatchNorm2d(64),
|
173 |
-
nn.ReLU(inplace=True)
|
174 |
-
)
|
175 |
-
|
176 |
-
self.encoder_3 = nn.Sequential(
|
177 |
-
nn.MaxPool2d(2, 2, ceil_mode=True),
|
178 |
-
nn.Conv2d(64, 64, 3, 1, 1),
|
179 |
-
nn.BatchNorm2d(64),
|
180 |
-
nn.ReLU(inplace=True)
|
181 |
-
)
|
182 |
-
|
183 |
-
self.encoder_4 = nn.Sequential(
|
184 |
-
nn.MaxPool2d(2, 2, ceil_mode=True),
|
185 |
-
nn.Conv2d(64, 64, 3, 1, 1),
|
186 |
-
nn.BatchNorm2d(64),
|
187 |
-
nn.ReLU(inplace=True)
|
188 |
-
)
|
189 |
-
|
190 |
-
self.pool4 = nn.MaxPool2d(2, 2, ceil_mode=True)
|
191 |
-
#####
|
192 |
-
self.decoder_5 = nn.Sequential(
|
193 |
-
nn.Conv2d(64, 64, 3, 1, 1),
|
194 |
-
nn.BatchNorm2d(64),
|
195 |
-
nn.ReLU(inplace=True)
|
196 |
-
)
|
197 |
-
#####
|
198 |
-
self.decoder_4 = nn.Sequential(
|
199 |
-
nn.Conv2d(128, 64, 3, 1, 1),
|
200 |
-
nn.BatchNorm2d(64),
|
201 |
-
nn.ReLU(inplace=True)
|
202 |
-
)
|
203 |
-
|
204 |
-
self.decoder_3 = nn.Sequential(
|
205 |
-
nn.Conv2d(128, 64, 3, 1, 1),
|
206 |
-
nn.BatchNorm2d(64),
|
207 |
-
nn.ReLU(inplace=True)
|
208 |
-
)
|
209 |
-
|
210 |
-
self.decoder_2 = nn.Sequential(
|
211 |
-
nn.Conv2d(128, 64, 3, 1, 1),
|
212 |
-
nn.BatchNorm2d(64),
|
213 |
-
nn.ReLU(inplace=True)
|
214 |
-
)
|
215 |
-
|
216 |
-
self.decoder_1 = nn.Sequential(
|
217 |
-
nn.Conv2d(128, 64, 3, 1, 1),
|
218 |
-
nn.BatchNorm2d(64),
|
219 |
-
nn.ReLU(inplace=True)
|
220 |
-
)
|
221 |
-
|
222 |
-
self.conv_d0 = nn.Conv2d(64, 1, 3, 1, 1)
|
223 |
-
|
224 |
-
self.upscore2 = nn.Upsample(scale_factor=2, mode='bilinear', align_corners=True)
|
225 |
-
|
226 |
-
def forward(self, x):
|
227 |
-
outs = []
|
228 |
-
if isinstance(x, list):
|
229 |
-
x = torch.cat(x, dim=1)
|
230 |
-
hx = x
|
231 |
-
|
232 |
-
hx1 = self.encoder_1(hx)
|
233 |
-
hx2 = self.encoder_2(hx1)
|
234 |
-
hx3 = self.encoder_3(hx2)
|
235 |
-
hx4 = self.encoder_4(hx3)
|
236 |
-
|
237 |
-
hx = self.decoder_5(self.pool4(hx4))
|
238 |
-
hx = torch.cat((self.upscore2(hx), hx4), 1)
|
239 |
-
|
240 |
-
d4 = self.decoder_4(hx)
|
241 |
-
hx = torch.cat((self.upscore2(d4), hx3), 1)
|
242 |
-
|
243 |
-
d3 = self.decoder_3(hx)
|
244 |
-
hx = torch.cat((self.upscore2(d3), hx2), 1)
|
245 |
-
|
246 |
-
d2 = self.decoder_2(hx)
|
247 |
-
hx = torch.cat((self.upscore2(d2), hx1), 1)
|
248 |
-
|
249 |
-
d1 = self.decoder_1(hx)
|
250 |
-
|
251 |
-
x = self.conv_d0(d1)
|
252 |
-
outs.append(x)
|
253 |
-
return outs
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
models/stem_layer.py
DELETED
@@ -1,45 +0,0 @@
|
|
1 |
-
import torch.nn as nn
|
2 |
-
from models.utils import build_act_layer, build_norm_layer
|
3 |
-
|
4 |
-
|
5 |
-
class StemLayer(nn.Module):
|
6 |
-
r""" Stem layer of InternImage
|
7 |
-
Args:
|
8 |
-
in_channels (int): number of input channels
|
9 |
-
out_channels (int): number of output channels
|
10 |
-
act_layer (str): activation layer
|
11 |
-
norm_layer (str): normalization layer
|
12 |
-
"""
|
13 |
-
|
14 |
-
def __init__(self,
|
15 |
-
in_channels=3+1,
|
16 |
-
inter_channels=48,
|
17 |
-
out_channels=96,
|
18 |
-
act_layer='GELU',
|
19 |
-
norm_layer='BN'):
|
20 |
-
super().__init__()
|
21 |
-
self.conv1 = nn.Conv2d(in_channels,
|
22 |
-
inter_channels,
|
23 |
-
kernel_size=3,
|
24 |
-
stride=1,
|
25 |
-
padding=1)
|
26 |
-
self.norm1 = build_norm_layer(
|
27 |
-
inter_channels, norm_layer, 'channels_first', 'channels_first'
|
28 |
-
)
|
29 |
-
self.act = build_act_layer(act_layer)
|
30 |
-
self.conv2 = nn.Conv2d(inter_channels,
|
31 |
-
out_channels,
|
32 |
-
kernel_size=3,
|
33 |
-
stride=1,
|
34 |
-
padding=1)
|
35 |
-
self.norm2 = build_norm_layer(
|
36 |
-
out_channels, norm_layer, 'channels_first', 'channels_first'
|
37 |
-
)
|
38 |
-
|
39 |
-
def forward(self, x):
|
40 |
-
x = self.conv1(x)
|
41 |
-
x = self.norm1(x)
|
42 |
-
x = self.act(x)
|
43 |
-
x = self.conv2(x)
|
44 |
-
x = self.norm2(x)
|
45 |
-
return x
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
models/swin_v1.py
DELETED
@@ -1,627 +0,0 @@
|
|
1 |
-
# --------------------------------------------------------
|
2 |
-
# Swin Transformer
|
3 |
-
# Copyright (c) 2021 Microsoft
|
4 |
-
# Licensed under The MIT License [see LICENSE for details]
|
5 |
-
# Written by Ze Liu, Yutong Lin, Yixuan Wei
|
6 |
-
# --------------------------------------------------------
|
7 |
-
|
8 |
-
import torch
|
9 |
-
import torch.nn as nn
|
10 |
-
import torch.nn.functional as F
|
11 |
-
import torch.utils.checkpoint as checkpoint
|
12 |
-
import numpy as np
|
13 |
-
from timm.models.layers import DropPath, to_2tuple, trunc_normal_
|
14 |
-
|
15 |
-
from config import Config
|
16 |
-
|
17 |
-
|
18 |
-
config = Config()
|
19 |
-
|
20 |
-
class Mlp(nn.Module):
|
21 |
-
""" Multilayer perceptron."""
|
22 |
-
|
23 |
-
def __init__(self, in_features, hidden_features=None, out_features=None, act_layer=nn.GELU, drop=0.):
|
24 |
-
super().__init__()
|
25 |
-
out_features = out_features or in_features
|
26 |
-
hidden_features = hidden_features or in_features
|
27 |
-
self.fc1 = nn.Linear(in_features, hidden_features)
|
28 |
-
self.act = act_layer()
|
29 |
-
self.fc2 = nn.Linear(hidden_features, out_features)
|
30 |
-
self.drop = nn.Dropout(drop)
|
31 |
-
|
32 |
-
def forward(self, x):
|
33 |
-
x = self.fc1(x)
|
34 |
-
x = self.act(x)
|
35 |
-
x = self.drop(x)
|
36 |
-
x = self.fc2(x)
|
37 |
-
x = self.drop(x)
|
38 |
-
return x
|
39 |
-
|
40 |
-
|
41 |
-
def window_partition(x, window_size):
|
42 |
-
"""
|
43 |
-
Args:
|
44 |
-
x: (B, H, W, C)
|
45 |
-
window_size (int): window size
|
46 |
-
|
47 |
-
Returns:
|
48 |
-
windows: (num_windows*B, window_size, window_size, C)
|
49 |
-
"""
|
50 |
-
B, H, W, C = x.shape
|
51 |
-
x = x.view(B, H // window_size, window_size, W // window_size, window_size, C)
|
52 |
-
windows = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(-1, window_size, window_size, C)
|
53 |
-
return windows
|
54 |
-
|
55 |
-
|
56 |
-
def window_reverse(windows, window_size, H, W):
|
57 |
-
"""
|
58 |
-
Args:
|
59 |
-
windows: (num_windows*B, window_size, window_size, C)
|
60 |
-
window_size (int): Window size
|
61 |
-
H (int): Height of image
|
62 |
-
W (int): Width of image
|
63 |
-
|
64 |
-
Returns:
|
65 |
-
x: (B, H, W, C)
|
66 |
-
"""
|
67 |
-
B = int(windows.shape[0] / (H * W / window_size / window_size))
|
68 |
-
x = windows.view(B, H // window_size, W // window_size, window_size, window_size, -1)
|
69 |
-
x = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(B, H, W, -1)
|
70 |
-
return x
|
71 |
-
|
72 |
-
|
73 |
-
class WindowAttention(nn.Module):
|
74 |
-
""" Window based multi-head self attention (W-MSA) module with relative position bias.
|
75 |
-
It supports both of shifted and non-shifted window.
|
76 |
-
|
77 |
-
Args:
|
78 |
-
dim (int): Number of input channels.
|
79 |
-
window_size (tuple[int]): The height and width of the window.
|
80 |
-
num_heads (int): Number of attention heads.
|
81 |
-
qkv_bias (bool, optional): If True, add a learnable bias to query, key, value. Default: True
|
82 |
-
qk_scale (float | None, optional): Override default qk scale of head_dim ** -0.5 if set
|
83 |
-
attn_drop (float, optional): Dropout ratio of attention weight. Default: 0.0
|
84 |
-
proj_drop (float, optional): Dropout ratio of output. Default: 0.0
|
85 |
-
"""
|
86 |
-
|
87 |
-
def __init__(self, dim, window_size, num_heads, qkv_bias=True, qk_scale=None, attn_drop=0., proj_drop=0.):
|
88 |
-
|
89 |
-
super().__init__()
|
90 |
-
self.dim = dim
|
91 |
-
self.window_size = window_size # Wh, Ww
|
92 |
-
self.num_heads = num_heads
|
93 |
-
head_dim = dim // num_heads
|
94 |
-
self.scale = qk_scale or head_dim ** -0.5
|
95 |
-
|
96 |
-
# define a parameter table of relative position bias
|
97 |
-
self.relative_position_bias_table = nn.Parameter(
|
98 |
-
torch.zeros((2 * window_size[0] - 1) * (2 * window_size[1] - 1), num_heads)) # 2*Wh-1 * 2*Ww-1, nH
|
99 |
-
|
100 |
-
# get pair-wise relative position index for each token inside the window
|
101 |
-
coords_h = torch.arange(self.window_size[0])
|
102 |
-
coords_w = torch.arange(self.window_size[1])
|
103 |
-
coords = torch.stack(torch.meshgrid([coords_h, coords_w], indexing='ij')) # 2, Wh, Ww
|
104 |
-
coords_flatten = torch.flatten(coords, 1) # 2, Wh*Ww
|
105 |
-
relative_coords = coords_flatten[:, :, None] - coords_flatten[:, None, :] # 2, Wh*Ww, Wh*Ww
|
106 |
-
relative_coords = relative_coords.permute(1, 2, 0).contiguous() # Wh*Ww, Wh*Ww, 2
|
107 |
-
relative_coords[:, :, 0] += self.window_size[0] - 1 # shift to start from 0
|
108 |
-
relative_coords[:, :, 1] += self.window_size[1] - 1
|
109 |
-
relative_coords[:, :, 0] *= 2 * self.window_size[1] - 1
|
110 |
-
relative_position_index = relative_coords.sum(-1) # Wh*Ww, Wh*Ww
|
111 |
-
self.register_buffer("relative_position_index", relative_position_index)
|
112 |
-
|
113 |
-
self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias)
|
114 |
-
self.attn_drop_prob = attn_drop
|
115 |
-
self.attn_drop = nn.Dropout(attn_drop)
|
116 |
-
self.proj = nn.Linear(dim, dim)
|
117 |
-
self.proj_drop = nn.Dropout(proj_drop)
|
118 |
-
|
119 |
-
trunc_normal_(self.relative_position_bias_table, std=.02)
|
120 |
-
self.softmax = nn.Softmax(dim=-1)
|
121 |
-
|
122 |
-
def forward(self, x, mask=None):
|
123 |
-
""" Forward function.
|
124 |
-
|
125 |
-
Args:
|
126 |
-
x: input features with shape of (num_windows*B, N, C)
|
127 |
-
mask: (0/-inf) mask with shape of (num_windows, Wh*Ww, Wh*Ww) or None
|
128 |
-
"""
|
129 |
-
B_, N, C = x.shape
|
130 |
-
qkv = self.qkv(x).reshape(B_, N, 3, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4)
|
131 |
-
q, k, v = qkv[0], qkv[1], qkv[2] # make torchscript happy (cannot use tensor as tuple)
|
132 |
-
|
133 |
-
q = q * self.scale
|
134 |
-
|
135 |
-
if config.SDPA_enabled:
|
136 |
-
x = torch.nn.functional.scaled_dot_product_attention(
|
137 |
-
q, k, v,
|
138 |
-
attn_mask=None, dropout_p=self.attn_drop_prob, is_causal=False
|
139 |
-
).transpose(1, 2).reshape(B_, N, C)
|
140 |
-
else:
|
141 |
-
attn = (q @ k.transpose(-2, -1))
|
142 |
-
|
143 |
-
relative_position_bias = self.relative_position_bias_table[self.relative_position_index.view(-1)].view(
|
144 |
-
self.window_size[0] * self.window_size[1], self.window_size[0] * self.window_size[1], -1) # Wh*Ww,Wh*Ww,nH
|
145 |
-
relative_position_bias = relative_position_bias.permute(2, 0, 1).contiguous() # nH, Wh*Ww, Wh*Ww
|
146 |
-
attn = attn + relative_position_bias.unsqueeze(0)
|
147 |
-
|
148 |
-
if mask is not None:
|
149 |
-
nW = mask.shape[0]
|
150 |
-
attn = attn.view(B_ // nW, nW, self.num_heads, N, N) + mask.unsqueeze(1).unsqueeze(0)
|
151 |
-
attn = attn.view(-1, self.num_heads, N, N)
|
152 |
-
attn = self.softmax(attn)
|
153 |
-
else:
|
154 |
-
attn = self.softmax(attn)
|
155 |
-
|
156 |
-
attn = self.attn_drop(attn)
|
157 |
-
|
158 |
-
x = (attn @ v).transpose(1, 2).reshape(B_, N, C)
|
159 |
-
x = self.proj(x)
|
160 |
-
x = self.proj_drop(x)
|
161 |
-
return x
|
162 |
-
|
163 |
-
|
164 |
-
class SwinTransformerBlock(nn.Module):
|
165 |
-
""" Swin Transformer Block.
|
166 |
-
|
167 |
-
Args:
|
168 |
-
dim (int): Number of input channels.
|
169 |
-
num_heads (int): Number of attention heads.
|
170 |
-
window_size (int): Window size.
|
171 |
-
shift_size (int): Shift size for SW-MSA.
|
172 |
-
mlp_ratio (float): Ratio of mlp hidden dim to embedding dim.
|
173 |
-
qkv_bias (bool, optional): If True, add a learnable bias to query, key, value. Default: True
|
174 |
-
qk_scale (float | None, optional): Override default qk scale of head_dim ** -0.5 if set.
|
175 |
-
drop (float, optional): Dropout rate. Default: 0.0
|
176 |
-
attn_drop (float, optional): Attention dropout rate. Default: 0.0
|
177 |
-
drop_path (float, optional): Stochastic depth rate. Default: 0.0
|
178 |
-
act_layer (nn.Module, optional): Activation layer. Default: nn.GELU
|
179 |
-
norm_layer (nn.Module, optional): Normalization layer. Default: nn.LayerNorm
|
180 |
-
"""
|
181 |
-
|
182 |
-
def __init__(self, dim, num_heads, window_size=7, shift_size=0,
|
183 |
-
mlp_ratio=4., qkv_bias=True, qk_scale=None, drop=0., attn_drop=0., drop_path=0.,
|
184 |
-
act_layer=nn.GELU, norm_layer=nn.LayerNorm):
|
185 |
-
super().__init__()
|
186 |
-
self.dim = dim
|
187 |
-
self.num_heads = num_heads
|
188 |
-
self.window_size = window_size
|
189 |
-
self.shift_size = shift_size
|
190 |
-
self.mlp_ratio = mlp_ratio
|
191 |
-
assert 0 <= self.shift_size < self.window_size, "shift_size must in 0-window_size"
|
192 |
-
|
193 |
-
self.norm1 = norm_layer(dim)
|
194 |
-
self.attn = WindowAttention(
|
195 |
-
dim, window_size=to_2tuple(self.window_size), num_heads=num_heads,
|
196 |
-
qkv_bias=qkv_bias, qk_scale=qk_scale, attn_drop=attn_drop, proj_drop=drop)
|
197 |
-
|
198 |
-
self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity()
|
199 |
-
self.norm2 = norm_layer(dim)
|
200 |
-
mlp_hidden_dim = int(dim * mlp_ratio)
|
201 |
-
self.mlp = Mlp(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop)
|
202 |
-
|
203 |
-
self.H = None
|
204 |
-
self.W = None
|
205 |
-
|
206 |
-
def forward(self, x, mask_matrix):
|
207 |
-
""" Forward function.
|
208 |
-
|
209 |
-
Args:
|
210 |
-
x: Input feature, tensor size (B, H*W, C).
|
211 |
-
H, W: Spatial resolution of the input feature.
|
212 |
-
mask_matrix: Attention mask for cyclic shift.
|
213 |
-
"""
|
214 |
-
B, L, C = x.shape
|
215 |
-
H, W = self.H, self.W
|
216 |
-
assert L == H * W, "input feature has wrong size"
|
217 |
-
|
218 |
-
shortcut = x
|
219 |
-
x = self.norm1(x)
|
220 |
-
x = x.view(B, H, W, C)
|
221 |
-
|
222 |
-
# pad feature maps to multiples of window size
|
223 |
-
pad_l = pad_t = 0
|
224 |
-
pad_r = (self.window_size - W % self.window_size) % self.window_size
|
225 |
-
pad_b = (self.window_size - H % self.window_size) % self.window_size
|
226 |
-
x = F.pad(x, (0, 0, pad_l, pad_r, pad_t, pad_b))
|
227 |
-
_, Hp, Wp, _ = x.shape
|
228 |
-
|
229 |
-
# cyclic shift
|
230 |
-
if self.shift_size > 0:
|
231 |
-
shifted_x = torch.roll(x, shifts=(-self.shift_size, -self.shift_size), dims=(1, 2))
|
232 |
-
attn_mask = mask_matrix
|
233 |
-
else:
|
234 |
-
shifted_x = x
|
235 |
-
attn_mask = None
|
236 |
-
|
237 |
-
# partition windows
|
238 |
-
x_windows = window_partition(shifted_x, self.window_size) # nW*B, window_size, window_size, C
|
239 |
-
x_windows = x_windows.view(-1, self.window_size * self.window_size, C) # nW*B, window_size*window_size, C
|
240 |
-
|
241 |
-
# W-MSA/SW-MSA
|
242 |
-
attn_windows = self.attn(x_windows, mask=attn_mask) # nW*B, window_size*window_size, C
|
243 |
-
|
244 |
-
# merge windows
|
245 |
-
attn_windows = attn_windows.view(-1, self.window_size, self.window_size, C)
|
246 |
-
shifted_x = window_reverse(attn_windows, self.window_size, Hp, Wp) # B H' W' C
|
247 |
-
|
248 |
-
# reverse cyclic shift
|
249 |
-
if self.shift_size > 0:
|
250 |
-
x = torch.roll(shifted_x, shifts=(self.shift_size, self.shift_size), dims=(1, 2))
|
251 |
-
else:
|
252 |
-
x = shifted_x
|
253 |
-
|
254 |
-
if pad_r > 0 or pad_b > 0:
|
255 |
-
x = x[:, :H, :W, :].contiguous()
|
256 |
-
|
257 |
-
x = x.view(B, H * W, C)
|
258 |
-
|
259 |
-
# FFN
|
260 |
-
x = shortcut + self.drop_path(x)
|
261 |
-
x = x + self.drop_path(self.mlp(self.norm2(x)))
|
262 |
-
|
263 |
-
return x
|
264 |
-
|
265 |
-
|
266 |
-
class PatchMerging(nn.Module):
|
267 |
-
""" Patch Merging Layer
|
268 |
-
|
269 |
-
Args:
|
270 |
-
dim (int): Number of input channels.
|
271 |
-
norm_layer (nn.Module, optional): Normalization layer. Default: nn.LayerNorm
|
272 |
-
"""
|
273 |
-
def __init__(self, dim, norm_layer=nn.LayerNorm):
|
274 |
-
super().__init__()
|
275 |
-
self.dim = dim
|
276 |
-
self.reduction = nn.Linear(4 * dim, 2 * dim, bias=False)
|
277 |
-
self.norm = norm_layer(4 * dim)
|
278 |
-
|
279 |
-
def forward(self, x, H, W):
|
280 |
-
""" Forward function.
|
281 |
-
|
282 |
-
Args:
|
283 |
-
x: Input feature, tensor size (B, H*W, C).
|
284 |
-
H, W: Spatial resolution of the input feature.
|
285 |
-
"""
|
286 |
-
B, L, C = x.shape
|
287 |
-
assert L == H * W, "input feature has wrong size"
|
288 |
-
|
289 |
-
x = x.view(B, H, W, C)
|
290 |
-
|
291 |
-
# padding
|
292 |
-
pad_input = (H % 2 == 1) or (W % 2 == 1)
|
293 |
-
if pad_input:
|
294 |
-
x = F.pad(x, (0, 0, 0, W % 2, 0, H % 2))
|
295 |
-
|
296 |
-
x0 = x[:, 0::2, 0::2, :] # B H/2 W/2 C
|
297 |
-
x1 = x[:, 1::2, 0::2, :] # B H/2 W/2 C
|
298 |
-
x2 = x[:, 0::2, 1::2, :] # B H/2 W/2 C
|
299 |
-
x3 = x[:, 1::2, 1::2, :] # B H/2 W/2 C
|
300 |
-
x = torch.cat([x0, x1, x2, x3], -1) # B H/2 W/2 4*C
|
301 |
-
x = x.view(B, -1, 4 * C) # B H/2*W/2 4*C
|
302 |
-
|
303 |
-
x = self.norm(x)
|
304 |
-
x = self.reduction(x)
|
305 |
-
|
306 |
-
return x
|
307 |
-
|
308 |
-
|
309 |
-
class BasicLayer(nn.Module):
|
310 |
-
""" A basic Swin Transformer layer for one stage.
|
311 |
-
|
312 |
-
Args:
|
313 |
-
dim (int): Number of feature channels
|
314 |
-
depth (int): Depths of this stage.
|
315 |
-
num_heads (int): Number of attention head.
|
316 |
-
window_size (int): Local window size. Default: 7.
|
317 |
-
mlp_ratio (float): Ratio of mlp hidden dim to embedding dim. Default: 4.
|
318 |
-
qkv_bias (bool, optional): If True, add a learnable bias to query, key, value. Default: True
|
319 |
-
qk_scale (float | None, optional): Override default qk scale of head_dim ** -0.5 if set.
|
320 |
-
drop (float, optional): Dropout rate. Default: 0.0
|
321 |
-
attn_drop (float, optional): Attention dropout rate. Default: 0.0
|
322 |
-
drop_path (float | tuple[float], optional): Stochastic depth rate. Default: 0.0
|
323 |
-
norm_layer (nn.Module, optional): Normalization layer. Default: nn.LayerNorm
|
324 |
-
downsample (nn.Module | None, optional): Downsample layer at the end of the layer. Default: None
|
325 |
-
use_checkpoint (bool): Whether to use checkpointing to save memory. Default: False.
|
326 |
-
"""
|
327 |
-
|
328 |
-
def __init__(self,
|
329 |
-
dim,
|
330 |
-
depth,
|
331 |
-
num_heads,
|
332 |
-
window_size=7,
|
333 |
-
mlp_ratio=4.,
|
334 |
-
qkv_bias=True,
|
335 |
-
qk_scale=None,
|
336 |
-
drop=0.,
|
337 |
-
attn_drop=0.,
|
338 |
-
drop_path=0.,
|
339 |
-
norm_layer=nn.LayerNorm,
|
340 |
-
downsample=None,
|
341 |
-
use_checkpoint=False):
|
342 |
-
super().__init__()
|
343 |
-
self.window_size = window_size
|
344 |
-
self.shift_size = window_size // 2
|
345 |
-
self.depth = depth
|
346 |
-
self.use_checkpoint = use_checkpoint
|
347 |
-
|
348 |
-
# build blocks
|
349 |
-
self.blocks = nn.ModuleList([
|
350 |
-
SwinTransformerBlock(
|
351 |
-
dim=dim,
|
352 |
-
num_heads=num_heads,
|
353 |
-
window_size=window_size,
|
354 |
-
shift_size=0 if (i % 2 == 0) else window_size // 2,
|
355 |
-
mlp_ratio=mlp_ratio,
|
356 |
-
qkv_bias=qkv_bias,
|
357 |
-
qk_scale=qk_scale,
|
358 |
-
drop=drop,
|
359 |
-
attn_drop=attn_drop,
|
360 |
-
drop_path=drop_path[i] if isinstance(drop_path, list) else drop_path,
|
361 |
-
norm_layer=norm_layer)
|
362 |
-
for i in range(depth)])
|
363 |
-
|
364 |
-
# patch merging layer
|
365 |
-
if downsample is not None:
|
366 |
-
self.downsample = downsample(dim=dim, norm_layer=norm_layer)
|
367 |
-
else:
|
368 |
-
self.downsample = None
|
369 |
-
|
370 |
-
def forward(self, x, H, W):
|
371 |
-
""" Forward function.
|
372 |
-
|
373 |
-
Args:
|
374 |
-
x: Input feature, tensor size (B, H*W, C).
|
375 |
-
H, W: Spatial resolution of the input feature.
|
376 |
-
"""
|
377 |
-
|
378 |
-
# calculate attention mask for SW-MSA
|
379 |
-
Hp = int(np.ceil(H / self.window_size)) * self.window_size
|
380 |
-
Wp = int(np.ceil(W / self.window_size)) * self.window_size
|
381 |
-
img_mask = torch.zeros((1, Hp, Wp, 1), device=x.device) # 1 Hp Wp 1
|
382 |
-
h_slices = (slice(0, -self.window_size),
|
383 |
-
slice(-self.window_size, -self.shift_size),
|
384 |
-
slice(-self.shift_size, None))
|
385 |
-
w_slices = (slice(0, -self.window_size),
|
386 |
-
slice(-self.window_size, -self.shift_size),
|
387 |
-
slice(-self.shift_size, None))
|
388 |
-
cnt = 0
|
389 |
-
for h in h_slices:
|
390 |
-
for w in w_slices:
|
391 |
-
img_mask[:, h, w, :] = cnt
|
392 |
-
cnt += 1
|
393 |
-
|
394 |
-
mask_windows = window_partition(img_mask, self.window_size) # nW, window_size, window_size, 1
|
395 |
-
mask_windows = mask_windows.view(-1, self.window_size * self.window_size)
|
396 |
-
attn_mask = mask_windows.unsqueeze(1) - mask_windows.unsqueeze(2)
|
397 |
-
attn_mask = attn_mask.masked_fill(attn_mask != 0, float(-100.0)).masked_fill(attn_mask == 0, float(0.0))
|
398 |
-
|
399 |
-
for blk in self.blocks:
|
400 |
-
blk.H, blk.W = H, W
|
401 |
-
if self.use_checkpoint:
|
402 |
-
x = checkpoint.checkpoint(blk, x, attn_mask)
|
403 |
-
else:
|
404 |
-
x = blk(x, attn_mask)
|
405 |
-
if self.downsample is not None:
|
406 |
-
x_down = self.downsample(x, H, W)
|
407 |
-
Wh, Ww = (H + 1) // 2, (W + 1) // 2
|
408 |
-
return x, H, W, x_down, Wh, Ww
|
409 |
-
else:
|
410 |
-
return x, H, W, x, H, W
|
411 |
-
|
412 |
-
|
413 |
-
class PatchEmbed(nn.Module):
|
414 |
-
""" Image to Patch Embedding
|
415 |
-
|
416 |
-
Args:
|
417 |
-
patch_size (int): Patch token size. Default: 4.
|
418 |
-
in_channels (int): Number of input image channels. Default: 3.
|
419 |
-
embed_dim (int): Number of linear projection output channels. Default: 96.
|
420 |
-
norm_layer (nn.Module, optional): Normalization layer. Default: None
|
421 |
-
"""
|
422 |
-
|
423 |
-
def __init__(self, patch_size=4, in_channels=3, embed_dim=96, norm_layer=None):
|
424 |
-
super().__init__()
|
425 |
-
patch_size = to_2tuple(patch_size)
|
426 |
-
self.patch_size = patch_size
|
427 |
-
|
428 |
-
self.in_channels = in_channels
|
429 |
-
self.embed_dim = embed_dim
|
430 |
-
|
431 |
-
self.proj = nn.Conv2d(in_channels, embed_dim, kernel_size=patch_size, stride=patch_size)
|
432 |
-
if norm_layer is not None:
|
433 |
-
self.norm = norm_layer(embed_dim)
|
434 |
-
else:
|
435 |
-
self.norm = None
|
436 |
-
|
437 |
-
def forward(self, x):
|
438 |
-
"""Forward function."""
|
439 |
-
# padding
|
440 |
-
_, _, H, W = x.size()
|
441 |
-
if W % self.patch_size[1] != 0:
|
442 |
-
x = F.pad(x, (0, self.patch_size[1] - W % self.patch_size[1]))
|
443 |
-
if H % self.patch_size[0] != 0:
|
444 |
-
x = F.pad(x, (0, 0, 0, self.patch_size[0] - H % self.patch_size[0]))
|
445 |
-
|
446 |
-
x = self.proj(x) # B C Wh Ww
|
447 |
-
if self.norm is not None:
|
448 |
-
Wh, Ww = x.size(2), x.size(3)
|
449 |
-
x = x.flatten(2).transpose(1, 2)
|
450 |
-
x = self.norm(x)
|
451 |
-
x = x.transpose(1, 2).view(-1, self.embed_dim, Wh, Ww)
|
452 |
-
|
453 |
-
return x
|
454 |
-
|
455 |
-
|
456 |
-
class SwinTransformer(nn.Module):
|
457 |
-
""" Swin Transformer backbone.
|
458 |
-
A PyTorch impl of : `Swin Transformer: Hierarchical Vision Transformer using Shifted Windows` -
|
459 |
-
https://arxiv.org/pdf/2103.14030
|
460 |
-
|
461 |
-
Args:
|
462 |
-
pretrain_img_size (int): Input image size for training the pretrained model,
|
463 |
-
used in absolute postion embedding. Default 224.
|
464 |
-
patch_size (int | tuple(int)): Patch size. Default: 4.
|
465 |
-
in_channels (int): Number of input image channels. Default: 3.
|
466 |
-
embed_dim (int): Number of linear projection output channels. Default: 96.
|
467 |
-
depths (tuple[int]): Depths of each Swin Transformer stage.
|
468 |
-
num_heads (tuple[int]): Number of attention head of each stage.
|
469 |
-
window_size (int): Window size. Default: 7.
|
470 |
-
mlp_ratio (float): Ratio of mlp hidden dim to embedding dim. Default: 4.
|
471 |
-
qkv_bias (bool): If True, add a learnable bias to query, key, value. Default: True
|
472 |
-
qk_scale (float): Override default qk scale of head_dim ** -0.5 if set.
|
473 |
-
drop_rate (float): Dropout rate.
|
474 |
-
attn_drop_rate (float): Attention dropout rate. Default: 0.
|
475 |
-
drop_path_rate (float): Stochastic depth rate. Default: 0.2.
|
476 |
-
norm_layer (nn.Module): Normalization layer. Default: nn.LayerNorm.
|
477 |
-
ape (bool): If True, add absolute position embedding to the patch embedding. Default: False.
|
478 |
-
patch_norm (bool): If True, add normalization after patch embedding. Default: True.
|
479 |
-
out_indices (Sequence[int]): Output from which stages.
|
480 |
-
frozen_stages (int): Stages to be frozen (stop grad and set eval mode).
|
481 |
-
-1 means not freezing any parameters.
|
482 |
-
use_checkpoint (bool): Whether to use checkpointing to save memory. Default: False.
|
483 |
-
"""
|
484 |
-
|
485 |
-
def __init__(self,
|
486 |
-
pretrain_img_size=224,
|
487 |
-
patch_size=4,
|
488 |
-
in_channels=3,
|
489 |
-
embed_dim=96,
|
490 |
-
depths=[2, 2, 6, 2],
|
491 |
-
num_heads=[3, 6, 12, 24],
|
492 |
-
window_size=7,
|
493 |
-
mlp_ratio=4.,
|
494 |
-
qkv_bias=True,
|
495 |
-
qk_scale=None,
|
496 |
-
drop_rate=0.,
|
497 |
-
attn_drop_rate=0.,
|
498 |
-
drop_path_rate=0.2,
|
499 |
-
norm_layer=nn.LayerNorm,
|
500 |
-
ape=False,
|
501 |
-
patch_norm=True,
|
502 |
-
out_indices=(0, 1, 2, 3),
|
503 |
-
frozen_stages=-1,
|
504 |
-
use_checkpoint=False):
|
505 |
-
super().__init__()
|
506 |
-
|
507 |
-
self.pretrain_img_size = pretrain_img_size
|
508 |
-
self.num_layers = len(depths)
|
509 |
-
self.embed_dim = embed_dim
|
510 |
-
self.ape = ape
|
511 |
-
self.patch_norm = patch_norm
|
512 |
-
self.out_indices = out_indices
|
513 |
-
self.frozen_stages = frozen_stages
|
514 |
-
|
515 |
-
# split image into non-overlapping patches
|
516 |
-
self.patch_embed = PatchEmbed(
|
517 |
-
patch_size=patch_size, in_channels=in_channels, embed_dim=embed_dim,
|
518 |
-
norm_layer=norm_layer if self.patch_norm else None)
|
519 |
-
|
520 |
-
# absolute position embedding
|
521 |
-
if self.ape:
|
522 |
-
pretrain_img_size = to_2tuple(pretrain_img_size)
|
523 |
-
patch_size = to_2tuple(patch_size)
|
524 |
-
patches_resolution = [pretrain_img_size[0] // patch_size[0], pretrain_img_size[1] // patch_size[1]]
|
525 |
-
|
526 |
-
self.absolute_pos_embed = nn.Parameter(torch.zeros(1, embed_dim, patches_resolution[0], patches_resolution[1]))
|
527 |
-
trunc_normal_(self.absolute_pos_embed, std=.02)
|
528 |
-
|
529 |
-
self.pos_drop = nn.Dropout(p=drop_rate)
|
530 |
-
|
531 |
-
# stochastic depth
|
532 |
-
dpr = [x.item() for x in torch.linspace(0, drop_path_rate, sum(depths))] # stochastic depth decay rule
|
533 |
-
|
534 |
-
# build layers
|
535 |
-
self.layers = nn.ModuleList()
|
536 |
-
for i_layer in range(self.num_layers):
|
537 |
-
layer = BasicLayer(
|
538 |
-
dim=int(embed_dim * 2 ** i_layer),
|
539 |
-
depth=depths[i_layer],
|
540 |
-
num_heads=num_heads[i_layer],
|
541 |
-
window_size=window_size,
|
542 |
-
mlp_ratio=mlp_ratio,
|
543 |
-
qkv_bias=qkv_bias,
|
544 |
-
qk_scale=qk_scale,
|
545 |
-
drop=drop_rate,
|
546 |
-
attn_drop=attn_drop_rate,
|
547 |
-
drop_path=dpr[sum(depths[:i_layer]):sum(depths[:i_layer + 1])],
|
548 |
-
norm_layer=norm_layer,
|
549 |
-
downsample=PatchMerging if (i_layer < self.num_layers - 1) else None,
|
550 |
-
use_checkpoint=use_checkpoint)
|
551 |
-
self.layers.append(layer)
|
552 |
-
|
553 |
-
num_features = [int(embed_dim * 2 ** i) for i in range(self.num_layers)]
|
554 |
-
self.num_features = num_features
|
555 |
-
|
556 |
-
# add a norm layer for each output
|
557 |
-
for i_layer in out_indices:
|
558 |
-
layer = norm_layer(num_features[i_layer])
|
559 |
-
layer_name = f'norm{i_layer}'
|
560 |
-
self.add_module(layer_name, layer)
|
561 |
-
|
562 |
-
self._freeze_stages()
|
563 |
-
|
564 |
-
def _freeze_stages(self):
|
565 |
-
if self.frozen_stages >= 0:
|
566 |
-
self.patch_embed.eval()
|
567 |
-
for param in self.patch_embed.parameters():
|
568 |
-
param.requires_grad = False
|
569 |
-
|
570 |
-
if self.frozen_stages >= 1 and self.ape:
|
571 |
-
self.absolute_pos_embed.requires_grad = False
|
572 |
-
|
573 |
-
if self.frozen_stages >= 2:
|
574 |
-
self.pos_drop.eval()
|
575 |
-
for i in range(0, self.frozen_stages - 1):
|
576 |
-
m = self.layers[i]
|
577 |
-
m.eval()
|
578 |
-
for param in m.parameters():
|
579 |
-
param.requires_grad = False
|
580 |
-
|
581 |
-
|
582 |
-
def forward(self, x):
|
583 |
-
"""Forward function."""
|
584 |
-
x = self.patch_embed(x)
|
585 |
-
|
586 |
-
Wh, Ww = x.size(2), x.size(3)
|
587 |
-
if self.ape:
|
588 |
-
# interpolate the position embedding to the corresponding size
|
589 |
-
absolute_pos_embed = F.interpolate(self.absolute_pos_embed, size=(Wh, Ww), mode='bicubic')
|
590 |
-
x = (x + absolute_pos_embed) # B Wh*Ww C
|
591 |
-
|
592 |
-
outs = []#x.contiguous()]
|
593 |
-
x = x.flatten(2).transpose(1, 2)
|
594 |
-
x = self.pos_drop(x)
|
595 |
-
for i in range(self.num_layers):
|
596 |
-
layer = self.layers[i]
|
597 |
-
x_out, H, W, x, Wh, Ww = layer(x, Wh, Ww)
|
598 |
-
|
599 |
-
if i in self.out_indices:
|
600 |
-
norm_layer = getattr(self, f'norm{i}')
|
601 |
-
x_out = norm_layer(x_out)
|
602 |
-
|
603 |
-
out = x_out.view(-1, H, W, self.num_features[i]).permute(0, 3, 1, 2).contiguous()
|
604 |
-
outs.append(out)
|
605 |
-
|
606 |
-
return tuple(outs)
|
607 |
-
|
608 |
-
def train(self, mode=True):
|
609 |
-
"""Convert the model into training mode while keep layers freezed."""
|
610 |
-
super(SwinTransformer, self).train(mode)
|
611 |
-
self._freeze_stages()
|
612 |
-
|
613 |
-
def swin_v1_t():
|
614 |
-
model = SwinTransformer(embed_dim=96, depths=[2, 2, 6, 2], num_heads=[3, 6, 12, 24], window_size=7)
|
615 |
-
return model
|
616 |
-
|
617 |
-
def swin_v1_s():
|
618 |
-
model = SwinTransformer(embed_dim=96, depths=[2, 2, 18, 2], num_heads=[3, 6, 12, 24], window_size=7)
|
619 |
-
return model
|
620 |
-
|
621 |
-
def swin_v1_b():
|
622 |
-
model = SwinTransformer(embed_dim=128, depths=[2, 2, 18, 2], num_heads=[4, 8, 16, 32], window_size=12)
|
623 |
-
return model
|
624 |
-
|
625 |
-
def swin_v1_l():
|
626 |
-
model = SwinTransformer(embed_dim=192, depths=[2, 2, 18, 2], num_heads=[6, 12, 24, 48], window_size=12)
|
627 |
-
return model
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
models/utils.py
DELETED
@@ -1,54 +0,0 @@
|
|
1 |
-
import torch.nn as nn
|
2 |
-
|
3 |
-
|
4 |
-
def build_act_layer(act_layer):
|
5 |
-
if act_layer == 'ReLU':
|
6 |
-
return nn.ReLU(inplace=True)
|
7 |
-
elif act_layer == 'SiLU':
|
8 |
-
return nn.SiLU(inplace=True)
|
9 |
-
elif act_layer == 'GELU':
|
10 |
-
return nn.GELU()
|
11 |
-
|
12 |
-
raise NotImplementedError(f'build_act_layer does not support {act_layer}')
|
13 |
-
|
14 |
-
|
15 |
-
def build_norm_layer(dim,
|
16 |
-
norm_layer,
|
17 |
-
in_format='channels_last',
|
18 |
-
out_format='channels_last',
|
19 |
-
eps=1e-6):
|
20 |
-
layers = []
|
21 |
-
if norm_layer == 'BN':
|
22 |
-
if in_format == 'channels_last':
|
23 |
-
layers.append(to_channels_first())
|
24 |
-
layers.append(nn.BatchNorm2d(dim))
|
25 |
-
if out_format == 'channels_last':
|
26 |
-
layers.append(to_channels_last())
|
27 |
-
elif norm_layer == 'LN':
|
28 |
-
if in_format == 'channels_first':
|
29 |
-
layers.append(to_channels_last())
|
30 |
-
layers.append(nn.LayerNorm(dim, eps=eps))
|
31 |
-
if out_format == 'channels_first':
|
32 |
-
layers.append(to_channels_first())
|
33 |
-
else:
|
34 |
-
raise NotImplementedError(
|
35 |
-
f'build_norm_layer does not support {norm_layer}')
|
36 |
-
return nn.Sequential(*layers)
|
37 |
-
|
38 |
-
|
39 |
-
class to_channels_first(nn.Module):
|
40 |
-
|
41 |
-
def __init__(self):
|
42 |
-
super().__init__()
|
43 |
-
|
44 |
-
def forward(self, x):
|
45 |
-
return x.permute(0, 3, 1, 2)
|
46 |
-
|
47 |
-
|
48 |
-
class to_channels_last(nn.Module):
|
49 |
-
|
50 |
-
def __init__(self):
|
51 |
-
super().__init__()
|
52 |
-
|
53 |
-
def forward(self, x):
|
54 |
-
return x.permute(0, 2, 3, 1)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
preproc.py
DELETED
@@ -1,85 +0,0 @@
|
|
1 |
-
from PIL import Image, ImageEnhance
|
2 |
-
import random
|
3 |
-
import numpy as np
|
4 |
-
import random
|
5 |
-
|
6 |
-
|
7 |
-
def preproc(image, label, preproc_methods=['flip']):
|
8 |
-
if 'flip' in preproc_methods:
|
9 |
-
image, label = cv_random_flip(image, label)
|
10 |
-
if 'crop' in preproc_methods:
|
11 |
-
image, label = random_crop(image, label)
|
12 |
-
if 'rotate' in preproc_methods:
|
13 |
-
image, label = random_rotate(image, label)
|
14 |
-
if 'enhance' in preproc_methods:
|
15 |
-
image = color_enhance(image)
|
16 |
-
if 'pepper' in preproc_methods:
|
17 |
-
label = random_pepper(label)
|
18 |
-
return image, label
|
19 |
-
|
20 |
-
|
21 |
-
def cv_random_flip(img, label):
|
22 |
-
if random.random() > 0.5:
|
23 |
-
img = img.transpose(Image.FLIP_LEFT_RIGHT)
|
24 |
-
label = label.transpose(Image.FLIP_LEFT_RIGHT)
|
25 |
-
return img, label
|
26 |
-
|
27 |
-
|
28 |
-
def random_crop(image, label):
|
29 |
-
border = 30
|
30 |
-
image_width = image.size[0]
|
31 |
-
image_height = image.size[1]
|
32 |
-
border = int(min(image_width, image_height) * 0.1)
|
33 |
-
crop_win_width = np.random.randint(image_width - border, image_width)
|
34 |
-
crop_win_height = np.random.randint(image_height - border, image_height)
|
35 |
-
random_region = (
|
36 |
-
(image_width - crop_win_width) >> 1, (image_height - crop_win_height) >> 1, (image_width + crop_win_width) >> 1,
|
37 |
-
(image_height + crop_win_height) >> 1)
|
38 |
-
return image.crop(random_region), label.crop(random_region)
|
39 |
-
|
40 |
-
|
41 |
-
def random_rotate(image, label, angle=15):
|
42 |
-
mode = Image.BICUBIC
|
43 |
-
if random.random() > 0.8:
|
44 |
-
random_angle = np.random.randint(-angle, angle)
|
45 |
-
image = image.rotate(random_angle, mode)
|
46 |
-
label = label.rotate(random_angle, mode)
|
47 |
-
return image, label
|
48 |
-
|
49 |
-
|
50 |
-
def color_enhance(image):
|
51 |
-
bright_intensity = random.randint(5, 15) / 10.0
|
52 |
-
image = ImageEnhance.Brightness(image).enhance(bright_intensity)
|
53 |
-
contrast_intensity = random.randint(5, 15) / 10.0
|
54 |
-
image = ImageEnhance.Contrast(image).enhance(contrast_intensity)
|
55 |
-
color_intensity = random.randint(0, 20) / 10.0
|
56 |
-
image = ImageEnhance.Color(image).enhance(color_intensity)
|
57 |
-
sharp_intensity = random.randint(0, 30) / 10.0
|
58 |
-
image = ImageEnhance.Sharpness(image).enhance(sharp_intensity)
|
59 |
-
return image
|
60 |
-
|
61 |
-
|
62 |
-
def random_gaussian(image, mean=0.1, sigma=0.35):
|
63 |
-
def gaussianNoisy(im, mean=mean, sigma=sigma):
|
64 |
-
for _i in range(len(im)):
|
65 |
-
im[_i] += random.gauss(mean, sigma)
|
66 |
-
return im
|
67 |
-
|
68 |
-
img = np.asarray(image)
|
69 |
-
width, height = img.shape
|
70 |
-
img = gaussianNoisy(img[:].flatten(), mean, sigma)
|
71 |
-
img = img.reshape([width, height])
|
72 |
-
return Image.fromarray(np.uint8(img))
|
73 |
-
|
74 |
-
|
75 |
-
def random_pepper(img, N=0.0015):
|
76 |
-
img = np.array(img)
|
77 |
-
noiseNum = int(N * img.shape[0] * img.shape[1])
|
78 |
-
for i in range(noiseNum):
|
79 |
-
randX = random.randint(0, img.shape[0] - 1)
|
80 |
-
randY = random.randint(0, img.shape[1] - 1)
|
81 |
-
if random.randint(0, 1) == 0:
|
82 |
-
img[randX, randY] = 0
|
83 |
-
else:
|
84 |
-
img[randX, randY] = 255
|
85 |
-
return Image.fromarray(img)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
train.sh
DELETED
@@ -1,41 +0,0 @@
|
|
1 |
-
#!/bin/bash
|
2 |
-
# Run script
|
3 |
-
# Settings of training & test for different tasks.
|
4 |
-
method="$1"
|
5 |
-
task=$(python3 config.py)
|
6 |
-
case "${task}" in
|
7 |
-
"DIS5K") epochs=600 && val_last=100 && step=5 ;;
|
8 |
-
"COD") epochs=150 && val_last=50 && step=5 ;;
|
9 |
-
"HRSOD") epochs=150 && val_last=50 && step=5 ;;
|
10 |
-
"DIS5K+HRSOD+HRS10K") epochs=250 && val_last=50 && step=5 ;;
|
11 |
-
"P3M-10k") epochs=150 && val_last=50 && step=5 ;;
|
12 |
-
esac
|
13 |
-
testsets=NO # Non-existing folder to skip.
|
14 |
-
# testsets=TE-COD10K # for COD
|
15 |
-
|
16 |
-
# Train
|
17 |
-
devices=$2
|
18 |
-
nproc_per_node=$(echo ${devices%%,} | grep -o "," | wc -l)
|
19 |
-
|
20 |
-
to_be_distributed=`echo ${nproc_per_node} | awk '{if($e > 0) print "True"; else print "False";}'`
|
21 |
-
|
22 |
-
echo Training started at $(date)
|
23 |
-
if [ ${to_be_distributed} == "True" ]
|
24 |
-
then
|
25 |
-
# Adapt the nproc_per_node by the number of GPUs. Give 8989 as the default value of master_port.
|
26 |
-
echo "Multi-GPU mode received..."
|
27 |
-
CUDA_VISIBLE_DEVICES=${devices} \
|
28 |
-
torchrun --nproc_per_node $((nproc_per_node+1)) --master_port=${3:-8989} \
|
29 |
-
train.py --ckpt_dir ckpt/${method} --epochs ${epochs} \
|
30 |
-
--testsets ${testsets} \
|
31 |
-
--dist ${to_be_distributed}
|
32 |
-
else
|
33 |
-
echo "Single-GPU mode received..."
|
34 |
-
CUDA_VISIBLE_DEVICES=${devices} \
|
35 |
-
python train.py --ckpt_dir ckpt/${method} --epochs ${epochs} \
|
36 |
-
--testsets ${testsets} \
|
37 |
-
--dist ${to_be_distributed} \
|
38 |
-
--resume ckpt/xx/ep100.pth
|
39 |
-
fi
|
40 |
-
|
41 |
-
echo Training finished at $(date)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
utils.py
DELETED
@@ -1,97 +0,0 @@
|
|
1 |
-
import logging
|
2 |
-
import os
|
3 |
-
import torch
|
4 |
-
from torchvision import transforms
|
5 |
-
import numpy as np
|
6 |
-
import random
|
7 |
-
import cv2
|
8 |
-
from PIL import Image
|
9 |
-
|
10 |
-
|
11 |
-
def path_to_image(path, size=(1024, 1024), color_type=['rgb', 'gray'][0]):
|
12 |
-
if color_type.lower() == 'rgb':
|
13 |
-
image = cv2.imread(path)
|
14 |
-
elif color_type.lower() == 'gray':
|
15 |
-
image = cv2.imread(path, cv2.IMREAD_GRAYSCALE)
|
16 |
-
else:
|
17 |
-
print('Select the color_type to return, either to RGB or gray image.')
|
18 |
-
return
|
19 |
-
if size:
|
20 |
-
image = cv2.resize(image, size, interpolation=cv2.INTER_LINEAR)
|
21 |
-
if color_type.lower() == 'rgb':
|
22 |
-
image = Image.fromarray(cv2.cvtColor(image, cv2.COLOR_BGR2RGB)).convert('RGB')
|
23 |
-
else:
|
24 |
-
image = Image.fromarray(image).convert('L')
|
25 |
-
return image
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
def check_state_dict(state_dict, unwanted_prefix='_orig_mod.'):
|
30 |
-
for k, v in list(state_dict.items()):
|
31 |
-
if k.startswith(unwanted_prefix):
|
32 |
-
state_dict[k[len(unwanted_prefix):]] = state_dict.pop(k)
|
33 |
-
return state_dict
|
34 |
-
|
35 |
-
|
36 |
-
def generate_smoothed_gt(gts):
|
37 |
-
epsilon = 0.001
|
38 |
-
new_gts = (1-epsilon)*gts+epsilon/2
|
39 |
-
return new_gts
|
40 |
-
|
41 |
-
|
42 |
-
class Logger():
|
43 |
-
def __init__(self, path="log.txt"):
|
44 |
-
self.logger = logging.getLogger('BiRefNet')
|
45 |
-
self.file_handler = logging.FileHandler(path, "w")
|
46 |
-
self.stdout_handler = logging.StreamHandler()
|
47 |
-
self.stdout_handler.setFormatter(logging.Formatter('%(asctime)s %(levelname)s %(message)s'))
|
48 |
-
self.file_handler.setFormatter(logging.Formatter('%(asctime)s %(levelname)s %(message)s'))
|
49 |
-
self.logger.addHandler(self.file_handler)
|
50 |
-
self.logger.addHandler(self.stdout_handler)
|
51 |
-
self.logger.setLevel(logging.INFO)
|
52 |
-
self.logger.propagate = False
|
53 |
-
|
54 |
-
def info(self, txt):
|
55 |
-
self.logger.info(txt)
|
56 |
-
|
57 |
-
def close(self):
|
58 |
-
self.file_handler.close()
|
59 |
-
self.stdout_handler.close()
|
60 |
-
|
61 |
-
|
62 |
-
class AverageMeter(object):
|
63 |
-
"""Computes and stores the average and current value"""
|
64 |
-
def __init__(self):
|
65 |
-
self.reset()
|
66 |
-
|
67 |
-
def reset(self):
|
68 |
-
self.val = 0.0
|
69 |
-
self.avg = 0.0
|
70 |
-
self.sum = 0.0
|
71 |
-
self.count = 0.0
|
72 |
-
|
73 |
-
def update(self, val, n=1):
|
74 |
-
self.val = val
|
75 |
-
self.sum += val * n
|
76 |
-
self.count += n
|
77 |
-
self.avg = self.sum / self.count
|
78 |
-
|
79 |
-
|
80 |
-
def save_checkpoint(state, path, filename="latest.pth"):
|
81 |
-
torch.save(state, os.path.join(path, filename))
|
82 |
-
|
83 |
-
|
84 |
-
def save_tensor_img(tenor_im, path):
|
85 |
-
im = tenor_im.cpu().clone()
|
86 |
-
im = im.squeeze(0)
|
87 |
-
tensor2pil = transforms.ToPILImage()
|
88 |
-
im = tensor2pil(im)
|
89 |
-
im.save(path)
|
90 |
-
|
91 |
-
|
92 |
-
def set_seed(seed):
|
93 |
-
torch.manual_seed(seed)
|
94 |
-
torch.cuda.manual_seed_all(seed)
|
95 |
-
np.random.seed(seed)
|
96 |
-
random.seed(seed)
|
97 |
-
torch.backends.cudnn.deterministic = True
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|