ZhengPeng7 commited on
Commit
c49f4c7
1 Parent(s): 456c878

For users to load in one key.

Browse files
Files changed (37) hide show
  1. BiRefNet_codes1/LICENSE +0 -21
  2. BiRefNet_codes1/README.md +0 -234
  3. BiRefNet_codes1/config.py +0 -156
  4. BiRefNet_codes1/dataset.py +0 -112
  5. BiRefNet_codes1/eval_existingOnes.py +0 -139
  6. BiRefNet_codes1/evaluation/evaluate.py +0 -60
  7. BiRefNet_codes1/evaluation/metrics.py +0 -612
  8. BiRefNet_codes1/evaluation/valid.py +0 -9
  9. BiRefNet_codes1/gen_best_ep.py +0 -85
  10. BiRefNet_codes1/inference.py +0 -105
  11. BiRefNet_codes1/loss.py +0 -274
  12. BiRefNet_codes1/make_a_copy.sh +0 -18
  13. BiRefNet_codes1/models/backbones/build_backbone.py +0 -44
  14. BiRefNet_codes1/models/backbones/pvt_v2.py +0 -435
  15. BiRefNet_codes1/models/backbones/swin_v1.py +0 -627
  16. BiRefNet_codes1/models/birefnet.py +0 -287
  17. BiRefNet_codes1/models/modules/aspp.py +0 -119
  18. BiRefNet_codes1/models/modules/attentions.py +0 -93
  19. BiRefNet_codes1/models/modules/decoder_blocks.py +0 -101
  20. BiRefNet_codes1/models/modules/deform_conv.py +0 -66
  21. BiRefNet_codes1/models/modules/ing.py +0 -29
  22. BiRefNet_codes1/models/modules/lateral_blocks.py +0 -21
  23. BiRefNet_codes1/models/modules/mlp.py +0 -118
  24. BiRefNet_codes1/models/modules/prompt_encoder.py +0 -222
  25. BiRefNet_codes1/models/modules/utils.py +0 -54
  26. BiRefNet_codes1/models/refinement/refiner.py +0 -253
  27. BiRefNet_codes1/models/refinement/stem_layer.py +0 -45
  28. BiRefNet_codes1/preproc.py +0 -85
  29. BiRefNet_codes1/requirements.txt +0 -15
  30. BiRefNet_codes1/rm_cache.sh +0 -20
  31. BiRefNet_codes1/sub.sh +0 -19
  32. BiRefNet_codes1/test.sh +0 -28
  33. BiRefNet_codes1/train.py +0 -377
  34. BiRefNet_codes1/train.sh +0 -41
  35. BiRefNet_codes1/train_test.sh +0 -11
  36. BiRefNet_codes1/utils.py +0 -97
  37. BiRefNet_codes1/waiting4eval.py +0 -141
BiRefNet_codes1/LICENSE DELETED
@@ -1,21 +0,0 @@
1
- MIT License
2
-
3
- Copyright (c) 2024 ZhengPeng
4
-
5
- Permission is hereby granted, free of charge, to any person obtaining a copy
6
- of this software and associated documentation files (the "Software"), to deal
7
- in the Software without restriction, including without limitation the rights
8
- to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
9
- copies of the Software, and to permit persons to whom the Software is
10
- furnished to do so, subject to the following conditions:
11
-
12
- The above copyright notice and this permission notice shall be included in all
13
- copies or substantial portions of the Software.
14
-
15
- THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16
- IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17
- FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
18
- AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19
- LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
20
- OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
21
- SOFTWARE.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
BiRefNet_codes1/README.md DELETED
@@ -1,234 +0,0 @@
1
- # <p align=center>`Bilateral Reference for High-Resolution Dichotomous Image Segmentation`</p>
2
-
3
- | *DIS-Sample_1* | *DIS-Sample_2* |
4
- | :------------------------------: | :-------------------------------: |
5
- | <img src="https://drive.google.com/thumbnail?id=1ItXaA26iYnE8XQ_GgNLy71MOWePoS2-g&sz=w400" /> | <img src="https://drive.google.com/thumbnail?id=1Z-esCujQF_uEa_YJjkibc3NUrW4aR_d4&sz=w400" /> |
6
-
7
- This repo is the official implementation of "[**Bilateral Reference for High-Resolution Dichotomous Image Segmentation**](https://arxiv.org/pdf/2401.03407.pdf)" (___arXiv 2024___).
8
-
9
- > **Authors:**
10
- > [Peng Zheng](https://scholar.google.com/citations?user=TZRzWOsAAAAJ),
11
- > [Dehong Gao](https://scholar.google.com/citations?user=0uPb8MMAAAAJ),
12
- > [Deng-Ping Fan](https://scholar.google.com/citations?user=kakwJ5QAAAAJ),
13
- > [Li Liu](https://scholar.google.com/citations?user=9cMQrVsAAAAJ),
14
- > [Jorma Laaksonen](https://scholar.google.com/citations?user=qQP6WXIAAAAJ),
15
- > [Wanli Ouyang](https://scholar.google.com/citations?user=pw_0Z_UAAAAJ), &
16
- > [Nicu Sebe](https://scholar.google.com/citations?user=stFCYOAAAAAJ).
17
-
18
- [[**arXiv**](https://arxiv.org/abs/2401.03407)] [[**code**](https://github.com/ZhengPeng7/BiRefNet)] [[**stuff**](https://drive.google.com/drive/folders/1s2Xe0cjq-2ctnJBR24563yMSCOu4CcxM)] [[**中文版**](https://drive.google.com/file/d/1aBnJ_R9lbnC2dm8dqD0-pzP2Cu-U1Xpt/view?usp=drive_link)]
19
-
20
- Our BiRefNet has achieved SOTA on many similar HR tasks:
21
-
22
- **DIS**: [![PWC](https://img.shields.io/endpoint.svg?url=https://paperswithcode.com/badge/bilateral-reference-for-high-resolution/dichotomous-image-segmentation-on-dis-te1)](https://paperswithcode.com/sota/dichotomous-image-segmentation-on-dis-te1?p=bilateral-reference-for-high-resolution) [![PWC](https://img.shields.io/endpoint.svg?url=https://paperswithcode.com/badge/bilateral-reference-for-high-resolution/dichotomous-image-segmentation-on-dis-te2)](https://paperswithcode.com/sota/dichotomous-image-segmentation-on-dis-te2?p=bilateral-reference-for-high-resolution) [![PWC](https://img.shields.io/endpoint.svg?url=https://paperswithcode.com/badge/bilateral-reference-for-high-resolution/dichotomous-image-segmentation-on-dis-te3)](https://paperswithcode.com/sota/dichotomous-image-segmentation-on-dis-te3?p=bilateral-reference-for-high-resolution) [![PWC](https://img.shields.io/endpoint.svg?url=https://paperswithcode.com/badge/bilateral-reference-for-high-resolution/dichotomous-image-segmentation-on-dis-te4)](https://paperswithcode.com/sota/dichotomous-image-segmentation-on-dis-te4?p=bilateral-reference-for-high-resolution) [![PWC](https://img.shields.io/endpoint.svg?url=https://paperswithcode.com/badge/bilateral-reference-for-high-resolution/dichotomous-image-segmentation-on-dis-vd)](https://paperswithcode.com/sota/dichotomous-image-segmentation-on-dis-vd?p=bilateral-reference-for-high-resolution)
23
-
24
- <details><summary>Figure of Comparison on Papers with Codes (by the time of this work):</summary><p>
25
- <img src="https://drive.google.com/thumbnail?id=1DLt6CFXdT1QSWDj_6jRkyZINXZ4vmyRp&sz=w1620" />
26
- <img src="https://drive.google.com/thumbnail?id=1gn5GyKFlJbMIkre1JyEdHDSYcrFmcLD0&sz=w1620" />
27
- <img src="https://drive.google.com/thumbnail?id=16CVYYOtafEeZhHqv0am2Daku1n_exMP6&sz=w1620" />
28
- <img src="https://drive.google.com/thumbnail?id=10K45xwPXmaTG4Ex-29ss9payA9yBnyLn&sz=w1620" />
29
- <img src="https://drive.google.com/thumbnail?id=16EuyqKFJOqwMmagvfnbC9hUurL9pYLLB&sz=w1620" />
30
- </details>
31
- <br />
32
-
33
- **COD**:[![PWC](https://img.shields.io/endpoint.svg?url=https://paperswithcode.com/badge/bilateral-reference-for-high-resolution/camouflaged-object-segmentation-on-cod)](https://paperswithcode.com/sota/camouflaged-object-segmentation-on-cod?p=bilateral-reference-for-high-resolution) [![PWC](https://img.shields.io/endpoint.svg?url=https://paperswithcode.com/badge/bilateral-reference-for-high-resolution/camouflaged-object-segmentation-on-nc4k)](https://paperswithcode.com/sota/camouflaged-object-segmentation-on-nc4k?p=bilateral-reference-for-high-resolution) [![PWC](https://img.shields.io/endpoint.svg?url=https://paperswithcode.com/badge/bilateral-reference-for-high-resolution/camouflaged-object-segmentation-on-camo)](https://paperswithcode.com/sota/camouflaged-object-segmentation-on-camo?p=bilateral-reference-for-high-resolution) [![PWC](https://img.shields.io/endpoint.svg?url=https://paperswithcode.com/badge/bilateral-reference-for-high-resolution/camouflaged-object-segmentation-on-chameleon)](https://paperswithcode.com/sota/camouflaged-object-segmentation-on-chameleon?p=bilateral-reference-for-high-resolution)
34
-
35
- <details><summary>Figure of Comparison on Papers with Codes (by the time of this work):</summary><p>
36
- <img src="https://drive.google.com/thumbnail?id=1DLt6CFXdT1QSWDj_6jRkyZINXZ4vmyRp&sz=w1620" />
37
- <img src="https://drive.google.com/thumbnail?id=1gn5GyKFlJbMIkre1JyEdHDSYcrFmcLD0&sz=w1620" />
38
- <img src="https://drive.google.com/thumbnail?id=16CVYYOtafEeZhHqv0am2Daku1n_exMP6&sz=w1620" />
39
- </details>
40
- <br />
41
-
42
- **HRSOD**: [![PWC](https://img.shields.io/endpoint.svg?url=https://paperswithcode.com/badge/bilateral-reference-for-high-resolution/rgb-salient-object-detection-on-davis-s)](https://paperswithcode.com/sota/rgb-salient-object-detection-on-davis-s?p=bilateral-reference-for-high-resolution) [![PWC](https://img.shields.io/endpoint.svg?url=https://paperswithcode.com/badge/bilateral-reference-for-high-resolution/rgb-salient-object-detection-on-hrsod)](https://paperswithcode.com/sota/rgb-salient-object-detection-on-hrsod?p=bilateral-reference-for-high-resolution) [![PWC](https://img.shields.io/endpoint.svg?url=https://paperswithcode.com/badge/bilateral-reference-for-high-resolution/rgb-salient-object-detection-on-uhrsd)](https://paperswithcode.com/sota/rgb-salient-object-detection-on-uhrsd?p=bilateral-reference-for-high-resolution) [![PWC](https://img.shields.io/endpoint.svg?url=https://paperswithcode.com/badge/bilateral-reference-for-high-resolution/salient-object-detection-on-duts-te)](https://paperswithcode.com/sota/salient-object-detection-on-duts-te?p=bilateral-reference-for-high-resolution) [![PWC](https://img.shields.io/endpoint.svg?url=https://paperswithcode.com/badge/bilateral-reference-for-high-resolution/salient-object-detection-on-dut-omron)](https://paperswithcode.com/sota/salient-object-detection-on-dut-omron?p=bilateral-reference-for-high-resolution)
43
-
44
- <details><summary>Figure of Comparison on Papers with Codes (by the time of this work):</summary><p>
45
- <img src="https://drive.google.com/thumbnail?id=1hNfQtlTAHT4-AVbk_47852zyRp1NOFLs&sz=w1620" />
46
- <img src="https://drive.google.com/thumbnail?id=1bcVldUAxYkMI3OMTyaP_jNuOugDfYj-d&sz=w1620" />
47
- <img src="https://drive.google.com/thumbnail?id=1p1zgyVz27cGEqQMtOKzm_6zoYK3Sw_Zk&sz=w1620" />
48
- <img src="https://drive.google.com/thumbnail?id=1TubAvcoEbH_mHu3I-AxflnB71nkf35jJ&sz=w1620" />
49
- <img src="https://drive.google.com/thumbnail?id=1A3V9HjVtcMQdnGPwuy-DBVhwKuo0q2lT&sz=w1620" />
50
- </details>
51
- <br />
52
-
53
- #### Try our online demos for inference:
54
-
55
- + **Inference and evaluation** of your given weights: [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/drive/1MaEiBfJ4xIaZZn0DqKrhydHB8X97hNXl#scrollTo=DJ4meUYjia6S)
56
- + **Online Inference with GUI** with adjustable resolutions: [![Hugging Face Spaces](https://img.shields.io/badge/%F0%9F%A4%97%20Hugging%20Face-Spaces-blue)](https://huggingface.co/spaces/ZhengPeng7/BiRefNet_demo)
57
- + Online **Single Image Inference** on Colab: [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/drive/14Dqg7oeBkFEtchaHLNpig2BcdkZEogba?usp=drive_link)
58
- <img src="https://drive.google.com/thumbnail?id=12XmDhKtO1o2fEvBu4OE4ULVB2BK0ecWi&sz=w1620" />
59
-
60
-
61
-
62
- ## Model Zoo
63
-
64
- > For more general use of our BiRefNet, I managed to extend the original adademic one to more general ones for better application in real life.
65
- >
66
- > Datasets and datasets are suggested to download from official pages. But you can also download the packaged ones: [DIS](https://drive.google.com/drive/folders/1hZW6tAGPJwo9mPS7qGGGdpxuvuXiyoMJ?usp=drive_link), [HRSOD](https://drive.google.com/drive/folders/18_hAE3QM4cwAzEAKXuSNtKjmgFXTQXZN?usp=drive_link), [COD](https://drive.google.com/drive/folders/1EyHmKWsXfaCR9O0BiZEc3roZbRcs4ECO?usp=drive_link), [Backbones](https://drive.google.com/drive/folders/1cmce_emsS8A5ha5XT2c_CZiJzlLM81ms?usp=drive_link).
67
- >
68
- > Find performances (almost all metrics) of all models in the `exp-TASK_SETTINGS` folders in [[**stuff**](https://drive.google.com/drive/folders/1s2Xe0cjq-2ctnJBR24563yMSCOu4CcxM)].
69
-
70
-
71
-
72
- <details><summary>Models in the original paper, for <b>comparison on benchmarks</b>:</summary><p>
73
-
74
- | Task | Training Sets | Backbone | Download |
75
- | :---: | :-------------------------: | :-----------: | :----------------------------------------------------------: |
76
- | DIS | DIS5K-TR | swin_v1_large | [google-drive](https://drive.google.com/file/d/1J90LucvDQaS3R_-9E7QUh1mgJ8eQvccb/view?usp=drive_link) |
77
- | COD | COD10K-TR, CAMO-TR | swin_v1_large | [google-drive](https://drive.google.com/file/d/1tM5M72k7a8aKF-dYy-QXaqvfEhbFaWkC/view?usp=drive_link) |
78
- | HRSOD | DUTS-TR | swin_v1_large | [google-drive](https://drive.google.com/file/d/1f7L0Pb1Y3RkOMbqLCW_zO31dik9AiUFa/view?usp=drive_link) |
79
- | HRSOD | HRSOD-TR | swin_v1_large | google-drive |
80
- | HRSOD | UHRSD-TR | swin_v1_large | google-drive |
81
- | HRSOD | DUTS-TR, HRSOD-TR | swin_v1_large | [google-drive](https://drive.google.com/file/d/1WJooyTkhoDLllaqwbpur_9Hle0XTHEs_/view?usp=drive_link) |
82
- | HRSOD | DUTS-TR, UHRSD-TR | swin_v1_large | [google-drive](https://drive.google.com/file/d/1Pu1mv3ORobJatIuUoEuZaWDl2ylP3Gw7/view?usp=drive_link) |
83
- | HRSOD | HRSOD-TR, UHRSD-TR | swin_v1_large | [google-drive](https://drive.google.com/file/d/1xEh7fsgWGaS5c3IffMswasv0_u-aVM9E/view?usp=drive_link) |
84
- | HRSOD | DUTS-TR, HRSOD-TR, UHRSD-TR | swin_v1_large | [google-drive](https://drive.google.com/file/d/13FaxyyOwyCddfZn2vZo1xG1KNZ3cZ-6B/view?usp=drive_link) |
85
-
86
- </details>
87
-
88
-
89
-
90
- <details><summary>Models trained with customed data (massive, portrait), for <b>general use in practical application</b>:</summary>
91
-
92
- | Task | Training Sets | Backbone | Test Set | Metric (S, wF[, HCE]) | Download |
93
- | :-----------------------: | :----------------------------------------------------------: | :-----------: | :-------: | :-------------------: | :----------------------------------------------------------: |
94
- | **general use** | DIS5K-TR,DIS-TEs, DUTS-TR_TE,HRSOD-TR_TE,UHRSD-TR_TE, HRS10K-TR_TE | swin_v1_large | DIS-VD | 0.889, 0.840, 1152 | [google-drive](https://drive.google.com/file/d/1KRVE-U3OHrUuuFPY4FFdE4eYBeHJSA0H/view?usp=drive_link) |
95
- | **general use** | DIS5K-TR,DIS-TEs, DUTS-TR_TE,HRSOD-TR_TE,UHRSD-TR_TE, HRS10K-TR_TE | swin_v1_tiny | DIS-VD | 0.867, 0.809, 1182 | [Google-drive](https://drive.google.com/file/d/16gDZISjNp7rKi5vsJm6_fbYF8ZBK8AoF/view?usp=drive_link) |
96
- | **general use** | DIS5K-TR, DIS-TEs | swin_v1_large | DIS-VD | 0.907, 0.865, 1059 | [google-drive](https://drive.google.com/file/d/1P6NJzG3Jf1sl7js2q1CPC3yqvBn_O8UJ/view?usp=drive_link) |
97
- | **portrait segmentation** | P3M-10k | swin_v1_large | P3M-500-P | 0.982, 0.990 | [google-drive](https://drive.google.com/file/d/1vrjPoOGj05iSxb4MMeznX5k67VlyfZX5/view?usp=drive_link) |
98
-
99
- </details>
100
-
101
-
102
-
103
- <details><summary>Segmentation with box <b>guidance</b>:</summary>
104
-
105
- ​ *In progress...*
106
-
107
- </details>
108
-
109
-
110
-
111
- <details><summary>Model <b>efficiency</b>:</summary><p>
112
-
113
- > Screenshot from the original paper. All tests are conducted on a single A100 GPU.
114
-
115
- <img src="https://drive.google.com/thumbnail?id=1mTfSD_qt-rFO1t8DRQcyIa5cgWLf1w2-&sz=h300" /> <img src="https://drive.google.com/thumbnail?id=1F_OURIWILVe4u1rSz-aqt6ur__bAef25&sz=h300" />
116
-
117
- </details>
118
-
119
-
120
-
121
- ## Third-Party Creations
122
-
123
- > Concerning edge devices with less computing power, we provide a lightweight version with `swin_v1_tiny` as the backbone, which is x4+ faster and x5+ smaller. The details can be found in [this issue](https://github.com/ZhengPeng7/BiRefNet/issues/11#issuecomment-2041033576) and links there.
124
-
125
- We found there've been some 3rd party applications based on our BiRefNet. Many thanks for their contribution to the community!
126
- Choose the one you like to try with clicks instead of codes:
127
- 1. **Applications**:
128
- + Thanks [**fal.ai/birefnet**](https://fal.ai/models/birefnet): this project on `fal.ai` encapsulates BiRefNet **online** with more useful options in **UI** and **API** to call the model.
129
- <p align="center"><img src="https://drive.google.com/thumbnail?id=1rNk81YV_Pzb2GykrzfGvX6T7KBXR0wrA&sz=w1620" /></p>
130
-
131
- + Thanks [**ZHO-ZHO-ZHO/ComfyUI-BiRefNet-ZHO**](https://github.com/ZHO-ZHO-ZHO/ComfyUI-BiRefNet-ZHO): this project further improves the **UI** for BiRefNet in ComfyUI, especially for **video data**.
132
- <p align="center"><img src="https://drive.google.com/thumbnail?id=1GOqEreyS7ENzTPN0RqxEjaA76RpMlkYM&sz=w1620" /></p>
133
-
134
- <https://github.com/ZhengPeng7/BiRefNet/assets/25921713/3a1c7ab2-9847-4dac-8935-43a2d3cd2671>
135
-
136
- + Thanks [**viperyl/ComfyUI-BiRefNet**](https://github.com/viperyl/ComfyUI-BiRefNet): this project packs BiRefNet as **ComfyUI nodes**, and makes this SOTA model easier use for everyone.
137
- <p align="center"><img src="https://drive.google.com/thumbnail?id=1KfxCQUUa2y9T-aysEaeVVjCUt3Z0zSkL&sz=w1620" /></p>
138
-
139
- + Thanks [**Rishabh**](https://github.com/rishabh063) for offerring a demo for the [easier single image inference on colab](https://colab.research.google.com/drive/14Dqg7oeBkFEtchaHLNpig2BcdkZEogba?usp=drive_link).
140
-
141
- 2. **More Visual Comparisons**
142
- + Thanks [**twitter.com/ZHOZHO672070**](https://twitter.com/ZHOZHO672070) for the comparison with more background-removal methods in images:
143
-
144
- <img src="https://drive.google.com/thumbnail?id=1nvVIFt_Ezs-crPSQxUDqkUBz598fTe63&sz=w1620" />
145
-
146
- + Thanks [**twitter.com/toyxyz3**](https://twitter.com/toyxyz3) for the comparison with more background-removal methods in videos:
147
-
148
- <https://github.com/ZhengPeng7/BiRefNet/assets/25921713/40136198-01cc-4106-81f9-81c985f02e31>
149
-
150
- <https://github.com/ZhengPeng7/BiRefNet/assets/25921713/1a32860c-0893-49dd-b557-c2e35a83c160>
151
-
152
-
153
- ## Usage
154
-
155
- #### Environment Setup
156
-
157
- ```shell
158
- # PyTorch==2.0.1 is used for faster training with compilation.
159
- conda create -n dis python=3.9 -y && conda activate dis
160
- pip install -r requirements.txt
161
- ```
162
-
163
- #### Dataset Preparation
164
-
165
- Download combined training / test sets I have organized well from: [DIS](https://drive.google.com/drive/folders/1hZW6tAGPJwo9mPS7qGGGdpxuvuXiyoMJ)--[COD](https://drive.google.com/drive/folders/1EyHmKWsXfaCR9O0BiZEc3roZbRcs4ECO)--[HRSOD](https://drive.google.com/drive/folders/18_hAE3QM4cwAzEAKXuSNtKjmgFXTQXZN) or the single official ones in the `single_ones` folder, or their official pages. You can also find the same ones on my **BaiduDisk**: [DIS](https://pan.baidu.com/s/1O_pQIGAE4DKqL93xOxHpxw?pwd=PSWD)--[COD](https://pan.baidu.com/s/1RnxAzaHSTGBC1N6r_RfeqQ?pwd=PSWD)--[HRSOD](https://pan.baidu.com/s/1_Del53_0lBuG0DKJJAk4UA?pwd=PSWD).
166
-
167
- #### Weights Preparation
168
-
169
- Download backbone weights from [my google-drive folder](https://drive.google.com/drive/folders/1s2Xe0cjq-2ctnJBR24563yMSCOu4CcxM) or their official pages.
170
-
171
- #### Run
172
-
173
- ```shell
174
- # Train & Test & Evaluation
175
- ./train_test.sh RUN_NAME GPU_NUMBERS_FOR_TRAINING GPU_NUMBERS_FOR_TEST
176
- # See train.sh / test.sh for only training / test-evaluation.
177
- # After the evluation, run `gen_best_ep.py` to select the best ckpt from a specific metric (you choose it from Sm, wFm, HCE (DIS only)).
178
- ```
179
-
180
- #### Well-trained weights:
181
-
182
- Download the `BiRefNet-{TASK}-{EPOCH}.pth` from [[**stuff**](https://drive.google.com/drive/folders/1s2Xe0cjq-2ctnJBR24563yMSCOu4CcxM)]. Info of the corresponding (predicted\_maps/performance/training\_log) weights can be also found in folders like `exp-BiRefNet-{TASK_SETTINGS}` in the same directory.
183
-
184
- You can also download the weights from the release of this repo.
185
-
186
- The results might be a bit different from those in the original paper, you can see them in the `eval_results-BiRefNet-{TASK_SETTINGS}` folder in each `exp-xx`, we will update them in the following days. Due to the very high cost I used (A100-80G x 8) which many people cannot afford to (including myself....), I re-trained BiRefNet on a single A100-40G only and achieve the performance on the same level (even better). It means you can directly train the model on a single GPU with 36.5G+ memory. BTW, 5.5G GPU memory is needed for inference in 1024x1024. (I personally paid a lot for renting an A100-40G to re-train BiRefNet on the three tasks... T_T. Hope it can help you.)
187
-
188
- But if you have more and more powerful GPUs, you can set GPU IDs and increase the batch size in `config.py` to accelerate the training. We have made all this kind of things adaptive in scripts to seamlessly switch between single-card training and multi-card training. Enjoy it :)
189
-
190
- #### Some of my messages:
191
-
192
- This project was originally built for DIS only. But after the updates one by one, I made it larger and larger with many functions embedded together. Finally, you can **use it for any binary image segmentation tasks**, such as DIS/COD/SOD, medical image segmentation, anomaly segmentation, etc. You can eaily open/close below things (usually in `config.py`):
193
- + Multi-GPU training: open/close with one variable.
194
- + Backbone choices: Swin_v1, PVT_v2, ConvNets, ...
195
- + Weighted losses: BCE, IoU, SSIM, MAE, Reg, ...
196
- + Adversarial loss for binary segmentation (proposed in my previous work [MCCL](https://arxiv.org/pdf/2302.14485.pdf)).
197
- + Training tricks: multi-scale supervision, freezing backbone, multi-scale input...
198
- + Data collator: loading all in memory, smooth combination of different datasets for combined training and test.
199
- + ...
200
- I really hope you enjoy this project and use it in more works to achieve new SOTAs.
201
-
202
-
203
- ### Quantitative Results
204
-
205
- <p align="center"><img src="https://drive.google.com/thumbnail?id=184e84BwLuNu1FytSAQ2EnANZ0RFHKPip&sz=w1620" /></p>
206
-
207
- <p align="center"><img src="https://drive.google.com/thumbnail?id=1W0mi0ZiYbqsaGuohNXU8Gh7Zj4M3neFg&sz=w1620" /></p>
208
-
209
-
210
-
211
- ### Qualitative Results
212
-
213
- <p align="center"><img src="https://drive.google.com/thumbnail?id=1TYZF8pVZc2V0V6g3ik4iAr9iKvJ8BNrf&sz=w1620" /></p>
214
-
215
- <p align="center"><img src="https://drive.google.com/thumbnail?id=1ZGHC32CAdT9cwRloPzOCKWCrVQZvUAlJ&sz=w1620" /></p>
216
-
217
-
218
-
219
- ### Citation
220
-
221
- ```
222
- @article{zheng2024birefnet,
223
- title={Bilateral Reference for High-Resolution Dichotomous Image Segmentation},
224
- author={Zheng, Peng and Gao, Dehong and Fan, Deng-Ping and Liu, Li and Laaksonen, Jorma and Ouyang, Wanli and Sebe, Nicu},
225
- journal={arXiv},
226
- year={2024}
227
- }
228
- ```
229
-
230
-
231
-
232
- ## Contact
233
-
234
- Any question, discussion or even complaint, feel free to leave issues here or send me e-mails ([email protected]).
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
BiRefNet_codes1/config.py DELETED
@@ -1,156 +0,0 @@
1
- import os
2
- import math
3
-
4
-
5
- class Config():
6
- def __init__(self) -> None:
7
- # PATH settings
8
- self.sys_home_dir = os.environ['HOME'] # Make up your file system as: SYS_HOME_DIR/codes/dis/BiRefNet, SYS_HOME_DIR/datasets/dis/xx, SYS_HOME_DIR/weights/xx
9
-
10
- # TASK settings
11
- self.task = ['DIS5K', 'COD', 'HRSOD', 'DIS5K+HRSOD+HRS10K', 'P3M-10k'][0]
12
- self.training_set = {
13
- 'DIS5K': ['DIS-TR', 'DIS-TR+DIS-TE1+DIS-TE2+DIS-TE3+DIS-TE4'][0],
14
- 'COD': 'TR-COD10K+TR-CAMO',
15
- 'HRSOD': ['TR-DUTS', 'TR-HRSOD', 'TR-UHRSD', 'TR-DUTS+TR-HRSOD', 'TR-DUTS+TR-UHRSD', 'TR-HRSOD+TR-UHRSD', 'TR-DUTS+TR-HRSOD+TR-UHRSD'][5],
16
- 'DIS5K+HRSOD+HRS10K': 'DIS-TE1+DIS-TE2+DIS-TE3+DIS-TE4+DIS-TR+TE-HRS10K+TE-HRSOD+TE-UHRSD+TR-HRS10K+TR-HRSOD+TR-UHRSD', # leave DIS-VD for evaluation.
17
- 'P3M-10k': 'TR-P3M-10k',
18
- }[self.task]
19
- self.prompt4loc = ['dense', 'sparse'][0]
20
-
21
- # Faster-Training settings
22
- self.load_all = True
23
- self.compile = True # 1. Trigger CPU memory leak in some extend, which is an inherent problem of PyTorch.
24
- # Machines with > 70GB CPU memory can run the whole training on DIS5K with default setting.
25
- # 2. Higher PyTorch version may fix it: https://github.com/pytorch/pytorch/issues/119607.
26
- # 3. But compile in Pytorch > 2.0.1 seems to bring no acceleration for training.
27
- self.precisionHigh = True
28
-
29
- # MODEL settings
30
- self.ms_supervision = True
31
- self.out_ref = self.ms_supervision and True
32
- self.dec_ipt = True
33
- self.dec_ipt_split = True
34
- self.cxt_num = [0, 3][1] # multi-scale skip connections from encoder
35
- self.mul_scl_ipt = ['', 'add', 'cat'][2]
36
- self.dec_att = ['', 'ASPP', 'ASPPDeformable'][2]
37
- self.squeeze_block = ['', 'BasicDecBlk_x1', 'ResBlk_x4', 'ASPP_x3', 'ASPPDeformable_x3'][1]
38
- self.dec_blk = ['BasicDecBlk', 'ResBlk', 'HierarAttDecBlk'][0]
39
-
40
- # TRAINING settings
41
- self.batch_size = 4
42
- self.IoU_finetune_last_epochs = [
43
- 0,
44
- {
45
- 'DIS5K': -50,
46
- 'COD': -20,
47
- 'HRSOD': -20,
48
- 'DIS5K+HRSOD+HRS10K': -20,
49
- 'P3M-10k': -20,
50
- }[self.task]
51
- ][1] # choose 0 to skip
52
- self.lr = (1e-4 if 'DIS5K' in self.task else 1e-5) * math.sqrt(self.batch_size / 4) # DIS needs high lr to converge faster. Adapt the lr linearly
53
- self.size = 1024
54
- self.num_workers = max(4, self.batch_size) # will be decrease to min(it, batch_size) at the initialization of the data_loader
55
-
56
- # Backbone settings
57
- self.bb = [
58
- 'vgg16', 'vgg16bn', 'resnet50', # 0, 1, 2
59
- 'swin_v1_t', 'swin_v1_s', # 3, 4
60
- 'swin_v1_b', 'swin_v1_l', # 5-bs9, 6-bs4
61
- 'pvt_v2_b0', 'pvt_v2_b1', # 7, 8
62
- 'pvt_v2_b2', 'pvt_v2_b5', # 9-bs10, 10-bs5
63
- ][6]
64
- self.lateral_channels_in_collection = {
65
- 'vgg16': [512, 256, 128, 64], 'vgg16bn': [512, 256, 128, 64], 'resnet50': [1024, 512, 256, 64],
66
- 'pvt_v2_b2': [512, 320, 128, 64], 'pvt_v2_b5': [512, 320, 128, 64],
67
- 'swin_v1_b': [1024, 512, 256, 128], 'swin_v1_l': [1536, 768, 384, 192],
68
- 'swin_v1_t': [768, 384, 192, 96], 'swin_v1_s': [768, 384, 192, 96],
69
- 'pvt_v2_b0': [256, 160, 64, 32], 'pvt_v2_b1': [512, 320, 128, 64],
70
- }[self.bb]
71
- if self.mul_scl_ipt == 'cat':
72
- self.lateral_channels_in_collection = [channel * 2 for channel in self.lateral_channels_in_collection]
73
- self.cxt = self.lateral_channels_in_collection[1:][::-1][-self.cxt_num:] if self.cxt_num else []
74
-
75
- # MODEL settings - inactive
76
- self.lat_blk = ['BasicLatBlk'][0]
77
- self.dec_channels_inter = ['fixed', 'adap'][0]
78
- self.refine = ['', 'itself', 'RefUNet', 'Refiner', 'RefinerPVTInChannels4'][0]
79
- self.progressive_ref = self.refine and True
80
- self.ender = self.progressive_ref and False
81
- self.scale = self.progressive_ref and 2
82
- self.auxiliary_classification = False # Only for DIS5K, where class labels are saved in `dataset.py`.
83
- self.refine_iteration = 1
84
- self.freeze_bb = False
85
- self.model = [
86
- 'BiRefNet',
87
- ][0]
88
- if self.dec_blk == 'HierarAttDecBlk':
89
- self.batch_size = 2 ** [0, 1, 2, 3, 4][2]
90
-
91
- # TRAINING settings - inactive
92
- self.preproc_methods = ['flip', 'enhance', 'rotate', 'pepper', 'crop'][:4]
93
- self.optimizer = ['Adam', 'AdamW'][1]
94
- self.lr_decay_epochs = [1e5] # Set to negative N to decay the lr in the last N-th epoch.
95
- self.lr_decay_rate = 0.5
96
- # Loss
97
- self.lambdas_pix_last = {
98
- # not 0 means opening this loss
99
- # original rate -- 1 : 30 : 1.5 : 0.2, bce x 30
100
- 'bce': 30 * 1, # high performance
101
- 'iou': 0.5 * 1, # 0 / 255
102
- 'iou_patch': 0.5 * 0, # 0 / 255, win_size = (64, 64)
103
- 'mse': 150 * 0, # can smooth the saliency map
104
- 'triplet': 3 * 0,
105
- 'reg': 100 * 0,
106
- 'ssim': 10 * 1, # help contours,
107
- 'cnt': 5 * 0, # help contours
108
- 'structure': 5 * 0, # structure loss from codes of MVANet. A little improvement on DIS-TE[1,2,3], a bit more decrease on DIS-TE4.
109
- }
110
- self.lambdas_cls = {
111
- 'ce': 5.0
112
- }
113
- # Adv
114
- self.lambda_adv_g = 10. * 0 # turn to 0 to avoid adv training
115
- self.lambda_adv_d = 3. * (self.lambda_adv_g > 0)
116
-
117
- # PATH settings - inactive
118
- self.data_root_dir = os.path.join(self.sys_home_dir, 'datasets/dis')
119
- self.weights_root_dir = os.path.join(self.sys_home_dir, 'weights')
120
- self.weights = {
121
- 'pvt_v2_b2': os.path.join(self.weights_root_dir, 'pvt_v2_b2.pth'),
122
- 'pvt_v2_b5': os.path.join(self.weights_root_dir, ['pvt_v2_b5.pth', 'pvt_v2_b5_22k.pth'][0]),
123
- 'swin_v1_b': os.path.join(self.weights_root_dir, ['swin_base_patch4_window12_384_22kto1k.pth', 'swin_base_patch4_window12_384_22k.pth'][0]),
124
- 'swin_v1_l': os.path.join(self.weights_root_dir, ['swin_large_patch4_window12_384_22kto1k.pth', 'swin_large_patch4_window12_384_22k.pth'][0]),
125
- 'swin_v1_t': os.path.join(self.weights_root_dir, ['swin_tiny_patch4_window7_224_22kto1k_finetune.pth'][0]),
126
- 'swin_v1_s': os.path.join(self.weights_root_dir, ['swin_small_patch4_window7_224_22kto1k_finetune.pth'][0]),
127
- 'pvt_v2_b0': os.path.join(self.weights_root_dir, ['pvt_v2_b0.pth'][0]),
128
- 'pvt_v2_b1': os.path.join(self.weights_root_dir, ['pvt_v2_b1.pth'][0]),
129
- }
130
-
131
- # Callbacks - inactive
132
- self.verbose_eval = True
133
- self.only_S_MAE = False
134
- self.use_fp16 = False # Bugs. It may cause nan in training.
135
- self.SDPA_enabled = False # Bugs. Slower and errors occur in multi-GPUs
136
-
137
- # others
138
- self.device = [0, 'cpu'][0] # .to(0) == .to('cuda:0')
139
-
140
- self.batch_size_valid = 1
141
- self.rand_seed = 7
142
- run_sh_file = [f for f in os.listdir('.') if 'train.sh' == f] + [os.path.join('..', f) for f in os.listdir('..') if 'train.sh' == f]
143
- with open(run_sh_file[0], 'r') as f:
144
- lines = f.readlines()
145
- self.save_last = int([l.strip() for l in lines if '"{}")'.format(self.task) in l and 'val_last=' in l][0].split('val_last=')[-1].split()[0])
146
- self.save_step = int([l.strip() for l in lines if '"{}")'.format(self.task) in l and 'step=' in l][0].split('step=')[-1].split()[0])
147
- self.val_step = [0, self.save_step][0]
148
-
149
- def print_task(self) -> None:
150
- # Return task for choosing settings in shell scripts.
151
- print(self.task)
152
-
153
- if __name__ == '__main__':
154
- config = Config()
155
- config.print_task()
156
-
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
BiRefNet_codes1/dataset.py DELETED
@@ -1,112 +0,0 @@
1
- import os
2
- import cv2
3
- from tqdm import tqdm
4
- from PIL import Image
5
- from torch.utils import data
6
- from torchvision import transforms
7
-
8
- from preproc import preproc
9
- from config import Config
10
- from utils import path_to_image
11
-
12
-
13
- Image.MAX_IMAGE_PIXELS = None # remove DecompressionBombWarning
14
- config = Config()
15
- _class_labels_TR_sorted = (
16
- 'Airplane, Ant, Antenna, Archery, Axe, BabyCarriage, Bag, BalanceBeam, Balcony, Balloon, Basket, BasketballHoop, Beatle, Bed, Bee, Bench, Bicycle, '
17
- 'BicycleFrame, BicycleStand, Boat, Bonsai, BoomLift, Bridge, BunkBed, Butterfly, Button, Cable, CableLift, Cage, Camcorder, Cannon, Canoe, Car, '
18
- 'CarParkDropArm, Carriage, Cart, Caterpillar, CeilingLamp, Centipede, Chair, Clip, Clock, Clothes, CoatHanger, Comb, ConcretePumpTruck, Crack, Crane, '
19
- 'Cup, DentalChair, Desk, DeskChair, Diagram, DishRack, DoorHandle, Dragonfish, Dragonfly, Drum, Earphone, Easel, ElectricIron, Excavator, Eyeglasses, '
20
- 'Fan, Fence, Fencing, FerrisWheel, FireExtinguisher, Fishing, Flag, FloorLamp, Forklift, GasStation, Gate, Gear, Goal, Golf, GymEquipment, Hammock, '
21
- 'Handcart, Handcraft, Handrail, HangGlider, Harp, Harvester, Headset, Helicopter, Helmet, Hook, HorizontalBar, Hydrovalve, IroningTable, Jewelry, Key, '
22
- 'KidsPlayground, Kitchenware, Kite, Knife, Ladder, LaundryRack, Lightning, Lobster, Locust, Machine, MachineGun, MagazineRack, Mantis, Medal, MemorialArchway, '
23
- 'Microphone, Missile, MobileHolder, Monitor, Mosquito, Motorcycle, MovingTrolley, Mower, MusicPlayer, MusicStand, ObservationTower, Octopus, OilWell, '
24
- 'OlympicLogo, OperatingTable, OutdoorFitnessEquipment, Parachute, Pavilion, Piano, Pipe, PlowHarrow, PoleVault, Punchbag, Rack, Racket, Rifle, Ring, Robot, '
25
- 'RockClimbing, Rope, Sailboat, Satellite, Scaffold, Scale, Scissor, Scooter, Sculpture, Seadragon, Seahorse, Seal, SewingMachine, Ship, Shoe, ShoppingCart, '
26
- 'ShoppingTrolley, Shower, Shrimp, Signboard, Skateboarding, Skeleton, Skiing, Spade, SpeedBoat, Spider, Spoon, Stair, Stand, Stationary, SteeringWheel, '
27
- 'Stethoscope, Stool, Stove, StreetLamp, SweetStand, Swing, Sword, TV, Table, TableChair, TableLamp, TableTennis, Tank, Tapeline, Teapot, Telescope, Tent, '
28
- 'TobaccoPipe, Toy, Tractor, TrafficLight, TrafficSign, Trampoline, TransmissionTower, Tree, Tricycle, TrimmerCover, Tripod, Trombone, Truck, Trumpet, Tuba, '
29
- 'UAV, Umbrella, UnevenBars, UtilityPole, VacuumCleaner, Violin, Wakesurfing, Watch, WaterTower, WateringPot, Well, WellLid, Wheel, Wheelchair, WindTurbine, Windmill, WineGlass, WireWhisk, Yacht'
30
- )
31
- class_labels_TR_sorted = _class_labels_TR_sorted.split(', ')
32
-
33
-
34
- class MyData(data.Dataset):
35
- def __init__(self, datasets, image_size, is_train=True):
36
- self.size_train = image_size
37
- self.size_test = image_size
38
- self.keep_size = not config.size
39
- self.data_size = (config.size, config.size)
40
- self.is_train = is_train
41
- self.load_all = config.load_all
42
- self.device = config.device
43
- if self.is_train and config.auxiliary_classification:
44
- self.cls_name2id = {_name: _id for _id, _name in enumerate(class_labels_TR_sorted)}
45
- self.transform_image = transforms.Compose([
46
- transforms.Resize(self.data_size),
47
- transforms.ToTensor(),
48
- transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]),
49
- ][self.load_all or self.keep_size:])
50
- self.transform_label = transforms.Compose([
51
- transforms.Resize(self.data_size),
52
- transforms.ToTensor(),
53
- ][self.load_all or self.keep_size:])
54
- dataset_root = os.path.join(config.data_root_dir, config.task)
55
- # datasets can be a list of different datasets for training on combined sets.
56
- self.image_paths = []
57
- for dataset in datasets.split('+'):
58
- image_root = os.path.join(dataset_root, dataset, 'im')
59
- self.image_paths += [os.path.join(image_root, p) for p in os.listdir(image_root)]
60
- self.label_paths = []
61
- for p in self.image_paths:
62
- for ext in ['.png', '.jpg', '.PNG', '.JPG', '.JPEG']:
63
- ## 'im' and 'gt' may need modifying
64
- p_gt = p.replace('/im/', '/gt/')[:-(len(p.split('.')[-1])+1)] + ext
65
- file_exists = False
66
- if os.path.exists(p_gt):
67
- self.label_paths.append(p_gt)
68
- file_exists = True
69
- break
70
- if not file_exists:
71
- print('Not exists:', p_gt)
72
- if self.load_all:
73
- self.images_loaded, self.labels_loaded = [], []
74
- self.class_labels_loaded = []
75
- # for image_path, label_path in zip(self.image_paths, self.label_paths):
76
- for image_path, label_path in tqdm(zip(self.image_paths, self.label_paths), total=len(self.image_paths)):
77
- _image = path_to_image(image_path, size=(config.size, config.size), color_type='rgb')
78
- _label = path_to_image(label_path, size=(config.size, config.size), color_type='gray')
79
- self.images_loaded.append(_image)
80
- self.labels_loaded.append(_label)
81
- self.class_labels_loaded.append(
82
- self.cls_name2id[label_path.split('/')[-1].split('#')[3]] if self.is_train and config.auxiliary_classification else -1
83
- )
84
-
85
- def __getitem__(self, index):
86
-
87
- if self.load_all:
88
- image = self.images_loaded[index]
89
- label = self.labels_loaded[index]
90
- class_label = self.class_labels_loaded[index] if self.is_train and config.auxiliary_classification else -1
91
- else:
92
- image = path_to_image(self.image_paths[index], size=(config.size, config.size), color_type='rgb')
93
- label = path_to_image(self.label_paths[index], size=(config.size, config.size), color_type='gray')
94
- class_label = self.cls_name2id[self.label_paths[index].split('/')[-1].split('#')[3]] if self.is_train and config.auxiliary_classification else -1
95
-
96
- # loading image and label
97
- if self.is_train:
98
- image, label = preproc(image, label, preproc_methods=config.preproc_methods)
99
- # else:
100
- # if _label.shape[0] > 2048 or _label.shape[1] > 2048:
101
- # _image = cv2.resize(_image, (2048, 2048), interpolation=cv2.INTER_LINEAR)
102
- # _label = cv2.resize(_label, (2048, 2048), interpolation=cv2.INTER_LINEAR)
103
-
104
- image, label = self.transform_image(image), self.transform_label(label)
105
-
106
- if self.is_train:
107
- return image, label, class_label
108
- else:
109
- return image, label, self.label_paths[index]
110
-
111
- def __len__(self):
112
- return len(self.image_paths)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
BiRefNet_codes1/eval_existingOnes.py DELETED
@@ -1,139 +0,0 @@
1
- import os
2
- import argparse
3
- from glob import glob
4
- import prettytable as pt
5
-
6
- from evaluation.evaluate import evaluator
7
- from config import Config
8
-
9
-
10
- config = Config()
11
-
12
-
13
- def do_eval(args):
14
- # evaluation for whole dataset
15
- # dataset first in evaluation
16
- for _data_name in args.data_lst.split('+'):
17
- pred_data_dir = sorted(glob(os.path.join(args.pred_root, args.model_lst[0], _data_name)))
18
- if not pred_data_dir:
19
- print('Skip dataset {}.'.format(_data_name))
20
- continue
21
- gt_src = os.path.join(args.gt_root, _data_name)
22
- gt_paths = sorted(glob(os.path.join(gt_src, 'gt', '*')))
23
- print('#' * 20, _data_name, '#' * 20)
24
- filename = os.path.join(args.save_dir, '{}_eval.txt'.format(_data_name))
25
- tb = pt.PrettyTable()
26
- tb.vertical_char = '&'
27
- if config.task == 'DIS5K':
28
- tb.field_names = ["Dataset", "Method", "maxFm", "wFmeasure", 'MAE', "Smeasure", "meanEm", "HCE", "maxEm", "meanFm", "adpEm", "adpFm"]
29
- elif config.task == 'COD':
30
- tb.field_names = ["Dataset", "Method", "Smeasure", "wFmeasure", "meanFm", "meanEm", "maxEm", 'MAE', "maxFm", "adpEm", "adpFm", "HCE"]
31
- elif config.task == 'HRSOD':
32
- tb.field_names = ["Dataset", "Method", "Smeasure", "maxFm", "meanEm", 'MAE', "maxEm", "meanFm", "wFmeasure", "adpEm", "adpFm", "HCE"]
33
- elif config.task == 'DIS5K+HRSOD+HRS10K':
34
- tb.field_names = ["Dataset", "Method", "maxFm", "wFmeasure", 'MAE', "Smeasure", "meanEm", "HCE", "maxEm", "meanFm", "adpEm", "adpFm"]
35
- elif config.task == 'P3M-10k':
36
- tb.field_names = ["Dataset", "Method", "Smeasure", "maxFm", "meanEm", 'MAE', "maxEm", "meanFm", "wFmeasure", "adpEm", "adpFm", "HCE"]
37
- else:
38
- tb.field_names = ["Dataset", "Method", "Smeasure", 'MAE', "maxEm", "meanEm", "maxFm", "meanFm", "wFmeasure", "adpEm", "adpFm", "HCE"]
39
- for _model_name in args.model_lst[:]:
40
- print('\t', 'Evaluating model: {}...'.format(_model_name))
41
- pred_paths = [p.replace(args.gt_root, os.path.join(args.pred_root, _model_name)).replace('/gt/', '/') for p in gt_paths]
42
- # print(pred_paths[:1], gt_paths[:1])
43
- em, sm, fm, mae, wfm, hce = evaluator(
44
- gt_paths=gt_paths,
45
- pred_paths=pred_paths,
46
- metrics=args.metrics.split('+'),
47
- verbose=config.verbose_eval
48
- )
49
- if config.task == 'DIS5K':
50
- scores = [
51
- fm['curve'].max().round(3), wfm.round(3), mae.round(3), sm.round(3), em['curve'].mean().round(3), int(hce.round()),
52
- em['curve'].max().round(3), fm['curve'].mean().round(3), em['adp'].round(3), fm['adp'].round(3),
53
- ]
54
- elif config.task == 'COD':
55
- scores = [
56
- sm.round(3), wfm.round(3), fm['curve'].mean().round(3), em['curve'].mean().round(3), em['curve'].max().round(3), mae.round(3),
57
- fm['curve'].max().round(3), em['adp'].round(3), fm['adp'].round(3), int(hce.round()),
58
- ]
59
- elif config.task == 'HRSOD':
60
- scores = [
61
- sm.round(3), fm['curve'].max().round(3), em['curve'].mean().round(3), mae.round(3),
62
- em['curve'].max().round(3), fm['curve'].mean().round(3), wfm.round(3), em['adp'].round(3), fm['adp'].round(3), int(hce.round()),
63
- ]
64
- elif config.task == 'DIS5K+HRSOD+HRS10K':
65
- scores = [
66
- fm['curve'].max().round(3), wfm.round(3), mae.round(3), sm.round(3), em['curve'].mean().round(3), int(hce.round()),
67
- em['curve'].max().round(3), fm['curve'].mean().round(3), em['adp'].round(3), fm['adp'].round(3),
68
- ]
69
- elif config.task == 'P3M-10k':
70
- scores = [
71
- sm.round(3), fm['curve'].max().round(3), em['curve'].mean().round(3), mae.round(3),
72
- em['curve'].max().round(3), fm['curve'].mean().round(3), wfm.round(3), em['adp'].round(3), fm['adp'].round(3), int(hce.round()),
73
- ]
74
- else:
75
- scores = [
76
- sm.round(3), mae.round(3), em['curve'].max().round(3), em['curve'].mean().round(3),
77
- fm['curve'].max().round(3), fm['curve'].mean().round(3), wfm.round(3),
78
- em['adp'].round(3), fm['adp'].round(3), int(hce.round()),
79
- ]
80
-
81
- for idx_score, score in enumerate(scores):
82
- scores[idx_score] = '.' + format(score, '.3f').split('.')[-1] if score <= 1 else format(score, '<4')
83
- records = [_data_name, _model_name] + scores
84
- tb.add_row(records)
85
- # Write results after every check.
86
- with open(filename, 'w+') as file_to_write:
87
- file_to_write.write(str(tb)+'\n')
88
- print(tb)
89
-
90
-
91
- if __name__ == '__main__':
92
- # set parameters
93
- parser = argparse.ArgumentParser()
94
- parser.add_argument(
95
- '--gt_root', type=str, help='ground-truth root',
96
- default=os.path.join(config.data_root_dir, config.task))
97
- parser.add_argument(
98
- '--pred_root', type=str, help='prediction root',
99
- default='./e_preds')
100
- parser.add_argument(
101
- '--data_lst', type=str, help='test dataset',
102
- default={
103
- 'DIS5K': '+'.join(['DIS-VD', 'DIS-TE1', 'DIS-TE2', 'DIS-TE3', 'DIS-TE4'][:]),
104
- 'COD': '+'.join(['TE-COD10K', 'NC4K', 'TE-CAMO', 'CHAMELEON'][:]),
105
- 'HRSOD': '+'.join(['DAVIS-S', 'TE-HRSOD', 'TE-UHRSD', 'TE-DUTS', 'DUT-OMRON'][:]),
106
- 'DIS5K+HRSOD+HRS10K': '+'.join(['DIS-VD'][:]),
107
- 'P3M-10k': '+'.join(['TE-P3M-500-P', 'TE-P3M-500-NP'][:]),
108
- }[config.task])
109
- parser.add_argument(
110
- '--save_dir', type=str, help='candidate competitors',
111
- default='e_results')
112
- parser.add_argument(
113
- '--check_integrity', type=bool, help='whether to check the file integrity',
114
- default=False)
115
- parser.add_argument(
116
- '--metrics', type=str, help='candidate competitors',
117
- default='+'.join(['S', 'MAE', 'E', 'F', 'WF', 'HCE'][:100 if 'DIS5K' in config.task else -1]))
118
- args = parser.parse_args()
119
-
120
- os.makedirs(args.save_dir, exist_ok=True)
121
- try:
122
- args.model_lst = [m for m in sorted(os.listdir(args.pred_root), key=lambda x: int(x.split('epoch_')[-1]), reverse=True) if int(m.split('epoch_')[-1]) % 1 == 0]
123
- except:
124
- args.model_lst = [m for m in sorted(os.listdir(args.pred_root))]
125
-
126
- # check the integrity of each candidates
127
- if args.check_integrity:
128
- for _data_name in args.data_lst.split('+'):
129
- for _model_name in args.model_lst:
130
- gt_pth = os.path.join(args.gt_root, _data_name)
131
- pred_pth = os.path.join(args.pred_root, _model_name, _data_name)
132
- if not sorted(os.listdir(gt_pth)) == sorted(os.listdir(pred_pth)):
133
- print(len(sorted(os.listdir(gt_pth))), len(sorted(os.listdir(pred_pth))))
134
- print('The {} Dataset of {} Model is not matching to the ground-truth'.format(_data_name, _model_name))
135
- else:
136
- print('>>> skip check the integrity of each candidates')
137
-
138
- # start engine
139
- do_eval(args)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
BiRefNet_codes1/evaluation/evaluate.py DELETED
@@ -1,60 +0,0 @@
1
- import os
2
- import prettytable as pt
3
-
4
- from evaluation.metrics import evaluator
5
- from config import Config
6
-
7
-
8
- config = Config()
9
-
10
- def evaluate(pred_dir, method, testset, only_S_MAE=False, epoch=0):
11
- filename = os.path.join('evaluation', 'eval-{}.txt'.format(method))
12
- if os.path.exists(filename):
13
- id_suffix = 1
14
- filename = filename.rstrip('.txt') + '_{}.txt'.format(id_suffix)
15
- while os.path.exists(filename):
16
- id_suffix += 1
17
- filename = filename.replace('_{}.txt'.format(id_suffix-1), '_{}.txt'.format(id_suffix))
18
- gt_paths = sorted([
19
- os.path.join(config.data_root_dir, config.task, testset, 'gt', p)
20
- for p in os.listdir(os.path.join(config.data_root_dir, config.task, testset, 'gt'))
21
- ])
22
- pred_paths = sorted([os.path.join(pred_dir, method, testset, p) for p in os.listdir(os.path.join(pred_dir, method, testset))])
23
- with open(filename, 'a+') as file_to_write:
24
- tb = pt.PrettyTable()
25
- field_names = [
26
- "Dataset", "Method", "maxFm", "wFmeasure", 'MAE', "Smeasure", "meanEm", "maxEm", "meanFm",
27
- "adpEm", "adpFm", 'HCE'
28
- ]
29
- tb.field_names = [name for name in field_names if not only_S_MAE or all(metric not in name for metric in ['Em', 'Fm'])]
30
- em, sm, fm, mae, wfm, hce = evaluator(
31
- gt_paths=gt_paths[:],
32
- pred_paths=pred_paths[:],
33
- metrics=['S', 'MAE', 'E', 'F', 'HCE'][:10*(not only_S_MAE) + 2], # , 'WF'
34
- verbose=config.verbose_eval,
35
- )
36
- e_max, e_mean, e_adp = em['curve'].max(), em['curve'].mean(), em['adp'].mean()
37
- f_max, f_mean, f_wfm, f_adp = fm['curve'].max(), fm['curve'].mean(), wfm, fm['adp']
38
- tb.add_row(
39
- [
40
- method+str(epoch), testset, f_max.round(3), f_wfm.round(3), mae.round(3), sm.round(3),
41
- e_mean.round(3), e_max.round(3), f_mean.round(3), em['adp'].round(3), f_adp.round(3), hce.round(3)
42
- ] if not only_S_MAE else [method, testset, mae.round(3), sm.round(3)]
43
- )
44
- print(tb)
45
- file_to_write.write(str(tb).replace('+', '|')+'\n')
46
- file_to_write.close()
47
- return {'e_max': e_max, 'e_mean': e_mean, 'e_adp': e_adp, 'sm': sm, 'mae': mae, 'f_max': f_max, 'f_mean': f_mean, 'f_wfm': f_wfm, 'f_adp': f_adp, 'hce': hce}
48
-
49
-
50
- def main():
51
- only_S_MAE = False
52
- pred_dir = '.'
53
- method = 'tmp_val'
54
- testsets = 'DIS-VD+DIS-TE1'
55
- for testset in testsets.split('+'):
56
- res_dct = evaluate(pred_dir, method, testset, only_S_MAE=only_S_MAE)
57
-
58
-
59
- if __name__ == '__main__':
60
- main()
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
BiRefNet_codes1/evaluation/metrics.py DELETED
@@ -1,612 +0,0 @@
1
- import os
2
- from tqdm import tqdm
3
- import cv2
4
- import numpy as np
5
- from scipy.ndimage import convolve, distance_transform_edt as bwdist
6
- from skimage.morphology import skeletonize
7
- from skimage.morphology import disk
8
- from skimage.measure import label
9
-
10
-
11
- _EPS = np.spacing(1)
12
- _TYPE = np.float64
13
-
14
-
15
- def evaluator(gt_paths, pred_paths, metrics=['S', 'MAE', 'E', 'F', 'WF', 'HCE'], verbose=False):
16
- # define measures
17
- if 'E' in metrics:
18
- EM = Emeasure()
19
- if 'S' in metrics:
20
- SM = Smeasure()
21
- if 'F' in metrics:
22
- FM = Fmeasure()
23
- if 'MAE' in metrics:
24
- MAE = MAEmeasure()
25
- if 'WF' in metrics:
26
- WFM = WeightedFmeasure()
27
- if 'HCE' in metrics:
28
- HCE = HCEMeasure()
29
-
30
- if isinstance(gt_paths, list) and isinstance(pred_paths, list):
31
- # print(len(gt_paths), len(pred_paths))
32
- assert len(gt_paths) == len(pred_paths)
33
-
34
- for idx_sample in tqdm(range(len(gt_paths)), total=len(gt_paths)) if verbose else range(len(gt_paths)):
35
- gt = gt_paths[idx_sample]
36
- pred = pred_paths[idx_sample]
37
-
38
- pred = pred[:-4] + '.png'
39
- if os.path.exists(pred):
40
- pred_ary = cv2.imread(pred, cv2.IMREAD_GRAYSCALE)
41
- else:
42
- pred_ary = cv2.imread(pred.replace('.png', '.jpg'), cv2.IMREAD_GRAYSCALE)
43
- gt_ary = cv2.imread(gt, cv2.IMREAD_GRAYSCALE)
44
- pred_ary = cv2.resize(pred_ary, (gt_ary.shape[1], gt_ary.shape[0]))
45
-
46
- if 'E' in metrics:
47
- EM.step(pred=pred_ary, gt=gt_ary)
48
- if 'S' in metrics:
49
- SM.step(pred=pred_ary, gt=gt_ary)
50
- if 'F' in metrics:
51
- FM.step(pred=pred_ary, gt=gt_ary)
52
- if 'MAE' in metrics:
53
- MAE.step(pred=pred_ary, gt=gt_ary)
54
- if 'WF' in metrics:
55
- WFM.step(pred=pred_ary, gt=gt_ary)
56
- if 'HCE' in metrics:
57
- ske_path = gt.replace('/gt/', '/ske/')
58
- if os.path.exists(ske_path):
59
- ske_ary = cv2.imread(ske_path, cv2.IMREAD_GRAYSCALE)
60
- ske_ary = ske_ary > 128
61
- else:
62
- ske_ary = skeletonize(gt_ary > 128)
63
- ske_save_dir = os.path.join(*ske_path.split(os.sep)[:-1])
64
- if ske_path[0] == os.sep:
65
- ske_save_dir = os.sep + ske_save_dir
66
- os.makedirs(ske_save_dir, exist_ok=True)
67
- cv2.imwrite(ske_path, ske_ary.astype(np.uint8) * 255)
68
- HCE.step(pred=pred_ary, gt=gt_ary, gt_ske=ske_ary)
69
-
70
- if 'E' in metrics:
71
- em = EM.get_results()['em']
72
- else:
73
- em = {'curve': np.array([np.float64(-1)]), 'adp': np.float64(-1)}
74
- if 'S' in metrics:
75
- sm = SM.get_results()['sm']
76
- else:
77
- sm = np.float64(-1)
78
- if 'F' in metrics:
79
- fm = FM.get_results()['fm']
80
- else:
81
- fm = {'curve': np.array([np.float64(-1)]), 'adp': np.float64(-1)}
82
- if 'MAE' in metrics:
83
- mae = MAE.get_results()['mae']
84
- else:
85
- mae = np.float64(-1)
86
- if 'WF' in metrics:
87
- wfm = WFM.get_results()['wfm']
88
- else:
89
- wfm = np.float64(-1)
90
- if 'HCE' in metrics:
91
- hce = HCE.get_results()['hce']
92
- else:
93
- hce = np.float64(-1)
94
-
95
- return em, sm, fm, mae, wfm, hce
96
-
97
-
98
- def _prepare_data(pred: np.ndarray, gt: np.ndarray) -> tuple:
99
- gt = gt > 128
100
- pred = pred / 255
101
- if pred.max() != pred.min():
102
- pred = (pred - pred.min()) / (pred.max() - pred.min())
103
- return pred, gt
104
-
105
-
106
- def _get_adaptive_threshold(matrix: np.ndarray, max_value: float = 1) -> float:
107
- return min(2 * matrix.mean(), max_value)
108
-
109
-
110
- class Fmeasure(object):
111
- def __init__(self, beta: float = 0.3):
112
- self.beta = beta
113
- self.precisions = []
114
- self.recalls = []
115
- self.adaptive_fms = []
116
- self.changeable_fms = []
117
-
118
- def step(self, pred: np.ndarray, gt: np.ndarray):
119
- pred, gt = _prepare_data(pred, gt)
120
-
121
- adaptive_fm = self.cal_adaptive_fm(pred=pred, gt=gt)
122
- self.adaptive_fms.append(adaptive_fm)
123
-
124
- precisions, recalls, changeable_fms = self.cal_pr(pred=pred, gt=gt)
125
- self.precisions.append(precisions)
126
- self.recalls.append(recalls)
127
- self.changeable_fms.append(changeable_fms)
128
-
129
- def cal_adaptive_fm(self, pred: np.ndarray, gt: np.ndarray) -> float:
130
- adaptive_threshold = _get_adaptive_threshold(pred, max_value=1)
131
- binary_predcition = pred >= adaptive_threshold
132
- area_intersection = binary_predcition[gt].sum()
133
- if area_intersection == 0:
134
- adaptive_fm = 0
135
- else:
136
- pre = area_intersection / np.count_nonzero(binary_predcition)
137
- rec = area_intersection / np.count_nonzero(gt)
138
- adaptive_fm = (1 + self.beta) * pre * rec / (self.beta * pre + rec)
139
- return adaptive_fm
140
-
141
- def cal_pr(self, pred: np.ndarray, gt: np.ndarray) -> tuple:
142
- pred = (pred * 255).astype(np.uint8)
143
- bins = np.linspace(0, 256, 257)
144
- fg_hist, _ = np.histogram(pred[gt], bins=bins)
145
- bg_hist, _ = np.histogram(pred[~gt], bins=bins)
146
- fg_w_thrs = np.cumsum(np.flip(fg_hist), axis=0)
147
- bg_w_thrs = np.cumsum(np.flip(bg_hist), axis=0)
148
- TPs = fg_w_thrs
149
- Ps = fg_w_thrs + bg_w_thrs
150
- Ps[Ps == 0] = 1
151
- T = max(np.count_nonzero(gt), 1)
152
- precisions = TPs / Ps
153
- recalls = TPs / T
154
- numerator = (1 + self.beta) * precisions * recalls
155
- denominator = np.where(numerator == 0, 1, self.beta * precisions + recalls)
156
- changeable_fms = numerator / denominator
157
- return precisions, recalls, changeable_fms
158
-
159
- def get_results(self) -> dict:
160
- adaptive_fm = np.mean(np.array(self.adaptive_fms, _TYPE))
161
- changeable_fm = np.mean(np.array(self.changeable_fms, dtype=_TYPE), axis=0)
162
- precision = np.mean(np.array(self.precisions, dtype=_TYPE), axis=0) # N, 256
163
- recall = np.mean(np.array(self.recalls, dtype=_TYPE), axis=0) # N, 256
164
- return dict(fm=dict(adp=adaptive_fm, curve=changeable_fm),
165
- pr=dict(p=precision, r=recall))
166
-
167
-
168
- class MAEmeasure(object):
169
- def __init__(self):
170
- self.maes = []
171
-
172
- def step(self, pred: np.ndarray, gt: np.ndarray):
173
- pred, gt = _prepare_data(pred, gt)
174
-
175
- mae = self.cal_mae(pred, gt)
176
- self.maes.append(mae)
177
-
178
- def cal_mae(self, pred: np.ndarray, gt: np.ndarray) -> float:
179
- mae = np.mean(np.abs(pred - gt))
180
- return mae
181
-
182
- def get_results(self) -> dict:
183
- mae = np.mean(np.array(self.maes, _TYPE))
184
- return dict(mae=mae)
185
-
186
-
187
- class Smeasure(object):
188
- def __init__(self, alpha: float = 0.5):
189
- self.sms = []
190
- self.alpha = alpha
191
-
192
- def step(self, pred: np.ndarray, gt: np.ndarray):
193
- pred, gt = _prepare_data(pred=pred, gt=gt)
194
-
195
- sm = self.cal_sm(pred, gt)
196
- self.sms.append(sm)
197
-
198
- def cal_sm(self, pred: np.ndarray, gt: np.ndarray) -> float:
199
- y = np.mean(gt)
200
- if y == 0:
201
- sm = 1 - np.mean(pred)
202
- elif y == 1:
203
- sm = np.mean(pred)
204
- else:
205
- sm = self.alpha * self.object(pred, gt) + (1 - self.alpha) * self.region(pred, gt)
206
- sm = max(0, sm)
207
- return sm
208
-
209
- def object(self, pred: np.ndarray, gt: np.ndarray) -> float:
210
- fg = pred * gt
211
- bg = (1 - pred) * (1 - gt)
212
- u = np.mean(gt)
213
- object_score = u * self.s_object(fg, gt) + (1 - u) * self.s_object(bg, 1 - gt)
214
- return object_score
215
-
216
- def s_object(self, pred: np.ndarray, gt: np.ndarray) -> float:
217
- x = np.mean(pred[gt == 1])
218
- sigma_x = np.std(pred[gt == 1], ddof=1)
219
- score = 2 * x / (np.power(x, 2) + 1 + sigma_x + _EPS)
220
- return score
221
-
222
- def region(self, pred: np.ndarray, gt: np.ndarray) -> float:
223
- x, y = self.centroid(gt)
224
- part_info = self.divide_with_xy(pred, gt, x, y)
225
- w1, w2, w3, w4 = part_info['weight']
226
- pred1, pred2, pred3, pred4 = part_info['pred']
227
- gt1, gt2, gt3, gt4 = part_info['gt']
228
- score1 = self.ssim(pred1, gt1)
229
- score2 = self.ssim(pred2, gt2)
230
- score3 = self.ssim(pred3, gt3)
231
- score4 = self.ssim(pred4, gt4)
232
-
233
- return w1 * score1 + w2 * score2 + w3 * score3 + w4 * score4
234
-
235
- def centroid(self, matrix: np.ndarray) -> tuple:
236
- h, w = matrix.shape
237
- area_object = np.count_nonzero(matrix)
238
- if area_object == 0:
239
- x = np.round(w / 2)
240
- y = np.round(h / 2)
241
- else:
242
- # More details can be found at: https://www.yuque.com/lart/blog/gpbigm
243
- y, x = np.argwhere(matrix).mean(axis=0).round()
244
- return int(x) + 1, int(y) + 1
245
-
246
- def divide_with_xy(self, pred: np.ndarray, gt: np.ndarray, x, y) -> dict:
247
- h, w = gt.shape
248
- area = h * w
249
-
250
- gt_LT = gt[0:y, 0:x]
251
- gt_RT = gt[0:y, x:w]
252
- gt_LB = gt[y:h, 0:x]
253
- gt_RB = gt[y:h, x:w]
254
-
255
- pred_LT = pred[0:y, 0:x]
256
- pred_RT = pred[0:y, x:w]
257
- pred_LB = pred[y:h, 0:x]
258
- pred_RB = pred[y:h, x:w]
259
-
260
- w1 = x * y / area
261
- w2 = y * (w - x) / area
262
- w3 = (h - y) * x / area
263
- w4 = 1 - w1 - w2 - w3
264
-
265
- return dict(gt=(gt_LT, gt_RT, gt_LB, gt_RB),
266
- pred=(pred_LT, pred_RT, pred_LB, pred_RB),
267
- weight=(w1, w2, w3, w4))
268
-
269
- def ssim(self, pred: np.ndarray, gt: np.ndarray) -> float:
270
- h, w = pred.shape
271
- N = h * w
272
-
273
- x = np.mean(pred)
274
- y = np.mean(gt)
275
-
276
- sigma_x = np.sum((pred - x) ** 2) / (N - 1)
277
- sigma_y = np.sum((gt - y) ** 2) / (N - 1)
278
- sigma_xy = np.sum((pred - x) * (gt - y)) / (N - 1)
279
-
280
- alpha = 4 * x * y * sigma_xy
281
- beta = (x ** 2 + y ** 2) * (sigma_x + sigma_y)
282
-
283
- if alpha != 0:
284
- score = alpha / (beta + _EPS)
285
- elif alpha == 0 and beta == 0:
286
- score = 1
287
- else:
288
- score = 0
289
- return score
290
-
291
- def get_results(self) -> dict:
292
- sm = np.mean(np.array(self.sms, dtype=_TYPE))
293
- return dict(sm=sm)
294
-
295
-
296
- class Emeasure(object):
297
- def __init__(self):
298
- self.adaptive_ems = []
299
- self.changeable_ems = []
300
-
301
- def step(self, pred: np.ndarray, gt: np.ndarray):
302
- pred, gt = _prepare_data(pred=pred, gt=gt)
303
- self.gt_fg_numel = np.count_nonzero(gt)
304
- self.gt_size = gt.shape[0] * gt.shape[1]
305
-
306
- changeable_ems = self.cal_changeable_em(pred, gt)
307
- self.changeable_ems.append(changeable_ems)
308
- adaptive_em = self.cal_adaptive_em(pred, gt)
309
- self.adaptive_ems.append(adaptive_em)
310
-
311
- def cal_adaptive_em(self, pred: np.ndarray, gt: np.ndarray) -> float:
312
- adaptive_threshold = _get_adaptive_threshold(pred, max_value=1)
313
- adaptive_em = self.cal_em_with_threshold(pred, gt, threshold=adaptive_threshold)
314
- return adaptive_em
315
-
316
- def cal_changeable_em(self, pred: np.ndarray, gt: np.ndarray) -> np.ndarray:
317
- changeable_ems = self.cal_em_with_cumsumhistogram(pred, gt)
318
- return changeable_ems
319
-
320
- def cal_em_with_threshold(self, pred: np.ndarray, gt: np.ndarray, threshold: float) -> float:
321
- binarized_pred = pred >= threshold
322
- fg_fg_numel = np.count_nonzero(binarized_pred & gt)
323
- fg_bg_numel = np.count_nonzero(binarized_pred & ~gt)
324
-
325
- fg___numel = fg_fg_numel + fg_bg_numel
326
- bg___numel = self.gt_size - fg___numel
327
-
328
- if self.gt_fg_numel == 0:
329
- enhanced_matrix_sum = bg___numel
330
- elif self.gt_fg_numel == self.gt_size:
331
- enhanced_matrix_sum = fg___numel
332
- else:
333
- parts_numel, combinations = self.generate_parts_numel_combinations(
334
- fg_fg_numel=fg_fg_numel, fg_bg_numel=fg_bg_numel,
335
- pred_fg_numel=fg___numel, pred_bg_numel=bg___numel,
336
- )
337
-
338
- results_parts = []
339
- for i, (part_numel, combination) in enumerate(zip(parts_numel, combinations)):
340
- align_matrix_value = 2 * (combination[0] * combination[1]) / \
341
- (combination[0] ** 2 + combination[1] ** 2 + _EPS)
342
- enhanced_matrix_value = (align_matrix_value + 1) ** 2 / 4
343
- results_parts.append(enhanced_matrix_value * part_numel)
344
- enhanced_matrix_sum = sum(results_parts)
345
-
346
- em = enhanced_matrix_sum / (self.gt_size - 1 + _EPS)
347
- return em
348
-
349
- def cal_em_with_cumsumhistogram(self, pred: np.ndarray, gt: np.ndarray) -> np.ndarray:
350
- pred = (pred * 255).astype(np.uint8)
351
- bins = np.linspace(0, 256, 257)
352
- fg_fg_hist, _ = np.histogram(pred[gt], bins=bins)
353
- fg_bg_hist, _ = np.histogram(pred[~gt], bins=bins)
354
- fg_fg_numel_w_thrs = np.cumsum(np.flip(fg_fg_hist), axis=0)
355
- fg_bg_numel_w_thrs = np.cumsum(np.flip(fg_bg_hist), axis=0)
356
-
357
- fg___numel_w_thrs = fg_fg_numel_w_thrs + fg_bg_numel_w_thrs
358
- bg___numel_w_thrs = self.gt_size - fg___numel_w_thrs
359
-
360
- if self.gt_fg_numel == 0:
361
- enhanced_matrix_sum = bg___numel_w_thrs
362
- elif self.gt_fg_numel == self.gt_size:
363
- enhanced_matrix_sum = fg___numel_w_thrs
364
- else:
365
- parts_numel_w_thrs, combinations = self.generate_parts_numel_combinations(
366
- fg_fg_numel=fg_fg_numel_w_thrs, fg_bg_numel=fg_bg_numel_w_thrs,
367
- pred_fg_numel=fg___numel_w_thrs, pred_bg_numel=bg___numel_w_thrs,
368
- )
369
-
370
- results_parts = np.empty(shape=(4, 256), dtype=np.float64)
371
- for i, (part_numel, combination) in enumerate(zip(parts_numel_w_thrs, combinations)):
372
- align_matrix_value = 2 * (combination[0] * combination[1]) / \
373
- (combination[0] ** 2 + combination[1] ** 2 + _EPS)
374
- enhanced_matrix_value = (align_matrix_value + 1) ** 2 / 4
375
- results_parts[i] = enhanced_matrix_value * part_numel
376
- enhanced_matrix_sum = results_parts.sum(axis=0)
377
-
378
- em = enhanced_matrix_sum / (self.gt_size - 1 + _EPS)
379
- return em
380
-
381
- def generate_parts_numel_combinations(self, fg_fg_numel, fg_bg_numel, pred_fg_numel, pred_bg_numel):
382
- bg_fg_numel = self.gt_fg_numel - fg_fg_numel
383
- bg_bg_numel = pred_bg_numel - bg_fg_numel
384
-
385
- parts_numel = [fg_fg_numel, fg_bg_numel, bg_fg_numel, bg_bg_numel]
386
-
387
- mean_pred_value = pred_fg_numel / self.gt_size
388
- mean_gt_value = self.gt_fg_numel / self.gt_size
389
-
390
- demeaned_pred_fg_value = 1 - mean_pred_value
391
- demeaned_pred_bg_value = 0 - mean_pred_value
392
- demeaned_gt_fg_value = 1 - mean_gt_value
393
- demeaned_gt_bg_value = 0 - mean_gt_value
394
-
395
- combinations = [
396
- (demeaned_pred_fg_value, demeaned_gt_fg_value),
397
- (demeaned_pred_fg_value, demeaned_gt_bg_value),
398
- (demeaned_pred_bg_value, demeaned_gt_fg_value),
399
- (demeaned_pred_bg_value, demeaned_gt_bg_value)
400
- ]
401
- return parts_numel, combinations
402
-
403
- def get_results(self) -> dict:
404
- adaptive_em = np.mean(np.array(self.adaptive_ems, dtype=_TYPE))
405
- changeable_em = np.mean(np.array(self.changeable_ems, dtype=_TYPE), axis=0)
406
- return dict(em=dict(adp=adaptive_em, curve=changeable_em))
407
-
408
-
409
- class WeightedFmeasure(object):
410
- def __init__(self, beta: float = 1):
411
- self.beta = beta
412
- self.weighted_fms = []
413
-
414
- def step(self, pred: np.ndarray, gt: np.ndarray):
415
- pred, gt = _prepare_data(pred=pred, gt=gt)
416
-
417
- if np.all(~gt):
418
- wfm = 0
419
- else:
420
- wfm = self.cal_wfm(pred, gt)
421
- self.weighted_fms.append(wfm)
422
-
423
- def cal_wfm(self, pred: np.ndarray, gt: np.ndarray) -> float:
424
- # [Dst,IDXT] = bwdist(dGT);
425
- Dst, Idxt = bwdist(gt == 0, return_indices=True)
426
-
427
- # %Pixel dependency
428
- # E = abs(FG-dGT);
429
- E = np.abs(pred - gt)
430
- Et = np.copy(E)
431
- Et[gt == 0] = Et[Idxt[0][gt == 0], Idxt[1][gt == 0]]
432
-
433
- # K = fspecial('gaussian',7,5);
434
- # EA = imfilter(Et,K);
435
- K = self.matlab_style_gauss2D((7, 7), sigma=5)
436
- EA = convolve(Et, weights=K, mode="constant", cval=0)
437
- # MIN_E_EA = E;
438
- # MIN_E_EA(GT & EA<E) = EA(GT & EA<E);
439
- MIN_E_EA = np.where(gt & (EA < E), EA, E)
440
-
441
- # %Pixel importance
442
- B = np.where(gt == 0, 2 - np.exp(np.log(0.5) / 5 * Dst), np.ones_like(gt))
443
- Ew = MIN_E_EA * B
444
-
445
- TPw = np.sum(gt) - np.sum(Ew[gt == 1])
446
- FPw = np.sum(Ew[gt == 0])
447
-
448
-
449
- R = 1 - np.mean(Ew[gt == 1])
450
- P = TPw / (TPw + FPw + _EPS)
451
-
452
- # % Q = (1+Beta^2)*(R*P)./(eps+R+(Beta.*P));
453
- Q = (1 + self.beta) * R * P / (R + self.beta * P + _EPS)
454
-
455
- return Q
456
-
457
- def matlab_style_gauss2D(self, shape: tuple = (7, 7), sigma: int = 5) -> np.ndarray:
458
- """
459
- 2D gaussian mask - should give the same result as MATLAB's
460
- fspecial('gaussian',[shape],[sigma])
461
- """
462
- m, n = [(ss - 1) / 2 for ss in shape]
463
- y, x = np.ogrid[-m: m + 1, -n: n + 1]
464
- h = np.exp(-(x * x + y * y) / (2 * sigma * sigma))
465
- h[h < np.finfo(h.dtype).eps * h.max()] = 0
466
- sumh = h.sum()
467
- if sumh != 0:
468
- h /= sumh
469
- return h
470
-
471
- def get_results(self) -> dict:
472
- weighted_fm = np.mean(np.array(self.weighted_fms, dtype=_TYPE))
473
- return dict(wfm=weighted_fm)
474
-
475
-
476
- class HCEMeasure(object):
477
- def __init__(self):
478
- self.hces = []
479
-
480
- def step(self, pred: np.ndarray, gt: np.ndarray, gt_ske):
481
- # pred, gt = _prepare_data(pred, gt)
482
-
483
- hce = self.cal_hce(pred, gt, gt_ske)
484
- self.hces.append(hce)
485
-
486
- def get_results(self) -> dict:
487
- hce = np.mean(np.array(self.hces, _TYPE))
488
- return dict(hce=hce)
489
-
490
-
491
- def cal_hce(self, pred: np.ndarray, gt: np.ndarray, gt_ske: np.ndarray, relax=5, epsilon=2.0) -> float:
492
- # Binarize gt
493
- if(len(gt.shape)>2):
494
- gt = gt[:, :, 0]
495
-
496
- epsilon_gt = 128#(np.amin(gt)+np.amax(gt))/2.0
497
- gt = (gt>epsilon_gt).astype(np.uint8)
498
-
499
- # Binarize pred
500
- if(len(pred.shape)>2):
501
- pred = pred[:, :, 0]
502
- epsilon_pred = 128#(np.amin(pred)+np.amax(pred))/2.0
503
- pred = (pred>epsilon_pred).astype(np.uint8)
504
-
505
- Union = np.logical_or(gt, pred)
506
- TP = np.logical_and(gt, pred)
507
- FP = pred - TP
508
- FN = gt - TP
509
-
510
- # relax the Union of gt and pred
511
- Union_erode = Union.copy()
512
- Union_erode = cv2.erode(Union_erode.astype(np.uint8), disk(1), iterations=relax)
513
-
514
- # --- get the relaxed False Positive regions for computing the human efforts in correcting them ---
515
- FP_ = np.logical_and(FP, Union_erode) # get the relaxed FP
516
- for i in range(0, relax):
517
- FP_ = cv2.dilate(FP_.astype(np.uint8), disk(1))
518
- FP_ = np.logical_and(FP_, 1-np.logical_or(TP, FN))
519
- FP_ = np.logical_and(FP, FP_)
520
-
521
- # --- get the relaxed False Negative regions for computing the human efforts in correcting them ---
522
- FN_ = np.logical_and(FN, Union_erode) # preserve the structural components of FN
523
- ## recover the FN, where pixels are not close to the TP borders
524
- for i in range(0, relax):
525
- FN_ = cv2.dilate(FN_.astype(np.uint8), disk(1))
526
- FN_ = np.logical_and(FN_, 1-np.logical_or(TP, FP))
527
- FN_ = np.logical_and(FN, FN_)
528
- FN_ = np.logical_or(FN_, np.logical_xor(gt_ske, np.logical_and(TP, gt_ske))) # preserve the structural components of FN
529
-
530
- ## 2. =============Find exact polygon control points and independent regions==============
531
- ## find contours from FP_
532
- ctrs_FP, hier_FP = cv2.findContours(FP_.astype(np.uint8), cv2.RETR_TREE, cv2.CHAIN_APPROX_NONE)
533
- ## find control points and independent regions for human correction
534
- bdies_FP, indep_cnt_FP = self.filter_bdy_cond(ctrs_FP, FP_, np.logical_or(TP,FN_))
535
- ## find contours from FN_
536
- ctrs_FN, hier_FN = cv2.findContours(FN_.astype(np.uint8), cv2.RETR_TREE, cv2.CHAIN_APPROX_NONE)
537
- ## find control points and independent regions for human correction
538
- bdies_FN, indep_cnt_FN = self.filter_bdy_cond(ctrs_FN, FN_, 1-np.logical_or(np.logical_or(TP, FP_), FN_))
539
-
540
- poly_FP, poly_FP_len, poly_FP_point_cnt = self.approximate_RDP(bdies_FP, epsilon=epsilon)
541
- poly_FN, poly_FN_len, poly_FN_point_cnt = self.approximate_RDP(bdies_FN, epsilon=epsilon)
542
-
543
- # FP_points+FP_indep+FN_points+FN_indep
544
- return poly_FP_point_cnt+indep_cnt_FP+poly_FN_point_cnt+indep_cnt_FN
545
-
546
- def filter_bdy_cond(self, bdy_, mask, cond):
547
-
548
- cond = cv2.dilate(cond.astype(np.uint8), disk(1))
549
- labels = label(mask) # find the connected regions
550
- lbls = np.unique(labels) # the indices of the connected regions
551
- indep = np.ones(lbls.shape[0]) # the label of each connected regions
552
- indep[0] = 0 # 0 indicate the background region
553
-
554
- boundaries = []
555
- h,w = cond.shape[0:2]
556
- ind_map = np.zeros((h, w))
557
- indep_cnt = 0
558
-
559
- for i in range(0, len(bdy_)):
560
- tmp_bdies = []
561
- tmp_bdy = []
562
- for j in range(0, bdy_[i].shape[0]):
563
- r, c = bdy_[i][j,0,1],bdy_[i][j,0,0]
564
-
565
- if(np.sum(cond[r, c])==0 or ind_map[r, c]!=0):
566
- if(len(tmp_bdy)>0):
567
- tmp_bdies.append(tmp_bdy)
568
- tmp_bdy = []
569
- continue
570
- tmp_bdy.append([c, r])
571
- ind_map[r, c] = ind_map[r, c] + 1
572
- indep[labels[r, c]] = 0 # indicates part of the boundary of this region needs human correction
573
- if(len(tmp_bdy)>0):
574
- tmp_bdies.append(tmp_bdy)
575
-
576
- # check if the first and the last boundaries are connected
577
- # if yes, invert the first boundary and attach it after the last boundary
578
- if(len(tmp_bdies)>1):
579
- first_x, first_y = tmp_bdies[0][0]
580
- last_x, last_y = tmp_bdies[-1][-1]
581
- if((abs(first_x-last_x)==1 and first_y==last_y) or
582
- (first_x==last_x and abs(first_y-last_y)==1) or
583
- (abs(first_x-last_x)==1 and abs(first_y-last_y)==1)
584
- ):
585
- tmp_bdies[-1].extend(tmp_bdies[0][::-1])
586
- del tmp_bdies[0]
587
-
588
- for k in range(0, len(tmp_bdies)):
589
- tmp_bdies[k] = np.array(tmp_bdies[k])[:, np.newaxis, :]
590
- if(len(tmp_bdies)>0):
591
- boundaries.extend(tmp_bdies)
592
-
593
- return boundaries, np.sum(indep)
594
-
595
- # this function approximate each boundary by DP algorithm
596
- # https://en.wikipedia.org/wiki/Ramer%E2%80%93Douglas%E2%80%93Peucker_algorithm
597
- def approximate_RDP(self, boundaries, epsilon=1.0):
598
-
599
- boundaries_ = []
600
- boundaries_len_ = []
601
- pixel_cnt_ = 0
602
-
603
- # polygon approximate of each boundary
604
- for i in range(0, len(boundaries)):
605
- boundaries_.append(cv2.approxPolyDP(boundaries[i], epsilon, False))
606
-
607
- # count the control points number of each boundary and the total control points number of all the boundaries
608
- for i in range(0, len(boundaries_)):
609
- boundaries_len_.append(len(boundaries_[i]))
610
- pixel_cnt_ = pixel_cnt_ + len(boundaries_[i])
611
-
612
- return boundaries_, boundaries_len_, pixel_cnt_
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
BiRefNet_codes1/evaluation/valid.py DELETED
@@ -1,9 +0,0 @@
1
- from inference import inference
2
- from evaluation.evaluate import evaluate
3
-
4
-
5
- def valid(model, data_loader_test, pred_dir, method='tmp_val', testset='DIS-VD', only_S_MAE=True, device=0):
6
- model.eval()
7
- inference(model, data_loader_test, pred_dir, method, testset, device=device)
8
- performance_dict = evaluate(pred_dir, method, testset, only_S_MAE=only_S_MAE, epoch=model.epoch)
9
- return performance_dict
 
 
 
 
 
 
 
 
 
 
BiRefNet_codes1/gen_best_ep.py DELETED
@@ -1,85 +0,0 @@
1
- import os
2
- from glob import glob
3
- import numpy as np
4
- from config import Config
5
-
6
-
7
- config = Config()
8
-
9
- eval_txts = sorted(glob('e_results/*_eval.txt'))
10
- print('eval_txts:', [_.split(os.sep)[-1] for _ in eval_txts])
11
- score_panel = {}
12
- sep = '&'
13
- metrics = ['sm', 'wfm', 'hce'] # we used HCE for DIS and wFm for others.
14
- if 'DIS5K' not in config.task:
15
- metrics.remove('hce')
16
-
17
- for metric in metrics:
18
- print('Metric:', metric)
19
- current_line_nums = []
20
- for idx_et, eval_txt in enumerate(eval_txts):
21
- with open(eval_txt, 'r') as f:
22
- lines = [l for l in f.readlines()[3:] if '.' in l]
23
- current_line_nums.append(len(lines))
24
- for idx_et, eval_txt in enumerate(eval_txts):
25
- with open(eval_txt, 'r') as f:
26
- lines = [l for l in f.readlines()[3:] if '.' in l]
27
- for idx_line, line in enumerate(lines[:min(current_line_nums)]): # Consist line numbers by the minimal result file.
28
- properties = line.strip().strip(sep).split(sep)
29
- dataset = properties[0].strip()
30
- ckpt = properties[1].strip()
31
- if int(ckpt.split('--epoch_')[-1].strip()) < 0:
32
- continue
33
- targe_idx = {
34
- 'sm': [5, 2, 2, 5, 2],
35
- 'wfm': [3, 3, 8, 3, 8],
36
- 'hce': [7, -1, -1, 7, -1]
37
- }[metric][['DIS5K', 'COD', 'HRSOD', 'DIS5K+HRSOD+HRS10K', 'P3M-10k'].index(config.task)]
38
- if metric != 'hce':
39
- score_sm = float(properties[targe_idx].strip())
40
- else:
41
- score_sm = int(properties[targe_idx].strip().strip('.'))
42
- if idx_et == 0:
43
- score_panel[ckpt] = []
44
- score_panel[ckpt].append(score_sm)
45
-
46
- metrics_min = ['hce', 'mae']
47
- max_or_min = min if metric in metrics_min else max
48
- score_max = max_or_min(score_panel.values(), key=lambda x: np.sum(x))
49
-
50
- good_models = []
51
- for k, v in score_panel.items():
52
- if (np.sum(v) <= np.sum(score_max)) if metric in metrics_min else (np.sum(v) >= np.sum(score_max)):
53
- print(k, v)
54
- good_models.append(k)
55
-
56
- # Write
57
- with open(eval_txt, 'r') as f:
58
- lines = f.readlines()
59
- info4good_models = lines[:3]
60
- metric_names = [m.strip() for m in lines[1].strip().strip('&').split('&')[2:]]
61
- testset_mean_values = {metric_name: [] for metric_name in metric_names}
62
- for good_model in good_models:
63
- for idx_et, eval_txt in enumerate(eval_txts):
64
- with open(eval_txt, 'r') as f:
65
- lines = f.readlines()
66
- for line in lines:
67
- if set([good_model]) & set([_.strip() for _ in line.split(sep)]):
68
- info4good_models.append(line)
69
- metric_scores = [float(m.strip()) for m in line.strip().strip('&').split('&')[2:]]
70
- for idx_score, metric_score in enumerate(metric_scores):
71
- testset_mean_values[metric_names[idx_score]].append(metric_score)
72
-
73
- if 'DIS5K' in config.task:
74
- testset_mean_values_lst = ['{:<4}'.format(int(np.mean(v_lst[:-1]).round())) if name == 'HCE' else '{:.3f}'.format(np.mean(v_lst[:-1])).lstrip('0') for name, v_lst in testset_mean_values.items()] # [:-1] to remove DIS-VD
75
- sample_line_for_placing_mean_values = info4good_models[-2]
76
- numbers_placed_well = sample_line_for_placing_mean_values.replace(sample_line_for_placing_mean_values.split('&')[1].strip(), 'DIS-TEs').strip().split('&')[3:]
77
- for idx_number, (number_placed_well, testset_mean_value) in enumerate(zip(numbers_placed_well, testset_mean_values_lst)):
78
- numbers_placed_well[idx_number] = number_placed_well.replace(number_placed_well.strip(), testset_mean_value)
79
- testset_mean_line = '&'.join(sample_line_for_placing_mean_values.replace(sample_line_for_placing_mean_values.split('&')[1].strip(), 'DIS-TEs').split('&')[:3] + numbers_placed_well) + '\n'
80
- info4good_models.append(testset_mean_line)
81
- info4good_models.append(lines[-1])
82
- info = ''.join(info4good_models)
83
- print(info)
84
- with open(os.path.join('e_results', 'eval-{}_best_on_{}.txt'.format(config.task, metric)), 'w') as f:
85
- f.write(info + '\n')
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
BiRefNet_codes1/inference.py DELETED
@@ -1,105 +0,0 @@
1
- import os
2
- import argparse
3
- from glob import glob
4
- from tqdm import tqdm
5
- import cv2
6
- import torch
7
-
8
- from dataset import MyData
9
- from models.birefnet import BiRefNet
10
- from utils import save_tensor_img, check_state_dict
11
- from config import Config
12
-
13
-
14
- config = Config()
15
-
16
-
17
- def inference(model, data_loader_test, pred_root, method, testset, device=0):
18
- model_training = model.training
19
- if model_training:
20
- model.eval()
21
- for batch in tqdm(data_loader_test, total=len(data_loader_test)) if 1 or config.verbose_eval else data_loader_test:
22
- inputs = batch[0].to(device)
23
- # gts = batch[1].to(device)
24
- label_paths = batch[-1]
25
- with torch.no_grad():
26
- scaled_preds = model(inputs)[-1].sigmoid()
27
-
28
- os.makedirs(os.path.join(pred_root, method, testset), exist_ok=True)
29
-
30
- for idx_sample in range(scaled_preds.shape[0]):
31
- res = torch.nn.functional.interpolate(
32
- scaled_preds[idx_sample].unsqueeze(0),
33
- size=cv2.imread(label_paths[idx_sample], cv2.IMREAD_GRAYSCALE).shape[:2],
34
- mode='bilinear',
35
- align_corners=True
36
- )
37
- save_tensor_img(res, os.path.join(os.path.join(pred_root, method, testset), label_paths[idx_sample].replace('\\', '/').split('/')[-1])) # test set dir + file name
38
- if model_training:
39
- model.train()
40
- return None
41
-
42
-
43
- def main(args):
44
- # Init model
45
-
46
- device = config.device
47
- if args.ckpt_folder:
48
- print('Testing with models in {}'.format(args.ckpt_folder))
49
- else:
50
- print('Testing with model {}'.format(args.ckpt))
51
-
52
- if config.model == 'BiRefNet':
53
- model = BiRefNet(bb_pretrained=False)
54
- weights_lst = sorted(
55
- glob(os.path.join(args.ckpt_folder, '*.pth')) if args.ckpt_folder else [args.ckpt],
56
- key=lambda x: int(x.split('epoch_')[-1].split('.pth')[0]),
57
- reverse=True
58
- )
59
- for testset in args.testsets.split('+'):
60
- print('>>>> Testset: {}...'.format(testset))
61
- data_loader_test = torch.utils.data.DataLoader(
62
- dataset=MyData(testset, image_size=config.size, is_train=False),
63
- batch_size=config.batch_size_valid, shuffle=False, num_workers=config.num_workers, pin_memory=True
64
- )
65
- for weights in weights_lst:
66
- if int(weights.strip('.pth').split('epoch_')[-1]) % 1 != 0:
67
- continue
68
- print('\tInferencing {}...'.format(weights))
69
- # model.load_state_dict(torch.load(weights, map_location='cpu'))
70
- state_dict = torch.load(weights, map_location='cpu')
71
- state_dict = check_state_dict(state_dict)
72
- model.load_state_dict(state_dict)
73
- model = model.to(device)
74
- inference(
75
- model, data_loader_test=data_loader_test, pred_root=args.pred_root,
76
- method='--'.join([w.rstrip('.pth') for w in weights.split(os.sep)[-2:]]),
77
- testset=testset, device=config.device
78
- )
79
-
80
-
81
- if __name__ == '__main__':
82
- # Parameter from command line
83
- parser = argparse.ArgumentParser(description='')
84
- parser.add_argument('--ckpt', type=str, help='model folder')
85
- parser.add_argument('--ckpt_folder', default=sorted(glob(os.path.join('ckpt', '*')))[-1], type=str, help='model folder')
86
- parser.add_argument('--pred_root', default='e_preds', type=str, help='Output folder')
87
- parser.add_argument('--testsets',
88
- default={
89
- 'DIS5K': 'DIS-VD+DIS-TE1+DIS-TE2+DIS-TE3+DIS-TE4',
90
- 'COD': 'TE-COD10K+NC4K+TE-CAMO+CHAMELEON',
91
- 'HRSOD': 'DAVIS-S+TE-HRSOD+TE-UHRSD+TE-DUTS+DUT-OMRON',
92
- 'DIS5K+HRSOD+HRS10K': 'DIS-VD',
93
- 'P3M-10k': 'TE-P3M-500-P+TE-P3M-500-NP',
94
- 'DIS5K-': 'DIS-VD',
95
- 'COD-': 'TE-COD10K',
96
- 'SOD-': 'DAVIS-S+TE-HRSOD+TE-UHRSD',
97
- }[config.task + ''],
98
- type=str,
99
- help="Test all sets: , 'DIS-VD+DIS-TE1+DIS-TE2+DIS-TE3+DIS-TE4'")
100
-
101
- args = parser.parse_args()
102
-
103
- if config.precisionHigh:
104
- torch.set_float32_matmul_precision('high')
105
- main(args)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
BiRefNet_codes1/loss.py DELETED
@@ -1,274 +0,0 @@
1
- import torch
2
- from torch import nn
3
- import torch.nn.functional as F
4
- from torch.autograd import Variable
5
- from math import exp
6
- from config import Config
7
-
8
-
9
- class Discriminator(nn.Module):
10
- def __init__(self, channels=1, img_size=256):
11
- super(Discriminator, self).__init__()
12
-
13
- def discriminator_block(in_filters, out_filters, bn=Config().batch_size > 1):
14
- block = [nn.Conv2d(in_filters, out_filters, 3, 2, 1), nn.LeakyReLU(0.2, inplace=True), nn.Dropout2d(0.25)]
15
- if bn:
16
- block.append(nn.BatchNorm2d(out_filters, 0.8))
17
- return block
18
-
19
- self.model = nn.Sequential(
20
- *discriminator_block(channels, 16, bn=False),
21
- *discriminator_block(16, 32),
22
- *discriminator_block(32, 64),
23
- *discriminator_block(64, 128),
24
- )
25
-
26
- # The height and width of downsampled image
27
- ds_size = img_size // 2 ** 4
28
- self.adv_layer = nn.Sequential(nn.Linear(128 * ds_size ** 2, 1), nn.Sigmoid())
29
-
30
- def forward(self, img):
31
- out = self.model(img)
32
- out = out.view(out.shape[0], -1)
33
- validity = self.adv_layer(out)
34
-
35
- return validity
36
-
37
-
38
- class ContourLoss(torch.nn.Module):
39
- def __init__(self):
40
- super(ContourLoss, self).__init__()
41
-
42
- def forward(self, pred, target, weight=10):
43
- '''
44
- target, pred: tensor of shape (B, C, H, W), where target[:,:,region_in_contour] == 1,
45
- target[:,:,region_out_contour] == 0.
46
- weight: scalar, length term weight.
47
- '''
48
- # length term
49
- delta_r = pred[:,:,1:,:] - pred[:,:,:-1,:] # horizontal gradient (B, C, H-1, W)
50
- delta_c = pred[:,:,:,1:] - pred[:,:,:,:-1] # vertical gradient (B, C, H, W-1)
51
-
52
- delta_r = delta_r[:,:,1:,:-2]**2 # (B, C, H-2, W-2)
53
- delta_c = delta_c[:,:,:-2,1:]**2 # (B, C, H-2, W-2)
54
- delta_pred = torch.abs(delta_r + delta_c)
55
-
56
- epsilon = 1e-8 # where is a parameter to avoid square root is zero in practice.
57
- length = torch.mean(torch.sqrt(delta_pred + epsilon)) # eq.(11) in the paper, mean is used instead of sum.
58
-
59
- c_in = torch.ones_like(pred)
60
- c_out = torch.zeros_like(pred)
61
-
62
- region_in = torch.mean( pred * (target - c_in )**2 ) # equ.(12) in the paper, mean is used instead of sum.
63
- region_out = torch.mean( (1-pred) * (target - c_out)**2 )
64
- region = region_in + region_out
65
-
66
- loss = weight * length + region
67
-
68
- return loss
69
-
70
-
71
- class IoULoss(torch.nn.Module):
72
- def __init__(self):
73
- super(IoULoss, self).__init__()
74
-
75
- def forward(self, pred, target):
76
- b = pred.shape[0]
77
- IoU = 0.0
78
- for i in range(0, b):
79
- # compute the IoU of the foreground
80
- Iand1 = torch.sum(target[i, :, :, :] * pred[i, :, :, :])
81
- Ior1 = torch.sum(target[i, :, :, :]) + torch.sum(pred[i, :, :, :]) - Iand1
82
- IoU1 = Iand1 / Ior1
83
- # IoU loss is (1-IoU1)
84
- IoU = IoU + (1-IoU1)
85
- # return IoU/b
86
- return IoU
87
-
88
-
89
- class StructureLoss(torch.nn.Module):
90
- def __init__(self):
91
- super(StructureLoss, self).__init__()
92
-
93
- def forward(self, pred, target):
94
- weit = 1+5*torch.abs(F.avg_pool2d(target, kernel_size=31, stride=1, padding=15)-target)
95
- wbce = F.binary_cross_entropy_with_logits(pred, target, reduction='none')
96
- wbce = (weit*wbce).sum(dim=(2,3))/weit.sum(dim=(2,3))
97
-
98
- pred = torch.sigmoid(pred)
99
- inter = ((pred * target) * weit).sum(dim=(2, 3))
100
- union = ((pred + target) * weit).sum(dim=(2, 3))
101
- wiou = 1-(inter+1)/(union-inter+1)
102
-
103
- return (wbce+wiou).mean()
104
-
105
-
106
- class PatchIoULoss(torch.nn.Module):
107
- def __init__(self):
108
- super(PatchIoULoss, self).__init__()
109
- self.iou_loss = IoULoss()
110
-
111
- def forward(self, pred, target):
112
- win_y, win_x = 64, 64
113
- iou_loss = 0.
114
- for anchor_y in range(0, target.shape[0], win_y):
115
- for anchor_x in range(0, target.shape[1], win_y):
116
- patch_pred = pred[:, :, anchor_y:anchor_y+win_y, anchor_x:anchor_x+win_x]
117
- patch_target = target[:, :, anchor_y:anchor_y+win_y, anchor_x:anchor_x+win_x]
118
- patch_iou_loss = self.iou_loss(patch_pred, patch_target)
119
- iou_loss += patch_iou_loss
120
- return iou_loss
121
-
122
-
123
- class ThrReg_loss(torch.nn.Module):
124
- def __init__(self):
125
- super(ThrReg_loss, self).__init__()
126
-
127
- def forward(self, pred, gt=None):
128
- return torch.mean(1 - ((pred - 0) ** 2 + (pred - 1) ** 2))
129
-
130
-
131
- class ClsLoss(nn.Module):
132
- """
133
- Auxiliary classification loss for each refined class output.
134
- """
135
- def __init__(self):
136
- super(ClsLoss, self).__init__()
137
- self.config = Config()
138
- self.lambdas_cls = self.config.lambdas_cls
139
-
140
- self.criterions_last = {
141
- 'ce': nn.CrossEntropyLoss()
142
- }
143
-
144
- def forward(self, preds, gt):
145
- loss = 0.
146
- for _, pred_lvl in enumerate(preds):
147
- if pred_lvl is None:
148
- continue
149
- for criterion_name, criterion in self.criterions_last.items():
150
- loss += criterion(pred_lvl, gt) * self.lambdas_cls[criterion_name]
151
- return loss
152
-
153
-
154
- class PixLoss(nn.Module):
155
- """
156
- Pixel loss for each refined map output.
157
- """
158
- def __init__(self):
159
- super(PixLoss, self).__init__()
160
- self.config = Config()
161
- self.lambdas_pix_last = self.config.lambdas_pix_last
162
-
163
- self.criterions_last = {}
164
- if 'bce' in self.lambdas_pix_last and self.lambdas_pix_last['bce']:
165
- self.criterions_last['bce'] = nn.BCELoss() if not self.config.use_fp16 else nn.BCEWithLogitsLoss()
166
- if 'iou' in self.lambdas_pix_last and self.lambdas_pix_last['iou']:
167
- self.criterions_last['iou'] = IoULoss()
168
- if 'iou_patch' in self.lambdas_pix_last and self.lambdas_pix_last['iou_patch']:
169
- self.criterions_last['iou_patch'] = PatchIoULoss()
170
- if 'ssim' in self.lambdas_pix_last and self.lambdas_pix_last['ssim']:
171
- self.criterions_last['ssim'] = SSIMLoss()
172
- if 'mse' in self.lambdas_pix_last and self.lambdas_pix_last['mse']:
173
- self.criterions_last['mse'] = nn.MSELoss()
174
- if 'reg' in self.lambdas_pix_last and self.lambdas_pix_last['reg']:
175
- self.criterions_last['reg'] = ThrReg_loss()
176
- if 'cnt' in self.lambdas_pix_last and self.lambdas_pix_last['cnt']:
177
- self.criterions_last['cnt'] = ContourLoss()
178
- if 'structure' in self.lambdas_pix_last and self.lambdas_pix_last['structure']:
179
- self.criterions_last['structure'] = StructureLoss()
180
-
181
- def forward(self, scaled_preds, gt):
182
- loss = 0.
183
- criterions_embedded_with_sigmoid = ['structure', ] + ['bce'] if self.config.use_fp16 else []
184
- for _, pred_lvl in enumerate(scaled_preds):
185
- if pred_lvl.shape != gt.shape:
186
- pred_lvl = nn.functional.interpolate(pred_lvl, size=gt.shape[2:], mode='bilinear', align_corners=True)
187
- for criterion_name, criterion in self.criterions_last.items():
188
- _loss = criterion(pred_lvl.sigmoid() if criterion_name not in criterions_embedded_with_sigmoid else pred_lvl, gt) * self.lambdas_pix_last[criterion_name]
189
- loss += _loss
190
- # print(criterion_name, _loss.item())
191
- return loss
192
-
193
-
194
- class SSIMLoss(torch.nn.Module):
195
- def __init__(self, window_size=11, size_average=True):
196
- super(SSIMLoss, self).__init__()
197
- self.window_size = window_size
198
- self.size_average = size_average
199
- self.channel = 1
200
- self.window = create_window(window_size, self.channel)
201
-
202
- def forward(self, img1, img2):
203
- (_, channel, _, _) = img1.size()
204
- if channel == self.channel and self.window.data.type() == img1.data.type():
205
- window = self.window
206
- else:
207
- window = create_window(self.window_size, channel)
208
- if img1.is_cuda:
209
- window = window.cuda(img1.get_device())
210
- window = window.type_as(img1)
211
- self.window = window
212
- self.channel = channel
213
- return 1 - _ssim(img1, img2, window, self.window_size, channel, self.size_average)
214
-
215
-
216
- def gaussian(window_size, sigma):
217
- gauss = torch.Tensor([exp(-(x - window_size//2)**2/float(2*sigma**2)) for x in range(window_size)])
218
- return gauss/gauss.sum()
219
-
220
-
221
- def create_window(window_size, channel):
222
- _1D_window = gaussian(window_size, 1.5).unsqueeze(1)
223
- _2D_window = _1D_window.mm(_1D_window.t()).float().unsqueeze(0).unsqueeze(0)
224
- window = Variable(_2D_window.expand(channel, 1, window_size, window_size).contiguous())
225
- return window
226
-
227
-
228
- def _ssim(img1, img2, window, window_size, channel, size_average=True):
229
- mu1 = F.conv2d(img1, window, padding = window_size//2, groups=channel)
230
- mu2 = F.conv2d(img2, window, padding = window_size//2, groups=channel)
231
-
232
- mu1_sq = mu1.pow(2)
233
- mu2_sq = mu2.pow(2)
234
- mu1_mu2 = mu1*mu2
235
-
236
- sigma1_sq = F.conv2d(img1*img1, window, padding=window_size//2, groups=channel) - mu1_sq
237
- sigma2_sq = F.conv2d(img2*img2, window, padding=window_size//2, groups=channel) - mu2_sq
238
- sigma12 = F.conv2d(img1*img2, window, padding=window_size//2, groups=channel) - mu1_mu2
239
-
240
- C1 = 0.01**2
241
- C2 = 0.03**2
242
-
243
- ssim_map = ((2*mu1_mu2 + C1)*(2*sigma12 + C2))/((mu1_sq + mu2_sq + C1)*(sigma1_sq + sigma2_sq + C2))
244
-
245
- if size_average:
246
- return ssim_map.mean()
247
- else:
248
- return ssim_map.mean(1).mean(1).mean(1)
249
-
250
-
251
- def SSIM(x, y):
252
- C1 = 0.01 ** 2
253
- C2 = 0.03 ** 2
254
-
255
- mu_x = nn.AvgPool2d(3, 1, 1)(x)
256
- mu_y = nn.AvgPool2d(3, 1, 1)(y)
257
- mu_x_mu_y = mu_x * mu_y
258
- mu_x_sq = mu_x.pow(2)
259
- mu_y_sq = mu_y.pow(2)
260
-
261
- sigma_x = nn.AvgPool2d(3, 1, 1)(x * x) - mu_x_sq
262
- sigma_y = nn.AvgPool2d(3, 1, 1)(y * y) - mu_y_sq
263
- sigma_xy = nn.AvgPool2d(3, 1, 1)(x * y) - mu_x_mu_y
264
-
265
- SSIM_n = (2 * mu_x_mu_y + C1) * (2 * sigma_xy + C2)
266
- SSIM_d = (mu_x_sq + mu_y_sq + C1) * (sigma_x + sigma_y + C2)
267
- SSIM = SSIM_n / SSIM_d
268
-
269
- return torch.clamp((1 - SSIM) / 2, 0, 1)
270
-
271
-
272
- def saliency_structure_consistency(x, y):
273
- ssim = torch.mean(SSIM(x,y))
274
- return ssim
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
BiRefNet_codes1/make_a_copy.sh DELETED
@@ -1,18 +0,0 @@
1
- #!/bin/bash
2
- # Set dst repo here.
3
- repo=$1
4
- mkdir ../${repo}
5
- mkdir ../${repo}/evaluation
6
- mkdir ../${repo}/models
7
- mkdir ../${repo}/models/backbones
8
- mkdir ../${repo}/models/modules
9
- mkdir ../${repo}/models/refinement
10
-
11
- cp ./*.sh ../${repo}
12
- cp ./*.py ../${repo}
13
- cp ./evaluation/*.py ../${repo}/evaluation
14
- cp ./models/*.py ../${repo}/models
15
- cp ./models/backbones/*.py ../${repo}/models/backbones
16
- cp ./models/modules/*.py ../${repo}/models/modules
17
- cp ./models/refinement/*.py ../${repo}/models/refinement
18
- cp -r ./.git* ../${repo}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
BiRefNet_codes1/models/backbones/build_backbone.py DELETED
@@ -1,44 +0,0 @@
1
- import torch
2
- import torch.nn as nn
3
- from collections import OrderedDict
4
- from torchvision.models import vgg16, vgg16_bn, VGG16_Weights, VGG16_BN_Weights, resnet50, ResNet50_Weights
5
- from models.backbones.pvt_v2 import pvt_v2_b0, pvt_v2_b1, pvt_v2_b2, pvt_v2_b5
6
- from models.backbones.swin_v1 import swin_v1_t, swin_v1_s, swin_v1_b, swin_v1_l
7
- from config import Config
8
-
9
-
10
- config = Config()
11
-
12
- def build_backbone(bb_name, pretrained=True, params_settings=''):
13
- if bb_name == 'vgg16':
14
- bb_net = list(vgg16(pretrained=VGG16_Weights.DEFAULT if pretrained else None).children())[0]
15
- bb = nn.Sequential(OrderedDict({'conv1': bb_net[:4], 'conv2': bb_net[4:9], 'conv3': bb_net[9:16], 'conv4': bb_net[16:23]}))
16
- elif bb_name == 'vgg16bn':
17
- bb_net = list(vgg16_bn(pretrained=VGG16_BN_Weights.DEFAULT if pretrained else None).children())[0]
18
- bb = nn.Sequential(OrderedDict({'conv1': bb_net[:6], 'conv2': bb_net[6:13], 'conv3': bb_net[13:23], 'conv4': bb_net[23:33]}))
19
- elif bb_name == 'resnet50':
20
- bb_net = list(resnet50(pretrained=ResNet50_Weights.DEFAULT if pretrained else None).children())
21
- bb = nn.Sequential(OrderedDict({'conv1': nn.Sequential(*bb_net[0:3]), 'conv2': bb_net[4], 'conv3': bb_net[5], 'conv4': bb_net[6]}))
22
- else:
23
- bb = eval('{}({})'.format(bb_name, params_settings))
24
- if pretrained:
25
- bb = load_weights(bb, bb_name)
26
- return bb
27
-
28
- def load_weights(model, model_name):
29
- save_model = torch.load(config.weights[model_name], map_location='cpu')
30
- model_dict = model.state_dict()
31
- state_dict = {k: v if v.size() == model_dict[k].size() else model_dict[k] for k, v in save_model.items() if k in model_dict.keys()}
32
- # to ignore the weights with mismatched size when I modify the backbone itself.
33
- if not state_dict:
34
- save_model_keys = list(save_model.keys())
35
- sub_item = save_model_keys[0] if len(save_model_keys) == 1 else None
36
- state_dict = {k: v if v.size() == model_dict[k].size() else model_dict[k] for k, v in save_model[sub_item].items() if k in model_dict.keys()}
37
- if not state_dict or not sub_item:
38
- print('Weights are not successully loaded. Check the state dict of weights file.')
39
- return None
40
- else:
41
- print('Found correct weights in the "{}" item of loaded state_dict.'.format(sub_item))
42
- model_dict.update(state_dict)
43
- model.load_state_dict(model_dict)
44
- return model
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
BiRefNet_codes1/models/backbones/pvt_v2.py DELETED
@@ -1,435 +0,0 @@
1
- import torch
2
- import torch.nn as nn
3
- from functools import partial
4
-
5
- from timm.models.layers import DropPath, to_2tuple, trunc_normal_
6
- from timm.models.registry import register_model
7
-
8
- import math
9
-
10
- from config import Config
11
-
12
- config = Config()
13
-
14
- class Mlp(nn.Module):
15
- def __init__(self, in_features, hidden_features=None, out_features=None, act_layer=nn.GELU, drop=0.):
16
- super().__init__()
17
- out_features = out_features or in_features
18
- hidden_features = hidden_features or in_features
19
- self.fc1 = nn.Linear(in_features, hidden_features)
20
- self.dwconv = DWConv(hidden_features)
21
- self.act = act_layer()
22
- self.fc2 = nn.Linear(hidden_features, out_features)
23
- self.drop = nn.Dropout(drop)
24
-
25
- self.apply(self._init_weights)
26
-
27
- def _init_weights(self, m):
28
- if isinstance(m, nn.Linear):
29
- trunc_normal_(m.weight, std=.02)
30
- if isinstance(m, nn.Linear) and m.bias is not None:
31
- nn.init.constant_(m.bias, 0)
32
- elif isinstance(m, nn.LayerNorm):
33
- nn.init.constant_(m.bias, 0)
34
- nn.init.constant_(m.weight, 1.0)
35
- elif isinstance(m, nn.Conv2d):
36
- fan_out = m.kernel_size[0] * m.kernel_size[1] * m.out_channels
37
- fan_out //= m.groups
38
- m.weight.data.normal_(0, math.sqrt(2.0 / fan_out))
39
- if m.bias is not None:
40
- m.bias.data.zero_()
41
-
42
- def forward(self, x, H, W):
43
- x = self.fc1(x)
44
- x = self.dwconv(x, H, W)
45
- x = self.act(x)
46
- x = self.drop(x)
47
- x = self.fc2(x)
48
- x = self.drop(x)
49
- return x
50
-
51
-
52
- class Attention(nn.Module):
53
- def __init__(self, dim, num_heads=8, qkv_bias=False, qk_scale=None, attn_drop=0., proj_drop=0., sr_ratio=1):
54
- super().__init__()
55
- assert dim % num_heads == 0, f"dim {dim} should be divided by num_heads {num_heads}."
56
-
57
- self.dim = dim
58
- self.num_heads = num_heads
59
- head_dim = dim // num_heads
60
- self.scale = qk_scale or head_dim ** -0.5
61
-
62
- self.q = nn.Linear(dim, dim, bias=qkv_bias)
63
- self.kv = nn.Linear(dim, dim * 2, bias=qkv_bias)
64
- self.attn_drop_prob = attn_drop
65
- self.attn_drop = nn.Dropout(attn_drop)
66
- self.proj = nn.Linear(dim, dim)
67
- self.proj_drop = nn.Dropout(proj_drop)
68
-
69
- self.sr_ratio = sr_ratio
70
- if sr_ratio > 1:
71
- self.sr = nn.Conv2d(dim, dim, kernel_size=sr_ratio, stride=sr_ratio)
72
- self.norm = nn.LayerNorm(dim)
73
-
74
- self.apply(self._init_weights)
75
-
76
- def _init_weights(self, m):
77
- if isinstance(m, nn.Linear):
78
- trunc_normal_(m.weight, std=.02)
79
- if isinstance(m, nn.Linear) and m.bias is not None:
80
- nn.init.constant_(m.bias, 0)
81
- elif isinstance(m, nn.LayerNorm):
82
- nn.init.constant_(m.bias, 0)
83
- nn.init.constant_(m.weight, 1.0)
84
- elif isinstance(m, nn.Conv2d):
85
- fan_out = m.kernel_size[0] * m.kernel_size[1] * m.out_channels
86
- fan_out //= m.groups
87
- m.weight.data.normal_(0, math.sqrt(2.0 / fan_out))
88
- if m.bias is not None:
89
- m.bias.data.zero_()
90
-
91
- def forward(self, x, H, W):
92
- B, N, C = x.shape
93
- q = self.q(x).reshape(B, N, self.num_heads, C // self.num_heads).permute(0, 2, 1, 3)
94
-
95
- if self.sr_ratio > 1:
96
- x_ = x.permute(0, 2, 1).reshape(B, C, H, W)
97
- x_ = self.sr(x_).reshape(B, C, -1).permute(0, 2, 1)
98
- x_ = self.norm(x_)
99
- kv = self.kv(x_).reshape(B, -1, 2, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4)
100
- else:
101
- kv = self.kv(x).reshape(B, -1, 2, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4)
102
- k, v = kv[0], kv[1]
103
-
104
- if config.SDPA_enabled:
105
- x = torch.nn.functional.scaled_dot_product_attention(
106
- q, k, v,
107
- attn_mask=None, dropout_p=self.attn_drop_prob, is_causal=False
108
- ).transpose(1, 2).reshape(B, N, C)
109
- else:
110
- attn = (q @ k.transpose(-2, -1)) * self.scale
111
- attn = attn.softmax(dim=-1)
112
- attn = self.attn_drop(attn)
113
-
114
- x = (attn @ v).transpose(1, 2).reshape(B, N, C)
115
- x = self.proj(x)
116
- x = self.proj_drop(x)
117
-
118
- return x
119
-
120
-
121
- class Block(nn.Module):
122
-
123
- def __init__(self, dim, num_heads, mlp_ratio=4., qkv_bias=False, qk_scale=None, drop=0., attn_drop=0.,
124
- drop_path=0., act_layer=nn.GELU, norm_layer=nn.LayerNorm, sr_ratio=1):
125
- super().__init__()
126
- self.norm1 = norm_layer(dim)
127
- self.attn = Attention(
128
- dim,
129
- num_heads=num_heads, qkv_bias=qkv_bias, qk_scale=qk_scale,
130
- attn_drop=attn_drop, proj_drop=drop, sr_ratio=sr_ratio)
131
- # NOTE: drop path for stochastic depth, we shall see if this is better than dropout here
132
- self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity()
133
- self.norm2 = norm_layer(dim)
134
- mlp_hidden_dim = int(dim * mlp_ratio)
135
- self.mlp = Mlp(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop)
136
-
137
- self.apply(self._init_weights)
138
-
139
- def _init_weights(self, m):
140
- if isinstance(m, nn.Linear):
141
- trunc_normal_(m.weight, std=.02)
142
- if isinstance(m, nn.Linear) and m.bias is not None:
143
- nn.init.constant_(m.bias, 0)
144
- elif isinstance(m, nn.LayerNorm):
145
- nn.init.constant_(m.bias, 0)
146
- nn.init.constant_(m.weight, 1.0)
147
- elif isinstance(m, nn.Conv2d):
148
- fan_out = m.kernel_size[0] * m.kernel_size[1] * m.out_channels
149
- fan_out //= m.groups
150
- m.weight.data.normal_(0, math.sqrt(2.0 / fan_out))
151
- if m.bias is not None:
152
- m.bias.data.zero_()
153
-
154
- def forward(self, x, H, W):
155
- x = x + self.drop_path(self.attn(self.norm1(x), H, W))
156
- x = x + self.drop_path(self.mlp(self.norm2(x), H, W))
157
-
158
- return x
159
-
160
-
161
- class OverlapPatchEmbed(nn.Module):
162
- """ Image to Patch Embedding
163
- """
164
-
165
- def __init__(self, img_size=224, patch_size=7, stride=4, in_channels=3, embed_dim=768):
166
- super().__init__()
167
- img_size = to_2tuple(img_size)
168
- patch_size = to_2tuple(patch_size)
169
-
170
- self.img_size = img_size
171
- self.patch_size = patch_size
172
- self.H, self.W = img_size[0] // patch_size[0], img_size[1] // patch_size[1]
173
- self.num_patches = self.H * self.W
174
- self.proj = nn.Conv2d(in_channels, embed_dim, kernel_size=patch_size, stride=stride,
175
- padding=(patch_size[0] // 2, patch_size[1] // 2))
176
- self.norm = nn.LayerNorm(embed_dim)
177
-
178
- self.apply(self._init_weights)
179
-
180
- def _init_weights(self, m):
181
- if isinstance(m, nn.Linear):
182
- trunc_normal_(m.weight, std=.02)
183
- if isinstance(m, nn.Linear) and m.bias is not None:
184
- nn.init.constant_(m.bias, 0)
185
- elif isinstance(m, nn.LayerNorm):
186
- nn.init.constant_(m.bias, 0)
187
- nn.init.constant_(m.weight, 1.0)
188
- elif isinstance(m, nn.Conv2d):
189
- fan_out = m.kernel_size[0] * m.kernel_size[1] * m.out_channels
190
- fan_out //= m.groups
191
- m.weight.data.normal_(0, math.sqrt(2.0 / fan_out))
192
- if m.bias is not None:
193
- m.bias.data.zero_()
194
-
195
- def forward(self, x):
196
- x = self.proj(x)
197
- _, _, H, W = x.shape
198
- x = x.flatten(2).transpose(1, 2)
199
- x = self.norm(x)
200
-
201
- return x, H, W
202
-
203
-
204
- class PyramidVisionTransformerImpr(nn.Module):
205
- def __init__(self, img_size=224, patch_size=16, in_channels=3, num_classes=1000, embed_dims=[64, 128, 256, 512],
206
- num_heads=[1, 2, 4, 8], mlp_ratios=[4, 4, 4, 4], qkv_bias=False, qk_scale=None, drop_rate=0.,
207
- attn_drop_rate=0., drop_path_rate=0., norm_layer=nn.LayerNorm,
208
- depths=[3, 4, 6, 3], sr_ratios=[8, 4, 2, 1]):
209
- super().__init__()
210
- self.num_classes = num_classes
211
- self.depths = depths
212
-
213
- # patch_embed
214
- self.patch_embed1 = OverlapPatchEmbed(img_size=img_size, patch_size=7, stride=4, in_channels=in_channels,
215
- embed_dim=embed_dims[0])
216
- self.patch_embed2 = OverlapPatchEmbed(img_size=img_size // 4, patch_size=3, stride=2, in_channels=embed_dims[0],
217
- embed_dim=embed_dims[1])
218
- self.patch_embed3 = OverlapPatchEmbed(img_size=img_size // 8, patch_size=3, stride=2, in_channels=embed_dims[1],
219
- embed_dim=embed_dims[2])
220
- self.patch_embed4 = OverlapPatchEmbed(img_size=img_size // 16, patch_size=3, stride=2, in_channels=embed_dims[2],
221
- embed_dim=embed_dims[3])
222
-
223
- # transformer encoder
224
- dpr = [x.item() for x in torch.linspace(0, drop_path_rate, sum(depths))] # stochastic depth decay rule
225
- cur = 0
226
- self.block1 = nn.ModuleList([Block(
227
- dim=embed_dims[0], num_heads=num_heads[0], mlp_ratio=mlp_ratios[0], qkv_bias=qkv_bias, qk_scale=qk_scale,
228
- drop=drop_rate, attn_drop=attn_drop_rate, drop_path=dpr[cur + i], norm_layer=norm_layer,
229
- sr_ratio=sr_ratios[0])
230
- for i in range(depths[0])])
231
- self.norm1 = norm_layer(embed_dims[0])
232
-
233
- cur += depths[0]
234
- self.block2 = nn.ModuleList([Block(
235
- dim=embed_dims[1], num_heads=num_heads[1], mlp_ratio=mlp_ratios[1], qkv_bias=qkv_bias, qk_scale=qk_scale,
236
- drop=drop_rate, attn_drop=attn_drop_rate, drop_path=dpr[cur + i], norm_layer=norm_layer,
237
- sr_ratio=sr_ratios[1])
238
- for i in range(depths[1])])
239
- self.norm2 = norm_layer(embed_dims[1])
240
-
241
- cur += depths[1]
242
- self.block3 = nn.ModuleList([Block(
243
- dim=embed_dims[2], num_heads=num_heads[2], mlp_ratio=mlp_ratios[2], qkv_bias=qkv_bias, qk_scale=qk_scale,
244
- drop=drop_rate, attn_drop=attn_drop_rate, drop_path=dpr[cur + i], norm_layer=norm_layer,
245
- sr_ratio=sr_ratios[2])
246
- for i in range(depths[2])])
247
- self.norm3 = norm_layer(embed_dims[2])
248
-
249
- cur += depths[2]
250
- self.block4 = nn.ModuleList([Block(
251
- dim=embed_dims[3], num_heads=num_heads[3], mlp_ratio=mlp_ratios[3], qkv_bias=qkv_bias, qk_scale=qk_scale,
252
- drop=drop_rate, attn_drop=attn_drop_rate, drop_path=dpr[cur + i], norm_layer=norm_layer,
253
- sr_ratio=sr_ratios[3])
254
- for i in range(depths[3])])
255
- self.norm4 = norm_layer(embed_dims[3])
256
-
257
- # classification head
258
- # self.head = nn.Linear(embed_dims[3], num_classes) if num_classes > 0 else nn.Identity()
259
-
260
- self.apply(self._init_weights)
261
-
262
- def _init_weights(self, m):
263
- if isinstance(m, nn.Linear):
264
- trunc_normal_(m.weight, std=.02)
265
- if isinstance(m, nn.Linear) and m.bias is not None:
266
- nn.init.constant_(m.bias, 0)
267
- elif isinstance(m, nn.LayerNorm):
268
- nn.init.constant_(m.bias, 0)
269
- nn.init.constant_(m.weight, 1.0)
270
- elif isinstance(m, nn.Conv2d):
271
- fan_out = m.kernel_size[0] * m.kernel_size[1] * m.out_channels
272
- fan_out //= m.groups
273
- m.weight.data.normal_(0, math.sqrt(2.0 / fan_out))
274
- if m.bias is not None:
275
- m.bias.data.zero_()
276
-
277
- def init_weights(self, pretrained=None):
278
- if isinstance(pretrained, str):
279
- logger = 1
280
- #load_checkpoint(self, pretrained, map_location='cpu', strict=False, logger=logger)
281
-
282
- def reset_drop_path(self, drop_path_rate):
283
- dpr = [x.item() for x in torch.linspace(0, drop_path_rate, sum(self.depths))]
284
- cur = 0
285
- for i in range(self.depths[0]):
286
- self.block1[i].drop_path.drop_prob = dpr[cur + i]
287
-
288
- cur += self.depths[0]
289
- for i in range(self.depths[1]):
290
- self.block2[i].drop_path.drop_prob = dpr[cur + i]
291
-
292
- cur += self.depths[1]
293
- for i in range(self.depths[2]):
294
- self.block3[i].drop_path.drop_prob = dpr[cur + i]
295
-
296
- cur += self.depths[2]
297
- for i in range(self.depths[3]):
298
- self.block4[i].drop_path.drop_prob = dpr[cur + i]
299
-
300
- def freeze_patch_emb(self):
301
- self.patch_embed1.requires_grad = False
302
-
303
- @torch.jit.ignore
304
- def no_weight_decay(self):
305
- return {'pos_embed1', 'pos_embed2', 'pos_embed3', 'pos_embed4', 'cls_token'} # has pos_embed may be better
306
-
307
- def get_classifier(self):
308
- return self.head
309
-
310
- def reset_classifier(self, num_classes, global_pool=''):
311
- self.num_classes = num_classes
312
- self.head = nn.Linear(self.embed_dim, num_classes) if num_classes > 0 else nn.Identity()
313
-
314
- def forward_features(self, x):
315
- B = x.shape[0]
316
- outs = []
317
-
318
- # stage 1
319
- x, H, W = self.patch_embed1(x)
320
- for i, blk in enumerate(self.block1):
321
- x = blk(x, H, W)
322
- x = self.norm1(x)
323
- x = x.reshape(B, H, W, -1).permute(0, 3, 1, 2).contiguous()
324
- outs.append(x)
325
-
326
- # stage 2
327
- x, H, W = self.patch_embed2(x)
328
- for i, blk in enumerate(self.block2):
329
- x = blk(x, H, W)
330
- x = self.norm2(x)
331
- x = x.reshape(B, H, W, -1).permute(0, 3, 1, 2).contiguous()
332
- outs.append(x)
333
-
334
- # stage 3
335
- x, H, W = self.patch_embed3(x)
336
- for i, blk in enumerate(self.block3):
337
- x = blk(x, H, W)
338
- x = self.norm3(x)
339
- x = x.reshape(B, H, W, -1).permute(0, 3, 1, 2).contiguous()
340
- outs.append(x)
341
-
342
- # stage 4
343
- x, H, W = self.patch_embed4(x)
344
- for i, blk in enumerate(self.block4):
345
- x = blk(x, H, W)
346
- x = self.norm4(x)
347
- x = x.reshape(B, H, W, -1).permute(0, 3, 1, 2).contiguous()
348
- outs.append(x)
349
-
350
- return outs
351
-
352
- # return x.mean(dim=1)
353
-
354
- def forward(self, x):
355
- x = self.forward_features(x)
356
- # x = self.head(x)
357
-
358
- return x
359
-
360
-
361
- class DWConv(nn.Module):
362
- def __init__(self, dim=768):
363
- super(DWConv, self).__init__()
364
- self.dwconv = nn.Conv2d(dim, dim, 3, 1, 1, bias=True, groups=dim)
365
-
366
- def forward(self, x, H, W):
367
- B, N, C = x.shape
368
- x = x.transpose(1, 2).view(B, C, H, W).contiguous()
369
- x = self.dwconv(x)
370
- x = x.flatten(2).transpose(1, 2)
371
-
372
- return x
373
-
374
-
375
- def _conv_filter(state_dict, patch_size=16):
376
- """ convert patch embedding weight from manual patchify + linear proj to conv"""
377
- out_dict = {}
378
- for k, v in state_dict.items():
379
- if 'patch_embed.proj.weight' in k:
380
- v = v.reshape((v.shape[0], 3, patch_size, patch_size))
381
- out_dict[k] = v
382
-
383
- return out_dict
384
-
385
-
386
- ## @register_model
387
- class pvt_v2_b0(PyramidVisionTransformerImpr):
388
- def __init__(self, **kwargs):
389
- super(pvt_v2_b0, self).__init__(
390
- patch_size=4, embed_dims=[32, 64, 160, 256], num_heads=[1, 2, 5, 8], mlp_ratios=[8, 8, 4, 4],
391
- qkv_bias=True, norm_layer=partial(nn.LayerNorm, eps=1e-6), depths=[2, 2, 2, 2], sr_ratios=[8, 4, 2, 1],
392
- drop_rate=0.0, drop_path_rate=0.1)
393
-
394
-
395
-
396
- ## @register_model
397
- class pvt_v2_b1(PyramidVisionTransformerImpr):
398
- def __init__(self, **kwargs):
399
- super(pvt_v2_b1, self).__init__(
400
- patch_size=4, embed_dims=[64, 128, 320, 512], num_heads=[1, 2, 5, 8], mlp_ratios=[8, 8, 4, 4],
401
- qkv_bias=True, norm_layer=partial(nn.LayerNorm, eps=1e-6), depths=[2, 2, 2, 2], sr_ratios=[8, 4, 2, 1],
402
- drop_rate=0.0, drop_path_rate=0.1)
403
-
404
- ## @register_model
405
- class pvt_v2_b2(PyramidVisionTransformerImpr):
406
- def __init__(self, in_channels=3, **kwargs):
407
- super(pvt_v2_b2, self).__init__(
408
- patch_size=4, embed_dims=[64, 128, 320, 512], num_heads=[1, 2, 5, 8], mlp_ratios=[8, 8, 4, 4],
409
- qkv_bias=True, norm_layer=partial(nn.LayerNorm, eps=1e-6), depths=[3, 4, 6, 3], sr_ratios=[8, 4, 2, 1],
410
- drop_rate=0.0, drop_path_rate=0.1, in_channels=in_channels)
411
-
412
- ## @register_model
413
- class pvt_v2_b3(PyramidVisionTransformerImpr):
414
- def __init__(self, **kwargs):
415
- super(pvt_v2_b3, self).__init__(
416
- patch_size=4, embed_dims=[64, 128, 320, 512], num_heads=[1, 2, 5, 8], mlp_ratios=[8, 8, 4, 4],
417
- qkv_bias=True, norm_layer=partial(nn.LayerNorm, eps=1e-6), depths=[3, 4, 18, 3], sr_ratios=[8, 4, 2, 1],
418
- drop_rate=0.0, drop_path_rate=0.1)
419
-
420
- ## @register_model
421
- class pvt_v2_b4(PyramidVisionTransformerImpr):
422
- def __init__(self, **kwargs):
423
- super(pvt_v2_b4, self).__init__(
424
- patch_size=4, embed_dims=[64, 128, 320, 512], num_heads=[1, 2, 5, 8], mlp_ratios=[8, 8, 4, 4],
425
- qkv_bias=True, norm_layer=partial(nn.LayerNorm, eps=1e-6), depths=[3, 8, 27, 3], sr_ratios=[8, 4, 2, 1],
426
- drop_rate=0.0, drop_path_rate=0.1)
427
-
428
-
429
- ## @register_model
430
- class pvt_v2_b5(PyramidVisionTransformerImpr):
431
- def __init__(self, **kwargs):
432
- super(pvt_v2_b5, self).__init__(
433
- patch_size=4, embed_dims=[64, 128, 320, 512], num_heads=[1, 2, 5, 8], mlp_ratios=[4, 4, 4, 4],
434
- qkv_bias=True, norm_layer=partial(nn.LayerNorm, eps=1e-6), depths=[3, 6, 40, 3], sr_ratios=[8, 4, 2, 1],
435
- drop_rate=0.0, drop_path_rate=0.1)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
BiRefNet_codes1/models/backbones/swin_v1.py DELETED
@@ -1,627 +0,0 @@
1
- # --------------------------------------------------------
2
- # Swin Transformer
3
- # Copyright (c) 2021 Microsoft
4
- # Licensed under The MIT License [see LICENSE for details]
5
- # Written by Ze Liu, Yutong Lin, Yixuan Wei
6
- # --------------------------------------------------------
7
-
8
- import torch
9
- import torch.nn as nn
10
- import torch.nn.functional as F
11
- import torch.utils.checkpoint as checkpoint
12
- import numpy as np
13
- from timm.models.layers import DropPath, to_2tuple, trunc_normal_
14
-
15
- from config import Config
16
-
17
-
18
- config = Config()
19
-
20
- class Mlp(nn.Module):
21
- """ Multilayer perceptron."""
22
-
23
- def __init__(self, in_features, hidden_features=None, out_features=None, act_layer=nn.GELU, drop=0.):
24
- super().__init__()
25
- out_features = out_features or in_features
26
- hidden_features = hidden_features or in_features
27
- self.fc1 = nn.Linear(in_features, hidden_features)
28
- self.act = act_layer()
29
- self.fc2 = nn.Linear(hidden_features, out_features)
30
- self.drop = nn.Dropout(drop)
31
-
32
- def forward(self, x):
33
- x = self.fc1(x)
34
- x = self.act(x)
35
- x = self.drop(x)
36
- x = self.fc2(x)
37
- x = self.drop(x)
38
- return x
39
-
40
-
41
- def window_partition(x, window_size):
42
- """
43
- Args:
44
- x: (B, H, W, C)
45
- window_size (int): window size
46
-
47
- Returns:
48
- windows: (num_windows*B, window_size, window_size, C)
49
- """
50
- B, H, W, C = x.shape
51
- x = x.view(B, H // window_size, window_size, W // window_size, window_size, C)
52
- windows = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(-1, window_size, window_size, C)
53
- return windows
54
-
55
-
56
- def window_reverse(windows, window_size, H, W):
57
- """
58
- Args:
59
- windows: (num_windows*B, window_size, window_size, C)
60
- window_size (int): Window size
61
- H (int): Height of image
62
- W (int): Width of image
63
-
64
- Returns:
65
- x: (B, H, W, C)
66
- """
67
- B = int(windows.shape[0] / (H * W / window_size / window_size))
68
- x = windows.view(B, H // window_size, W // window_size, window_size, window_size, -1)
69
- x = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(B, H, W, -1)
70
- return x
71
-
72
-
73
- class WindowAttention(nn.Module):
74
- """ Window based multi-head self attention (W-MSA) module with relative position bias.
75
- It supports both of shifted and non-shifted window.
76
-
77
- Args:
78
- dim (int): Number of input channels.
79
- window_size (tuple[int]): The height and width of the window.
80
- num_heads (int): Number of attention heads.
81
- qkv_bias (bool, optional): If True, add a learnable bias to query, key, value. Default: True
82
- qk_scale (float | None, optional): Override default qk scale of head_dim ** -0.5 if set
83
- attn_drop (float, optional): Dropout ratio of attention weight. Default: 0.0
84
- proj_drop (float, optional): Dropout ratio of output. Default: 0.0
85
- """
86
-
87
- def __init__(self, dim, window_size, num_heads, qkv_bias=True, qk_scale=None, attn_drop=0., proj_drop=0.):
88
-
89
- super().__init__()
90
- self.dim = dim
91
- self.window_size = window_size # Wh, Ww
92
- self.num_heads = num_heads
93
- head_dim = dim // num_heads
94
- self.scale = qk_scale or head_dim ** -0.5
95
-
96
- # define a parameter table of relative position bias
97
- self.relative_position_bias_table = nn.Parameter(
98
- torch.zeros((2 * window_size[0] - 1) * (2 * window_size[1] - 1), num_heads)) # 2*Wh-1 * 2*Ww-1, nH
99
-
100
- # get pair-wise relative position index for each token inside the window
101
- coords_h = torch.arange(self.window_size[0])
102
- coords_w = torch.arange(self.window_size[1])
103
- coords = torch.stack(torch.meshgrid([coords_h, coords_w], indexing='ij')) # 2, Wh, Ww
104
- coords_flatten = torch.flatten(coords, 1) # 2, Wh*Ww
105
- relative_coords = coords_flatten[:, :, None] - coords_flatten[:, None, :] # 2, Wh*Ww, Wh*Ww
106
- relative_coords = relative_coords.permute(1, 2, 0).contiguous() # Wh*Ww, Wh*Ww, 2
107
- relative_coords[:, :, 0] += self.window_size[0] - 1 # shift to start from 0
108
- relative_coords[:, :, 1] += self.window_size[1] - 1
109
- relative_coords[:, :, 0] *= 2 * self.window_size[1] - 1
110
- relative_position_index = relative_coords.sum(-1) # Wh*Ww, Wh*Ww
111
- self.register_buffer("relative_position_index", relative_position_index)
112
-
113
- self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias)
114
- self.attn_drop_prob = attn_drop
115
- self.attn_drop = nn.Dropout(attn_drop)
116
- self.proj = nn.Linear(dim, dim)
117
- self.proj_drop = nn.Dropout(proj_drop)
118
-
119
- trunc_normal_(self.relative_position_bias_table, std=.02)
120
- self.softmax = nn.Softmax(dim=-1)
121
-
122
- def forward(self, x, mask=None):
123
- """ Forward function.
124
-
125
- Args:
126
- x: input features with shape of (num_windows*B, N, C)
127
- mask: (0/-inf) mask with shape of (num_windows, Wh*Ww, Wh*Ww) or None
128
- """
129
- B_, N, C = x.shape
130
- qkv = self.qkv(x).reshape(B_, N, 3, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4)
131
- q, k, v = qkv[0], qkv[1], qkv[2] # make torchscript happy (cannot use tensor as tuple)
132
-
133
- q = q * self.scale
134
-
135
- if config.SDPA_enabled:
136
- x = torch.nn.functional.scaled_dot_product_attention(
137
- q, k, v,
138
- attn_mask=None, dropout_p=self.attn_drop_prob, is_causal=False
139
- ).transpose(1, 2).reshape(B_, N, C)
140
- else:
141
- attn = (q @ k.transpose(-2, -1))
142
-
143
- relative_position_bias = self.relative_position_bias_table[self.relative_position_index.view(-1)].view(
144
- self.window_size[0] * self.window_size[1], self.window_size[0] * self.window_size[1], -1) # Wh*Ww,Wh*Ww,nH
145
- relative_position_bias = relative_position_bias.permute(2, 0, 1).contiguous() # nH, Wh*Ww, Wh*Ww
146
- attn = attn + relative_position_bias.unsqueeze(0)
147
-
148
- if mask is not None:
149
- nW = mask.shape[0]
150
- attn = attn.view(B_ // nW, nW, self.num_heads, N, N) + mask.unsqueeze(1).unsqueeze(0)
151
- attn = attn.view(-1, self.num_heads, N, N)
152
- attn = self.softmax(attn)
153
- else:
154
- attn = self.softmax(attn)
155
-
156
- attn = self.attn_drop(attn)
157
-
158
- x = (attn @ v).transpose(1, 2).reshape(B_, N, C)
159
- x = self.proj(x)
160
- x = self.proj_drop(x)
161
- return x
162
-
163
-
164
- class SwinTransformerBlock(nn.Module):
165
- """ Swin Transformer Block.
166
-
167
- Args:
168
- dim (int): Number of input channels.
169
- num_heads (int): Number of attention heads.
170
- window_size (int): Window size.
171
- shift_size (int): Shift size for SW-MSA.
172
- mlp_ratio (float): Ratio of mlp hidden dim to embedding dim.
173
- qkv_bias (bool, optional): If True, add a learnable bias to query, key, value. Default: True
174
- qk_scale (float | None, optional): Override default qk scale of head_dim ** -0.5 if set.
175
- drop (float, optional): Dropout rate. Default: 0.0
176
- attn_drop (float, optional): Attention dropout rate. Default: 0.0
177
- drop_path (float, optional): Stochastic depth rate. Default: 0.0
178
- act_layer (nn.Module, optional): Activation layer. Default: nn.GELU
179
- norm_layer (nn.Module, optional): Normalization layer. Default: nn.LayerNorm
180
- """
181
-
182
- def __init__(self, dim, num_heads, window_size=7, shift_size=0,
183
- mlp_ratio=4., qkv_bias=True, qk_scale=None, drop=0., attn_drop=0., drop_path=0.,
184
- act_layer=nn.GELU, norm_layer=nn.LayerNorm):
185
- super().__init__()
186
- self.dim = dim
187
- self.num_heads = num_heads
188
- self.window_size = window_size
189
- self.shift_size = shift_size
190
- self.mlp_ratio = mlp_ratio
191
- assert 0 <= self.shift_size < self.window_size, "shift_size must in 0-window_size"
192
-
193
- self.norm1 = norm_layer(dim)
194
- self.attn = WindowAttention(
195
- dim, window_size=to_2tuple(self.window_size), num_heads=num_heads,
196
- qkv_bias=qkv_bias, qk_scale=qk_scale, attn_drop=attn_drop, proj_drop=drop)
197
-
198
- self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity()
199
- self.norm2 = norm_layer(dim)
200
- mlp_hidden_dim = int(dim * mlp_ratio)
201
- self.mlp = Mlp(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop)
202
-
203
- self.H = None
204
- self.W = None
205
-
206
- def forward(self, x, mask_matrix):
207
- """ Forward function.
208
-
209
- Args:
210
- x: Input feature, tensor size (B, H*W, C).
211
- H, W: Spatial resolution of the input feature.
212
- mask_matrix: Attention mask for cyclic shift.
213
- """
214
- B, L, C = x.shape
215
- H, W = self.H, self.W
216
- assert L == H * W, "input feature has wrong size"
217
-
218
- shortcut = x
219
- x = self.norm1(x)
220
- x = x.view(B, H, W, C)
221
-
222
- # pad feature maps to multiples of window size
223
- pad_l = pad_t = 0
224
- pad_r = (self.window_size - W % self.window_size) % self.window_size
225
- pad_b = (self.window_size - H % self.window_size) % self.window_size
226
- x = F.pad(x, (0, 0, pad_l, pad_r, pad_t, pad_b))
227
- _, Hp, Wp, _ = x.shape
228
-
229
- # cyclic shift
230
- if self.shift_size > 0:
231
- shifted_x = torch.roll(x, shifts=(-self.shift_size, -self.shift_size), dims=(1, 2))
232
- attn_mask = mask_matrix
233
- else:
234
- shifted_x = x
235
- attn_mask = None
236
-
237
- # partition windows
238
- x_windows = window_partition(shifted_x, self.window_size) # nW*B, window_size, window_size, C
239
- x_windows = x_windows.view(-1, self.window_size * self.window_size, C) # nW*B, window_size*window_size, C
240
-
241
- # W-MSA/SW-MSA
242
- attn_windows = self.attn(x_windows, mask=attn_mask) # nW*B, window_size*window_size, C
243
-
244
- # merge windows
245
- attn_windows = attn_windows.view(-1, self.window_size, self.window_size, C)
246
- shifted_x = window_reverse(attn_windows, self.window_size, Hp, Wp) # B H' W' C
247
-
248
- # reverse cyclic shift
249
- if self.shift_size > 0:
250
- x = torch.roll(shifted_x, shifts=(self.shift_size, self.shift_size), dims=(1, 2))
251
- else:
252
- x = shifted_x
253
-
254
- if pad_r > 0 or pad_b > 0:
255
- x = x[:, :H, :W, :].contiguous()
256
-
257
- x = x.view(B, H * W, C)
258
-
259
- # FFN
260
- x = shortcut + self.drop_path(x)
261
- x = x + self.drop_path(self.mlp(self.norm2(x)))
262
-
263
- return x
264
-
265
-
266
- class PatchMerging(nn.Module):
267
- """ Patch Merging Layer
268
-
269
- Args:
270
- dim (int): Number of input channels.
271
- norm_layer (nn.Module, optional): Normalization layer. Default: nn.LayerNorm
272
- """
273
- def __init__(self, dim, norm_layer=nn.LayerNorm):
274
- super().__init__()
275
- self.dim = dim
276
- self.reduction = nn.Linear(4 * dim, 2 * dim, bias=False)
277
- self.norm = norm_layer(4 * dim)
278
-
279
- def forward(self, x, H, W):
280
- """ Forward function.
281
-
282
- Args:
283
- x: Input feature, tensor size (B, H*W, C).
284
- H, W: Spatial resolution of the input feature.
285
- """
286
- B, L, C = x.shape
287
- assert L == H * W, "input feature has wrong size"
288
-
289
- x = x.view(B, H, W, C)
290
-
291
- # padding
292
- pad_input = (H % 2 == 1) or (W % 2 == 1)
293
- if pad_input:
294
- x = F.pad(x, (0, 0, 0, W % 2, 0, H % 2))
295
-
296
- x0 = x[:, 0::2, 0::2, :] # B H/2 W/2 C
297
- x1 = x[:, 1::2, 0::2, :] # B H/2 W/2 C
298
- x2 = x[:, 0::2, 1::2, :] # B H/2 W/2 C
299
- x3 = x[:, 1::2, 1::2, :] # B H/2 W/2 C
300
- x = torch.cat([x0, x1, x2, x3], -1) # B H/2 W/2 4*C
301
- x = x.view(B, -1, 4 * C) # B H/2*W/2 4*C
302
-
303
- x = self.norm(x)
304
- x = self.reduction(x)
305
-
306
- return x
307
-
308
-
309
- class BasicLayer(nn.Module):
310
- """ A basic Swin Transformer layer for one stage.
311
-
312
- Args:
313
- dim (int): Number of feature channels
314
- depth (int): Depths of this stage.
315
- num_heads (int): Number of attention head.
316
- window_size (int): Local window size. Default: 7.
317
- mlp_ratio (float): Ratio of mlp hidden dim to embedding dim. Default: 4.
318
- qkv_bias (bool, optional): If True, add a learnable bias to query, key, value. Default: True
319
- qk_scale (float | None, optional): Override default qk scale of head_dim ** -0.5 if set.
320
- drop (float, optional): Dropout rate. Default: 0.0
321
- attn_drop (float, optional): Attention dropout rate. Default: 0.0
322
- drop_path (float | tuple[float], optional): Stochastic depth rate. Default: 0.0
323
- norm_layer (nn.Module, optional): Normalization layer. Default: nn.LayerNorm
324
- downsample (nn.Module | None, optional): Downsample layer at the end of the layer. Default: None
325
- use_checkpoint (bool): Whether to use checkpointing to save memory. Default: False.
326
- """
327
-
328
- def __init__(self,
329
- dim,
330
- depth,
331
- num_heads,
332
- window_size=7,
333
- mlp_ratio=4.,
334
- qkv_bias=True,
335
- qk_scale=None,
336
- drop=0.,
337
- attn_drop=0.,
338
- drop_path=0.,
339
- norm_layer=nn.LayerNorm,
340
- downsample=None,
341
- use_checkpoint=False):
342
- super().__init__()
343
- self.window_size = window_size
344
- self.shift_size = window_size // 2
345
- self.depth = depth
346
- self.use_checkpoint = use_checkpoint
347
-
348
- # build blocks
349
- self.blocks = nn.ModuleList([
350
- SwinTransformerBlock(
351
- dim=dim,
352
- num_heads=num_heads,
353
- window_size=window_size,
354
- shift_size=0 if (i % 2 == 0) else window_size // 2,
355
- mlp_ratio=mlp_ratio,
356
- qkv_bias=qkv_bias,
357
- qk_scale=qk_scale,
358
- drop=drop,
359
- attn_drop=attn_drop,
360
- drop_path=drop_path[i] if isinstance(drop_path, list) else drop_path,
361
- norm_layer=norm_layer)
362
- for i in range(depth)])
363
-
364
- # patch merging layer
365
- if downsample is not None:
366
- self.downsample = downsample(dim=dim, norm_layer=norm_layer)
367
- else:
368
- self.downsample = None
369
-
370
- def forward(self, x, H, W):
371
- """ Forward function.
372
-
373
- Args:
374
- x: Input feature, tensor size (B, H*W, C).
375
- H, W: Spatial resolution of the input feature.
376
- """
377
-
378
- # calculate attention mask for SW-MSA
379
- Hp = int(np.ceil(H / self.window_size)) * self.window_size
380
- Wp = int(np.ceil(W / self.window_size)) * self.window_size
381
- img_mask = torch.zeros((1, Hp, Wp, 1), device=x.device) # 1 Hp Wp 1
382
- h_slices = (slice(0, -self.window_size),
383
- slice(-self.window_size, -self.shift_size),
384
- slice(-self.shift_size, None))
385
- w_slices = (slice(0, -self.window_size),
386
- slice(-self.window_size, -self.shift_size),
387
- slice(-self.shift_size, None))
388
- cnt = 0
389
- for h in h_slices:
390
- for w in w_slices:
391
- img_mask[:, h, w, :] = cnt
392
- cnt += 1
393
-
394
- mask_windows = window_partition(img_mask, self.window_size) # nW, window_size, window_size, 1
395
- mask_windows = mask_windows.view(-1, self.window_size * self.window_size)
396
- attn_mask = mask_windows.unsqueeze(1) - mask_windows.unsqueeze(2)
397
- attn_mask = attn_mask.masked_fill(attn_mask != 0, float(-100.0)).masked_fill(attn_mask == 0, float(0.0))
398
-
399
- for blk in self.blocks:
400
- blk.H, blk.W = H, W
401
- if self.use_checkpoint:
402
- x = checkpoint.checkpoint(blk, x, attn_mask)
403
- else:
404
- x = blk(x, attn_mask)
405
- if self.downsample is not None:
406
- x_down = self.downsample(x, H, W)
407
- Wh, Ww = (H + 1) // 2, (W + 1) // 2
408
- return x, H, W, x_down, Wh, Ww
409
- else:
410
- return x, H, W, x, H, W
411
-
412
-
413
- class PatchEmbed(nn.Module):
414
- """ Image to Patch Embedding
415
-
416
- Args:
417
- patch_size (int): Patch token size. Default: 4.
418
- in_channels (int): Number of input image channels. Default: 3.
419
- embed_dim (int): Number of linear projection output channels. Default: 96.
420
- norm_layer (nn.Module, optional): Normalization layer. Default: None
421
- """
422
-
423
- def __init__(self, patch_size=4, in_channels=3, embed_dim=96, norm_layer=None):
424
- super().__init__()
425
- patch_size = to_2tuple(patch_size)
426
- self.patch_size = patch_size
427
-
428
- self.in_channels = in_channels
429
- self.embed_dim = embed_dim
430
-
431
- self.proj = nn.Conv2d(in_channels, embed_dim, kernel_size=patch_size, stride=patch_size)
432
- if norm_layer is not None:
433
- self.norm = norm_layer(embed_dim)
434
- else:
435
- self.norm = None
436
-
437
- def forward(self, x):
438
- """Forward function."""
439
- # padding
440
- _, _, H, W = x.size()
441
- if W % self.patch_size[1] != 0:
442
- x = F.pad(x, (0, self.patch_size[1] - W % self.patch_size[1]))
443
- if H % self.patch_size[0] != 0:
444
- x = F.pad(x, (0, 0, 0, self.patch_size[0] - H % self.patch_size[0]))
445
-
446
- x = self.proj(x) # B C Wh Ww
447
- if self.norm is not None:
448
- Wh, Ww = x.size(2), x.size(3)
449
- x = x.flatten(2).transpose(1, 2)
450
- x = self.norm(x)
451
- x = x.transpose(1, 2).view(-1, self.embed_dim, Wh, Ww)
452
-
453
- return x
454
-
455
-
456
- class SwinTransformer(nn.Module):
457
- """ Swin Transformer backbone.
458
- A PyTorch impl of : `Swin Transformer: Hierarchical Vision Transformer using Shifted Windows` -
459
- https://arxiv.org/pdf/2103.14030
460
-
461
- Args:
462
- pretrain_img_size (int): Input image size for training the pretrained model,
463
- used in absolute postion embedding. Default 224.
464
- patch_size (int | tuple(int)): Patch size. Default: 4.
465
- in_channels (int): Number of input image channels. Default: 3.
466
- embed_dim (int): Number of linear projection output channels. Default: 96.
467
- depths (tuple[int]): Depths of each Swin Transformer stage.
468
- num_heads (tuple[int]): Number of attention head of each stage.
469
- window_size (int): Window size. Default: 7.
470
- mlp_ratio (float): Ratio of mlp hidden dim to embedding dim. Default: 4.
471
- qkv_bias (bool): If True, add a learnable bias to query, key, value. Default: True
472
- qk_scale (float): Override default qk scale of head_dim ** -0.5 if set.
473
- drop_rate (float): Dropout rate.
474
- attn_drop_rate (float): Attention dropout rate. Default: 0.
475
- drop_path_rate (float): Stochastic depth rate. Default: 0.2.
476
- norm_layer (nn.Module): Normalization layer. Default: nn.LayerNorm.
477
- ape (bool): If True, add absolute position embedding to the patch embedding. Default: False.
478
- patch_norm (bool): If True, add normalization after patch embedding. Default: True.
479
- out_indices (Sequence[int]): Output from which stages.
480
- frozen_stages (int): Stages to be frozen (stop grad and set eval mode).
481
- -1 means not freezing any parameters.
482
- use_checkpoint (bool): Whether to use checkpointing to save memory. Default: False.
483
- """
484
-
485
- def __init__(self,
486
- pretrain_img_size=224,
487
- patch_size=4,
488
- in_channels=3,
489
- embed_dim=96,
490
- depths=[2, 2, 6, 2],
491
- num_heads=[3, 6, 12, 24],
492
- window_size=7,
493
- mlp_ratio=4.,
494
- qkv_bias=True,
495
- qk_scale=None,
496
- drop_rate=0.,
497
- attn_drop_rate=0.,
498
- drop_path_rate=0.2,
499
- norm_layer=nn.LayerNorm,
500
- ape=False,
501
- patch_norm=True,
502
- out_indices=(0, 1, 2, 3),
503
- frozen_stages=-1,
504
- use_checkpoint=False):
505
- super().__init__()
506
-
507
- self.pretrain_img_size = pretrain_img_size
508
- self.num_layers = len(depths)
509
- self.embed_dim = embed_dim
510
- self.ape = ape
511
- self.patch_norm = patch_norm
512
- self.out_indices = out_indices
513
- self.frozen_stages = frozen_stages
514
-
515
- # split image into non-overlapping patches
516
- self.patch_embed = PatchEmbed(
517
- patch_size=patch_size, in_channels=in_channels, embed_dim=embed_dim,
518
- norm_layer=norm_layer if self.patch_norm else None)
519
-
520
- # absolute position embedding
521
- if self.ape:
522
- pretrain_img_size = to_2tuple(pretrain_img_size)
523
- patch_size = to_2tuple(patch_size)
524
- patches_resolution = [pretrain_img_size[0] // patch_size[0], pretrain_img_size[1] // patch_size[1]]
525
-
526
- self.absolute_pos_embed = nn.Parameter(torch.zeros(1, embed_dim, patches_resolution[0], patches_resolution[1]))
527
- trunc_normal_(self.absolute_pos_embed, std=.02)
528
-
529
- self.pos_drop = nn.Dropout(p=drop_rate)
530
-
531
- # stochastic depth
532
- dpr = [x.item() for x in torch.linspace(0, drop_path_rate, sum(depths))] # stochastic depth decay rule
533
-
534
- # build layers
535
- self.layers = nn.ModuleList()
536
- for i_layer in range(self.num_layers):
537
- layer = BasicLayer(
538
- dim=int(embed_dim * 2 ** i_layer),
539
- depth=depths[i_layer],
540
- num_heads=num_heads[i_layer],
541
- window_size=window_size,
542
- mlp_ratio=mlp_ratio,
543
- qkv_bias=qkv_bias,
544
- qk_scale=qk_scale,
545
- drop=drop_rate,
546
- attn_drop=attn_drop_rate,
547
- drop_path=dpr[sum(depths[:i_layer]):sum(depths[:i_layer + 1])],
548
- norm_layer=norm_layer,
549
- downsample=PatchMerging if (i_layer < self.num_layers - 1) else None,
550
- use_checkpoint=use_checkpoint)
551
- self.layers.append(layer)
552
-
553
- num_features = [int(embed_dim * 2 ** i) for i in range(self.num_layers)]
554
- self.num_features = num_features
555
-
556
- # add a norm layer for each output
557
- for i_layer in out_indices:
558
- layer = norm_layer(num_features[i_layer])
559
- layer_name = f'norm{i_layer}'
560
- self.add_module(layer_name, layer)
561
-
562
- self._freeze_stages()
563
-
564
- def _freeze_stages(self):
565
- if self.frozen_stages >= 0:
566
- self.patch_embed.eval()
567
- for param in self.patch_embed.parameters():
568
- param.requires_grad = False
569
-
570
- if self.frozen_stages >= 1 and self.ape:
571
- self.absolute_pos_embed.requires_grad = False
572
-
573
- if self.frozen_stages >= 2:
574
- self.pos_drop.eval()
575
- for i in range(0, self.frozen_stages - 1):
576
- m = self.layers[i]
577
- m.eval()
578
- for param in m.parameters():
579
- param.requires_grad = False
580
-
581
-
582
- def forward(self, x):
583
- """Forward function."""
584
- x = self.patch_embed(x)
585
-
586
- Wh, Ww = x.size(2), x.size(3)
587
- if self.ape:
588
- # interpolate the position embedding to the corresponding size
589
- absolute_pos_embed = F.interpolate(self.absolute_pos_embed, size=(Wh, Ww), mode='bicubic')
590
- x = (x + absolute_pos_embed) # B Wh*Ww C
591
-
592
- outs = []#x.contiguous()]
593
- x = x.flatten(2).transpose(1, 2)
594
- x = self.pos_drop(x)
595
- for i in range(self.num_layers):
596
- layer = self.layers[i]
597
- x_out, H, W, x, Wh, Ww = layer(x, Wh, Ww)
598
-
599
- if i in self.out_indices:
600
- norm_layer = getattr(self, f'norm{i}')
601
- x_out = norm_layer(x_out)
602
-
603
- out = x_out.view(-1, H, W, self.num_features[i]).permute(0, 3, 1, 2).contiguous()
604
- outs.append(out)
605
-
606
- return tuple(outs)
607
-
608
- def train(self, mode=True):
609
- """Convert the model into training mode while keep layers freezed."""
610
- super(SwinTransformer, self).train(mode)
611
- self._freeze_stages()
612
-
613
- def swin_v1_t():
614
- model = SwinTransformer(embed_dim=96, depths=[2, 2, 6, 2], num_heads=[3, 6, 12, 24], window_size=7)
615
- return model
616
-
617
- def swin_v1_s():
618
- model = SwinTransformer(embed_dim=96, depths=[2, 2, 18, 2], num_heads=[3, 6, 12, 24], window_size=7)
619
- return model
620
-
621
- def swin_v1_b():
622
- model = SwinTransformer(embed_dim=128, depths=[2, 2, 18, 2], num_heads=[4, 8, 16, 32], window_size=12)
623
- return model
624
-
625
- def swin_v1_l():
626
- model = SwinTransformer(embed_dim=192, depths=[2, 2, 18, 2], num_heads=[6, 12, 24, 48], window_size=12)
627
- return model
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
BiRefNet_codes1/models/birefnet.py DELETED
@@ -1,287 +0,0 @@
1
- import torch
2
- import torch.nn as nn
3
- import torch.nn.functional as F
4
- from kornia.filters import laplacian
5
- from huggingface_hub import PyTorchModelHubMixin
6
-
7
- from config import Config
8
- from dataset import class_labels_TR_sorted
9
- from models.backbones.build_backbone import build_backbone
10
- from models.modules.decoder_blocks import BasicDecBlk, ResBlk, HierarAttDecBlk
11
- from models.modules.lateral_blocks import BasicLatBlk
12
- from models.modules.aspp import ASPP, ASPPDeformable
13
- from models.modules.ing import *
14
- from models.refinement.refiner import Refiner, RefinerPVTInChannels4, RefUNet
15
- from models.refinement.stem_layer import StemLayer
16
-
17
-
18
- class BiRefNet(
19
- nn.Module,
20
- PyTorchModelHubMixin,
21
- library_name="birefnet",
22
- repo_url="https://github.com/ZhengPeng7/BiRefNet",
23
- tags=['Image Segmentation', 'Background Removal', 'Mask Generation', 'Dichotomous Image Segmentation', 'Camouflaged Object Detection', 'Salient Object Detection']
24
- ):
25
- def __init__(self, bb_pretrained=True):
26
- super(BiRefNet, self).__init__()
27
- self.config = Config()
28
- self.epoch = 1
29
- self.bb = build_backbone(self.config.bb, pretrained=bb_pretrained)
30
-
31
- channels = self.config.lateral_channels_in_collection
32
-
33
- if self.config.auxiliary_classification:
34
- self.avgpool = nn.AdaptiveAvgPool2d((1, 1))
35
- self.cls_head = nn.Sequential(
36
- nn.Linear(channels[0], len(class_labels_TR_sorted))
37
- )
38
-
39
- if self.config.squeeze_block:
40
- self.squeeze_module = nn.Sequential(*[
41
- eval(self.config.squeeze_block.split('_x')[0])(channels[0]+sum(self.config.cxt), channels[0])
42
- for _ in range(eval(self.config.squeeze_block.split('_x')[1]))
43
- ])
44
-
45
- self.decoder = Decoder(channels)
46
-
47
- if self.config.ender:
48
- self.dec_end = nn.Sequential(
49
- nn.Conv2d(1, 16, 3, 1, 1),
50
- nn.Conv2d(16, 1, 3, 1, 1),
51
- nn.ReLU(inplace=True),
52
- )
53
-
54
- # refine patch-level segmentation
55
- if self.config.refine:
56
- if self.config.refine == 'itself':
57
- self.stem_layer = StemLayer(in_channels=3+1, inter_channels=48, out_channels=3, norm_layer='BN' if self.config.batch_size > 1 else 'LN')
58
- else:
59
- self.refiner = eval('{}({})'.format(self.config.refine, 'in_channels=3+1'))
60
-
61
- if self.config.freeze_bb:
62
- # Freeze the backbone...
63
- print(self.named_parameters())
64
- for key, value in self.named_parameters():
65
- if 'bb.' in key and 'refiner.' not in key:
66
- value.requires_grad = False
67
-
68
- def forward_enc(self, x):
69
- if self.config.bb in ['vgg16', 'vgg16bn', 'resnet50']:
70
- x1 = self.bb.conv1(x); x2 = self.bb.conv2(x1); x3 = self.bb.conv3(x2); x4 = self.bb.conv4(x3)
71
- else:
72
- x1, x2, x3, x4 = self.bb(x)
73
- if self.config.mul_scl_ipt == 'cat':
74
- B, C, H, W = x.shape
75
- x1_, x2_, x3_, x4_ = self.bb(F.interpolate(x, size=(H//2, W//2), mode='bilinear', align_corners=True))
76
- x1 = torch.cat([x1, F.interpolate(x1_, size=x1.shape[2:], mode='bilinear', align_corners=True)], dim=1)
77
- x2 = torch.cat([x2, F.interpolate(x2_, size=x2.shape[2:], mode='bilinear', align_corners=True)], dim=1)
78
- x3 = torch.cat([x3, F.interpolate(x3_, size=x3.shape[2:], mode='bilinear', align_corners=True)], dim=1)
79
- x4 = torch.cat([x4, F.interpolate(x4_, size=x4.shape[2:], mode='bilinear', align_corners=True)], dim=1)
80
- elif self.config.mul_scl_ipt == 'add':
81
- B, C, H, W = x.shape
82
- x1_, x2_, x3_, x4_ = self.bb(F.interpolate(x, size=(H//2, W//2), mode='bilinear', align_corners=True))
83
- x1 = x1 + F.interpolate(x1_, size=x1.shape[2:], mode='bilinear', align_corners=True)
84
- x2 = x2 + F.interpolate(x2_, size=x2.shape[2:], mode='bilinear', align_corners=True)
85
- x3 = x3 + F.interpolate(x3_, size=x3.shape[2:], mode='bilinear', align_corners=True)
86
- x4 = x4 + F.interpolate(x4_, size=x4.shape[2:], mode='bilinear', align_corners=True)
87
- class_preds = self.cls_head(self.avgpool(x4).view(x4.shape[0], -1)) if self.training and self.config.auxiliary_classification else None
88
- if self.config.cxt:
89
- x4 = torch.cat(
90
- (
91
- *[
92
- F.interpolate(x1, size=x4.shape[2:], mode='bilinear', align_corners=True),
93
- F.interpolate(x2, size=x4.shape[2:], mode='bilinear', align_corners=True),
94
- F.interpolate(x3, size=x4.shape[2:], mode='bilinear', align_corners=True),
95
- ][-len(self.config.cxt):],
96
- x4
97
- ),
98
- dim=1
99
- )
100
- return (x1, x2, x3, x4), class_preds
101
-
102
- def forward_ori(self, x):
103
- ########## Encoder ##########
104
- (x1, x2, x3, x4), class_preds = self.forward_enc(x)
105
- if self.config.squeeze_block:
106
- x4 = self.squeeze_module(x4)
107
- ########## Decoder ##########
108
- features = [x, x1, x2, x3, x4]
109
- if self.training and self.config.out_ref:
110
- features.append(laplacian(torch.mean(x, dim=1).unsqueeze(1), kernel_size=5))
111
- scaled_preds = self.decoder(features)
112
- return scaled_preds, class_preds
113
-
114
- def forward(self, x):
115
- scaled_preds, class_preds = self.forward_ori(x)
116
- class_preds_lst = [class_preds]
117
- return [scaled_preds, class_preds_lst] if self.training else scaled_preds
118
-
119
-
120
- class Decoder(nn.Module):
121
- def __init__(self, channels):
122
- super(Decoder, self).__init__()
123
- self.config = Config()
124
- DecoderBlock = eval(self.config.dec_blk)
125
- LateralBlock = eval(self.config.lat_blk)
126
-
127
- if self.config.dec_ipt:
128
- self.split = self.config.dec_ipt_split
129
- N_dec_ipt = 64
130
- DBlock = SimpleConvs
131
- ic = 64
132
- ipt_cha_opt = 1
133
- self.ipt_blk5 = DBlock(2**10*3 if self.split else 3, [N_dec_ipt, channels[0]//8][ipt_cha_opt], inter_channels=ic)
134
- self.ipt_blk4 = DBlock(2**8*3 if self.split else 3, [N_dec_ipt, channels[0]//8][ipt_cha_opt], inter_channels=ic)
135
- self.ipt_blk3 = DBlock(2**6*3 if self.split else 3, [N_dec_ipt, channels[1]//8][ipt_cha_opt], inter_channels=ic)
136
- self.ipt_blk2 = DBlock(2**4*3 if self.split else 3, [N_dec_ipt, channels[2]//8][ipt_cha_opt], inter_channels=ic)
137
- self.ipt_blk1 = DBlock(2**0*3 if self.split else 3, [N_dec_ipt, channels[3]//8][ipt_cha_opt], inter_channels=ic)
138
- else:
139
- self.split = None
140
-
141
- self.decoder_block4 = DecoderBlock(channels[0]+([N_dec_ipt, channels[0]//8][ipt_cha_opt] if self.config.dec_ipt else 0), channels[1])
142
- self.decoder_block3 = DecoderBlock(channels[1]+([N_dec_ipt, channels[0]//8][ipt_cha_opt] if self.config.dec_ipt else 0), channels[2])
143
- self.decoder_block2 = DecoderBlock(channels[2]+([N_dec_ipt, channels[1]//8][ipt_cha_opt] if self.config.dec_ipt else 0), channels[3])
144
- self.decoder_block1 = DecoderBlock(channels[3]+([N_dec_ipt, channels[2]//8][ipt_cha_opt] if self.config.dec_ipt else 0), channels[3]//2)
145
- self.conv_out1 = nn.Sequential(nn.Conv2d(channels[3]//2+([N_dec_ipt, channels[3]//8][ipt_cha_opt] if self.config.dec_ipt else 0), 1, 1, 1, 0))
146
-
147
- self.lateral_block4 = LateralBlock(channels[1], channels[1])
148
- self.lateral_block3 = LateralBlock(channels[2], channels[2])
149
- self.lateral_block2 = LateralBlock(channels[3], channels[3])
150
-
151
- if self.config.ms_supervision:
152
- self.conv_ms_spvn_4 = nn.Conv2d(channels[1], 1, 1, 1, 0)
153
- self.conv_ms_spvn_3 = nn.Conv2d(channels[2], 1, 1, 1, 0)
154
- self.conv_ms_spvn_2 = nn.Conv2d(channels[3], 1, 1, 1, 0)
155
-
156
- if self.config.out_ref:
157
- _N = 16
158
- self.gdt_convs_4 = nn.Sequential(nn.Conv2d(channels[1], _N, 3, 1, 1), nn.BatchNorm2d(_N) if self.config.batch_size > 1 else nn.Identity(), nn.ReLU(inplace=True))
159
- self.gdt_convs_3 = nn.Sequential(nn.Conv2d(channels[2], _N, 3, 1, 1), nn.BatchNorm2d(_N) if self.config.batch_size > 1 else nn.Identity(), nn.ReLU(inplace=True))
160
- self.gdt_convs_2 = nn.Sequential(nn.Conv2d(channels[3], _N, 3, 1, 1), nn.BatchNorm2d(_N) if self.config.batch_size > 1 else nn.Identity(), nn.ReLU(inplace=True))
161
-
162
- self.gdt_convs_pred_4 = nn.Sequential(nn.Conv2d(_N, 1, 1, 1, 0))
163
- self.gdt_convs_pred_3 = nn.Sequential(nn.Conv2d(_N, 1, 1, 1, 0))
164
- self.gdt_convs_pred_2 = nn.Sequential(nn.Conv2d(_N, 1, 1, 1, 0))
165
-
166
- self.gdt_convs_attn_4 = nn.Sequential(nn.Conv2d(_N, 1, 1, 1, 0))
167
- self.gdt_convs_attn_3 = nn.Sequential(nn.Conv2d(_N, 1, 1, 1, 0))
168
- self.gdt_convs_attn_2 = nn.Sequential(nn.Conv2d(_N, 1, 1, 1, 0))
169
-
170
- def get_patches_batch(self, x, p):
171
- _size_h, _size_w = p.shape[2:]
172
- patches_batch = []
173
- for idx in range(x.shape[0]):
174
- columns_x = torch.split(x[idx], split_size_or_sections=_size_w, dim=-1)
175
- patches_x = []
176
- for column_x in columns_x:
177
- patches_x += [p.unsqueeze(0) for p in torch.split(column_x, split_size_or_sections=_size_h, dim=-2)]
178
- patch_sample = torch.cat(patches_x, dim=1)
179
- patches_batch.append(patch_sample)
180
- return torch.cat(patches_batch, dim=0)
181
-
182
- def forward(self, features):
183
- if self.training and self.config.out_ref:
184
- outs_gdt_pred = []
185
- outs_gdt_label = []
186
- x, x1, x2, x3, x4, gdt_gt = features
187
- else:
188
- x, x1, x2, x3, x4 = features
189
- outs = []
190
-
191
- if self.config.dec_ipt:
192
- patches_batch = self.get_patches_batch(x, x4) if self.split else x
193
- x4 = torch.cat((x4, self.ipt_blk5(F.interpolate(patches_batch, size=x4.shape[2:], mode='bilinear', align_corners=True))), 1)
194
- p4 = self.decoder_block4(x4)
195
- m4 = self.conv_ms_spvn_4(p4) if self.config.ms_supervision else None
196
- if self.config.out_ref:
197
- p4_gdt = self.gdt_convs_4(p4)
198
- if self.training:
199
- # >> GT:
200
- m4_dia = m4
201
- gdt_label_main_4 = gdt_gt * F.interpolate(m4_dia, size=gdt_gt.shape[2:], mode='bilinear', align_corners=True)
202
- outs_gdt_label.append(gdt_label_main_4)
203
- # >> Pred:
204
- gdt_pred_4 = self.gdt_convs_pred_4(p4_gdt)
205
- outs_gdt_pred.append(gdt_pred_4)
206
- gdt_attn_4 = self.gdt_convs_attn_4(p4_gdt).sigmoid()
207
- # >> Finally:
208
- p4 = p4 * gdt_attn_4
209
- _p4 = F.interpolate(p4, size=x3.shape[2:], mode='bilinear', align_corners=True)
210
- _p3 = _p4 + self.lateral_block4(x3)
211
-
212
- if self.config.dec_ipt:
213
- patches_batch = self.get_patches_batch(x, _p3) if self.split else x
214
- _p3 = torch.cat((_p3, self.ipt_blk4(F.interpolate(patches_batch, size=x3.shape[2:], mode='bilinear', align_corners=True))), 1)
215
- p3 = self.decoder_block3(_p3)
216
- m3 = self.conv_ms_spvn_3(p3) if self.config.ms_supervision else None
217
- if self.config.out_ref:
218
- p3_gdt = self.gdt_convs_3(p3)
219
- if self.training:
220
- # >> GT:
221
- # m3 --dilation--> m3_dia
222
- # G_3^gt * m3_dia --> G_3^m, which is the label of gradient
223
- m3_dia = m3
224
- gdt_label_main_3 = gdt_gt * F.interpolate(m3_dia, size=gdt_gt.shape[2:], mode='bilinear', align_corners=True)
225
- outs_gdt_label.append(gdt_label_main_3)
226
- # >> Pred:
227
- # p3 --conv--BN--> F_3^G, where F_3^G predicts the \hat{G_3} with xx
228
- # F_3^G --sigmoid--> A_3^G
229
- gdt_pred_3 = self.gdt_convs_pred_3(p3_gdt)
230
- outs_gdt_pred.append(gdt_pred_3)
231
- gdt_attn_3 = self.gdt_convs_attn_3(p3_gdt).sigmoid()
232
- # >> Finally:
233
- # p3 = p3 * A_3^G
234
- p3 = p3 * gdt_attn_3
235
- _p3 = F.interpolate(p3, size=x2.shape[2:], mode='bilinear', align_corners=True)
236
- _p2 = _p3 + self.lateral_block3(x2)
237
-
238
- if self.config.dec_ipt:
239
- patches_batch = self.get_patches_batch(x, _p2) if self.split else x
240
- _p2 = torch.cat((_p2, self.ipt_blk3(F.interpolate(patches_batch, size=x2.shape[2:], mode='bilinear', align_corners=True))), 1)
241
- p2 = self.decoder_block2(_p2)
242
- m2 = self.conv_ms_spvn_2(p2) if self.config.ms_supervision else None
243
- if self.config.out_ref:
244
- p2_gdt = self.gdt_convs_2(p2)
245
- if self.training:
246
- # >> GT:
247
- m2_dia = m2
248
- gdt_label_main_2 = gdt_gt * F.interpolate(m2_dia, size=gdt_gt.shape[2:], mode='bilinear', align_corners=True)
249
- outs_gdt_label.append(gdt_label_main_2)
250
- # >> Pred:
251
- gdt_pred_2 = self.gdt_convs_pred_2(p2_gdt)
252
- outs_gdt_pred.append(gdt_pred_2)
253
- gdt_attn_2 = self.gdt_convs_attn_2(p2_gdt).sigmoid()
254
- # >> Finally:
255
- p2 = p2 * gdt_attn_2
256
- _p2 = F.interpolate(p2, size=x1.shape[2:], mode='bilinear', align_corners=True)
257
- _p1 = _p2 + self.lateral_block2(x1)
258
-
259
- if self.config.dec_ipt:
260
- patches_batch = self.get_patches_batch(x, _p1) if self.split else x
261
- _p1 = torch.cat((_p1, self.ipt_blk2(F.interpolate(patches_batch, size=x1.shape[2:], mode='bilinear', align_corners=True))), 1)
262
- _p1 = self.decoder_block1(_p1)
263
- _p1 = F.interpolate(_p1, size=x.shape[2:], mode='bilinear', align_corners=True)
264
-
265
- if self.config.dec_ipt:
266
- patches_batch = self.get_patches_batch(x, _p1) if self.split else x
267
- _p1 = torch.cat((_p1, self.ipt_blk1(F.interpolate(patches_batch, size=x.shape[2:], mode='bilinear', align_corners=True))), 1)
268
- p1_out = self.conv_out1(_p1)
269
-
270
- if self.config.ms_supervision:
271
- outs.append(m4)
272
- outs.append(m3)
273
- outs.append(m2)
274
- outs.append(p1_out)
275
- return outs if not (self.config.out_ref and self.training) else ([outs_gdt_pred, outs_gdt_label], outs)
276
-
277
-
278
- class SimpleConvs(nn.Module):
279
- def __init__(
280
- self, in_channels: int, out_channels: int, inter_channels=64
281
- ) -> None:
282
- super().__init__()
283
- self.conv1 = nn.Conv2d(in_channels, inter_channels, 3, 1, 1)
284
- self.conv_out = nn.Conv2d(inter_channels, out_channels, 3, 1, 1)
285
-
286
- def forward(self, x):
287
- return self.conv_out(self.conv1(x))
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
BiRefNet_codes1/models/modules/aspp.py DELETED
@@ -1,119 +0,0 @@
1
- import torch
2
- import torch.nn as nn
3
- import torch.nn.functional as F
4
- from models.modules.deform_conv import DeformableConv2d
5
- from config import Config
6
-
7
-
8
- config = Config()
9
-
10
-
11
- class _ASPPModule(nn.Module):
12
- def __init__(self, in_channels, planes, kernel_size, padding, dilation):
13
- super(_ASPPModule, self).__init__()
14
- self.atrous_conv = nn.Conv2d(in_channels, planes, kernel_size=kernel_size,
15
- stride=1, padding=padding, dilation=dilation, bias=False)
16
- self.bn = nn.BatchNorm2d(planes) if config.batch_size > 1 else nn.Identity()
17
- self.relu = nn.ReLU(inplace=True)
18
-
19
- def forward(self, x):
20
- x = self.atrous_conv(x)
21
- x = self.bn(x)
22
-
23
- return self.relu(x)
24
-
25
-
26
- class ASPP(nn.Module):
27
- def __init__(self, in_channels=64, out_channels=None, output_stride=16):
28
- super(ASPP, self).__init__()
29
- self.down_scale = 1
30
- if out_channels is None:
31
- out_channels = in_channels
32
- self.in_channelster = 256 // self.down_scale
33
- if output_stride == 16:
34
- dilations = [1, 6, 12, 18]
35
- elif output_stride == 8:
36
- dilations = [1, 12, 24, 36]
37
- else:
38
- raise NotImplementedError
39
-
40
- self.aspp1 = _ASPPModule(in_channels, self.in_channelster, 1, padding=0, dilation=dilations[0])
41
- self.aspp2 = _ASPPModule(in_channels, self.in_channelster, 3, padding=dilations[1], dilation=dilations[1])
42
- self.aspp3 = _ASPPModule(in_channels, self.in_channelster, 3, padding=dilations[2], dilation=dilations[2])
43
- self.aspp4 = _ASPPModule(in_channels, self.in_channelster, 3, padding=dilations[3], dilation=dilations[3])
44
-
45
- self.global_avg_pool = nn.Sequential(nn.AdaptiveAvgPool2d((1, 1)),
46
- nn.Conv2d(in_channels, self.in_channelster, 1, stride=1, bias=False),
47
- nn.BatchNorm2d(self.in_channelster) if config.batch_size > 1 else nn.Identity(),
48
- nn.ReLU(inplace=True))
49
- self.conv1 = nn.Conv2d(self.in_channelster * 5, out_channels, 1, bias=False)
50
- self.bn1 = nn.BatchNorm2d(out_channels) if config.batch_size > 1 else nn.Identity()
51
- self.relu = nn.ReLU(inplace=True)
52
- self.dropout = nn.Dropout(0.5)
53
-
54
- def forward(self, x):
55
- x1 = self.aspp1(x)
56
- x2 = self.aspp2(x)
57
- x3 = self.aspp3(x)
58
- x4 = self.aspp4(x)
59
- x5 = self.global_avg_pool(x)
60
- x5 = F.interpolate(x5, size=x1.size()[2:], mode='bilinear', align_corners=True)
61
- x = torch.cat((x1, x2, x3, x4, x5), dim=1)
62
-
63
- x = self.conv1(x)
64
- x = self.bn1(x)
65
- x = self.relu(x)
66
-
67
- return self.dropout(x)
68
-
69
-
70
- ##################### Deformable
71
- class _ASPPModuleDeformable(nn.Module):
72
- def __init__(self, in_channels, planes, kernel_size, padding):
73
- super(_ASPPModuleDeformable, self).__init__()
74
- self.atrous_conv = DeformableConv2d(in_channels, planes, kernel_size=kernel_size,
75
- stride=1, padding=padding, bias=False)
76
- self.bn = nn.BatchNorm2d(planes) if config.batch_size > 1 else nn.Identity()
77
- self.relu = nn.ReLU(inplace=True)
78
-
79
- def forward(self, x):
80
- x = self.atrous_conv(x)
81
- x = self.bn(x)
82
-
83
- return self.relu(x)
84
-
85
-
86
- class ASPPDeformable(nn.Module):
87
- def __init__(self, in_channels, out_channels=None, parallel_block_sizes=[1, 3, 7]):
88
- super(ASPPDeformable, self).__init__()
89
- self.down_scale = 1
90
- if out_channels is None:
91
- out_channels = in_channels
92
- self.in_channelster = 256 // self.down_scale
93
-
94
- self.aspp1 = _ASPPModuleDeformable(in_channels, self.in_channelster, 1, padding=0)
95
- self.aspp_deforms = nn.ModuleList([
96
- _ASPPModuleDeformable(in_channels, self.in_channelster, conv_size, padding=int(conv_size//2)) for conv_size in parallel_block_sizes
97
- ])
98
-
99
- self.global_avg_pool = nn.Sequential(nn.AdaptiveAvgPool2d((1, 1)),
100
- nn.Conv2d(in_channels, self.in_channelster, 1, stride=1, bias=False),
101
- nn.BatchNorm2d(self.in_channelster) if config.batch_size > 1 else nn.Identity(),
102
- nn.ReLU(inplace=True))
103
- self.conv1 = nn.Conv2d(self.in_channelster * (2 + len(self.aspp_deforms)), out_channels, 1, bias=False)
104
- self.bn1 = nn.BatchNorm2d(out_channels) if config.batch_size > 1 else nn.Identity()
105
- self.relu = nn.ReLU(inplace=True)
106
- self.dropout = nn.Dropout(0.5)
107
-
108
- def forward(self, x):
109
- x1 = self.aspp1(x)
110
- x_aspp_deforms = [aspp_deform(x) for aspp_deform in self.aspp_deforms]
111
- x5 = self.global_avg_pool(x)
112
- x5 = F.interpolate(x5, size=x1.size()[2:], mode='bilinear', align_corners=True)
113
- x = torch.cat((x1, *x_aspp_deforms, x5), dim=1)
114
-
115
- x = self.conv1(x)
116
- x = self.bn1(x)
117
- x = self.relu(x)
118
-
119
- return self.dropout(x)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
BiRefNet_codes1/models/modules/attentions.py DELETED
@@ -1,93 +0,0 @@
1
- import numpy as np
2
- import torch
3
- from torch import nn
4
- from torch.nn import init
5
-
6
-
7
- class SEWeightModule(nn.Module):
8
- def __init__(self, channels, reduction=16):
9
- super(SEWeightModule, self).__init__()
10
- self.avg_pool = nn.AdaptiveAvgPool2d(1)
11
- self.fc1 = nn.Conv2d(channels, channels//reduction, kernel_size=1, padding=0)
12
- self.relu = nn.ReLU(inplace=True)
13
- self.fc2 = nn.Conv2d(channels//reduction, channels, kernel_size=1, padding=0)
14
- self.sigmoid = nn.Sigmoid()
15
-
16
- def forward(self, x):
17
- out = self.avg_pool(x)
18
- out = self.fc1(out)
19
- out = self.relu(out)
20
- out = self.fc2(out)
21
- weight = self.sigmoid(out)
22
- return weight
23
-
24
-
25
- class PSA(nn.Module):
26
-
27
- def __init__(self, in_channels, S=4, reduction=4):
28
- super().__init__()
29
- self.S = S
30
-
31
- _convs = []
32
- for i in range(S):
33
- _convs.append(nn.Conv2d(in_channels//S, in_channels//S, kernel_size=2*(i+1)+1, padding=i+1))
34
- self.convs = nn.ModuleList(_convs)
35
-
36
- self.se_block = SEWeightModule(in_channels//S, reduction=S*reduction)
37
-
38
- self.softmax = nn.Softmax(dim=1)
39
-
40
- def forward(self, x):
41
- b, c, h, w = x.size()
42
-
43
- # Step1: SPC module
44
- SPC_out = x.view(b, self.S, c//self.S, h, w) #bs,s,ci,h,w
45
- for idx, conv in enumerate(self.convs):
46
- SPC_out[:,idx,:,:,:] = conv(SPC_out[:,idx,:,:,:].clone())
47
-
48
- # Step2: SE weight
49
- se_out=[]
50
- for idx in range(self.S):
51
- se_out.append(self.se_block(SPC_out[:, idx, :, :, :]))
52
- SE_out = torch.stack(se_out, dim=1)
53
- SE_out = SE_out.expand_as(SPC_out)
54
-
55
- # Step3: Softmax
56
- softmax_out = self.softmax(SE_out)
57
-
58
- # Step4: SPA
59
- PSA_out = SPC_out * softmax_out
60
- PSA_out = PSA_out.view(b, -1, h, w)
61
-
62
- return PSA_out
63
-
64
-
65
- class SGE(nn.Module):
66
-
67
- def __init__(self, groups):
68
- super().__init__()
69
- self.groups=groups
70
- self.avg_pool = nn.AdaptiveAvgPool2d(1)
71
- self.weight=nn.Parameter(torch.zeros(1,groups,1,1))
72
- self.bias=nn.Parameter(torch.zeros(1,groups,1,1))
73
- self.sig=nn.Sigmoid()
74
-
75
- def forward(self, x):
76
- b, c, h,w=x.shape
77
- x=x.view(b*self.groups,-1,h,w) #bs*g,dim//g,h,w
78
- xn=x*self.avg_pool(x) #bs*g,dim//g,h,w
79
- xn=xn.sum(dim=1,keepdim=True) #bs*g,1,h,w
80
- t=xn.view(b*self.groups,-1) #bs*g,h*w
81
-
82
- t=t-t.mean(dim=1,keepdim=True) #bs*g,h*w
83
- std=t.std(dim=1,keepdim=True)+1e-5
84
- t=t/std #bs*g,h*w
85
- t=t.view(b,self.groups,h,w) #bs,g,h*w
86
-
87
- t=t*self.weight+self.bias #bs,g,h*w
88
- t=t.view(b*self.groups,1,h,w) #bs*g,1,h*w
89
- x=x*self.sig(t)
90
- x=x.view(b,c,h,w)
91
-
92
- return x
93
-
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
BiRefNet_codes1/models/modules/decoder_blocks.py DELETED
@@ -1,101 +0,0 @@
1
- import torch
2
- import torch.nn as nn
3
- from models.modules.aspp import ASPP, ASPPDeformable
4
- from models.modules.attentions import PSA, SGE
5
- from config import Config
6
-
7
-
8
- config = Config()
9
-
10
-
11
- class BasicDecBlk(nn.Module):
12
- def __init__(self, in_channels=64, out_channels=64, inter_channels=64):
13
- super(BasicDecBlk, self).__init__()
14
- inter_channels = in_channels // 4 if config.dec_channels_inter == 'adap' else 64
15
- self.conv_in = nn.Conv2d(in_channels, inter_channels, 3, 1, padding=1)
16
- self.relu_in = nn.ReLU(inplace=True)
17
- if config.dec_att == 'ASPP':
18
- self.dec_att = ASPP(in_channels=inter_channels)
19
- elif config.dec_att == 'ASPPDeformable':
20
- self.dec_att = ASPPDeformable(in_channels=inter_channels)
21
- self.conv_out = nn.Conv2d(inter_channels, out_channels, 3, 1, padding=1)
22
- self.bn_in = nn.BatchNorm2d(inter_channels) if config.batch_size > 1 else nn.Identity()
23
- self.bn_out = nn.BatchNorm2d(out_channels) if config.batch_size > 1 else nn.Identity()
24
-
25
- def forward(self, x):
26
- x = self.conv_in(x)
27
- x = self.bn_in(x)
28
- x = self.relu_in(x)
29
- if hasattr(self, 'dec_att'):
30
- x = self.dec_att(x)
31
- x = self.conv_out(x)
32
- x = self.bn_out(x)
33
- return x
34
-
35
-
36
- class ResBlk(nn.Module):
37
- def __init__(self, in_channels=64, out_channels=None, inter_channels=64):
38
- super(ResBlk, self).__init__()
39
- if out_channels is None:
40
- out_channels = in_channels
41
- inter_channels = in_channels // 4 if config.dec_channels_inter == 'adap' else 64
42
-
43
- self.conv_in = nn.Conv2d(in_channels, inter_channels, 3, 1, padding=1)
44
- self.bn_in = nn.BatchNorm2d(inter_channels) if config.batch_size > 1 else nn.Identity()
45
- self.relu_in = nn.ReLU(inplace=True)
46
-
47
- if config.dec_att == 'ASPP':
48
- self.dec_att = ASPP(in_channels=inter_channels)
49
- elif config.dec_att == 'ASPPDeformable':
50
- self.dec_att = ASPPDeformable(in_channels=inter_channels)
51
-
52
- self.conv_out = nn.Conv2d(inter_channels, out_channels, 3, 1, padding=1)
53
- self.bn_out = nn.BatchNorm2d(out_channels) if config.batch_size > 1 else nn.Identity()
54
-
55
- self.conv_resi = nn.Conv2d(in_channels, out_channels, 1, 1, 0)
56
-
57
- def forward(self, x):
58
- _x = self.conv_resi(x)
59
- x = self.conv_in(x)
60
- x = self.bn_in(x)
61
- x = self.relu_in(x)
62
- if hasattr(self, 'dec_att'):
63
- x = self.dec_att(x)
64
- x = self.conv_out(x)
65
- x = self.bn_out(x)
66
- return x + _x
67
-
68
-
69
- class HierarAttDecBlk(nn.Module):
70
- def __init__(self, in_channels=64, out_channels=None, inter_channels=64):
71
- super(HierarAttDecBlk, self).__init__()
72
- if out_channels is None:
73
- out_channels = in_channels
74
- inter_channels = in_channels // 4 if config.dec_channels_inter == 'adap' else 64
75
- self.split_y = 8 # must be divided by channels of all intermediate features
76
- self.split_x = 8
77
-
78
- self.conv_in = nn.Conv2d(in_channels, inter_channels, 3, 1, 1)
79
-
80
- self.psa = PSA(inter_channels*self.split_y*self.split_x, S=config.batch_size)
81
- self.sge = SGE(groups=config.batch_size)
82
-
83
- if config.dec_att == 'ASPP':
84
- self.dec_att = ASPP(in_channels=inter_channels)
85
- elif config.dec_att == 'ASPPDeformable':
86
- self.dec_att = ASPPDeformable(in_channels=inter_channels)
87
- self.conv_out = nn.Conv2d(inter_channels, out_channels, 3, 1, 1)
88
-
89
- def forward(self, x):
90
- x = self.conv_in(x)
91
- N, C, H, W = x.shape
92
- x_patchs = x.reshape(N, -1, H//self.split_y, W//self.split_x)
93
-
94
- # Hierarchical attention: group attention X patch spatial attention
95
- x_patchs = self.psa(x_patchs) # Group Channel Attention -- each group is a single image
96
- x_patchs = self.sge(x_patchs) # Patch Spatial Attention
97
- x = x.reshape(N, C, H, W)
98
- if hasattr(self, 'dec_att'):
99
- x = self.dec_att(x)
100
- x = self.conv_out(x)
101
- return x
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
BiRefNet_codes1/models/modules/deform_conv.py DELETED
@@ -1,66 +0,0 @@
1
- import torch
2
- import torch.nn as nn
3
- from torchvision.ops import deform_conv2d
4
-
5
-
6
- class DeformableConv2d(nn.Module):
7
- def __init__(self,
8
- in_channels,
9
- out_channels,
10
- kernel_size=3,
11
- stride=1,
12
- padding=1,
13
- bias=False):
14
-
15
- super(DeformableConv2d, self).__init__()
16
-
17
- assert type(kernel_size) == tuple or type(kernel_size) == int
18
-
19
- kernel_size = kernel_size if type(kernel_size) == tuple else (kernel_size, kernel_size)
20
- self.stride = stride if type(stride) == tuple else (stride, stride)
21
- self.padding = padding
22
-
23
- self.offset_conv = nn.Conv2d(in_channels,
24
- 2 * kernel_size[0] * kernel_size[1],
25
- kernel_size=kernel_size,
26
- stride=stride,
27
- padding=self.padding,
28
- bias=True)
29
-
30
- nn.init.constant_(self.offset_conv.weight, 0.)
31
- nn.init.constant_(self.offset_conv.bias, 0.)
32
-
33
- self.modulator_conv = nn.Conv2d(in_channels,
34
- 1 * kernel_size[0] * kernel_size[1],
35
- kernel_size=kernel_size,
36
- stride=stride,
37
- padding=self.padding,
38
- bias=True)
39
-
40
- nn.init.constant_(self.modulator_conv.weight, 0.)
41
- nn.init.constant_(self.modulator_conv.bias, 0.)
42
-
43
- self.regular_conv = nn.Conv2d(in_channels,
44
- out_channels=out_channels,
45
- kernel_size=kernel_size,
46
- stride=stride,
47
- padding=self.padding,
48
- bias=bias)
49
-
50
- def forward(self, x):
51
- #h, w = x.shape[2:]
52
- #max_offset = max(h, w)/4.
53
-
54
- offset = self.offset_conv(x)#.clamp(-max_offset, max_offset)
55
- modulator = 2. * torch.sigmoid(self.modulator_conv(x))
56
-
57
- x = deform_conv2d(
58
- input=x,
59
- offset=offset,
60
- weight=self.regular_conv.weight,
61
- bias=self.regular_conv.bias,
62
- padding=self.padding,
63
- mask=modulator,
64
- stride=self.stride,
65
- )
66
- return x
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
BiRefNet_codes1/models/modules/ing.py DELETED
@@ -1,29 +0,0 @@
1
- import torch.nn as nn
2
- from models.modules.mlp import MLPLayer
3
-
4
-
5
- class BlockA(nn.Module):
6
- def __init__(self, in_channels=64, out_channels=64, inter_channels=64, mlp_ratio=4.):
7
- super(BlockA, self).__init__()
8
- inter_channels = in_channels
9
- self.conv = nn.Conv2d(in_channels, inter_channels, 3, 1, 1)
10
- self.norm1 = nn.LayerNorm(inter_channels)
11
- self.ffn = MLPLayer(in_features=inter_channels,
12
- hidden_features=int(inter_channels * mlp_ratio),
13
- act_layer=nn.GELU,
14
- drop=0.)
15
- self.norm2 = nn.LayerNorm(inter_channels)
16
-
17
- def forward(self, x):
18
- B, C, H, W = x.shape
19
- _x = self.conv(x)
20
- _x = _x.flatten(2).transpose(1, 2)
21
- _x = self.norm1(_x)
22
- x = x.reshape(B, H, W, -1).permute(0, 3, 1, 2).contiguous()
23
-
24
- x = x + _x
25
- _x1 = self.ffn(x)
26
- _x1 = self.norm2(_x1)
27
- _x1 = _x1.reshape(B, H, W, -1).permute(0, 3, 1, 2).contiguous()
28
- x = x + _x1
29
- return x
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
BiRefNet_codes1/models/modules/lateral_blocks.py DELETED
@@ -1,21 +0,0 @@
1
- import numpy as np
2
- import torch
3
- import torch.nn as nn
4
- import torch.nn.functional as F
5
- from functools import partial
6
-
7
- from config import Config
8
-
9
-
10
- config = Config()
11
-
12
-
13
- class BasicLatBlk(nn.Module):
14
- def __init__(self, in_channels=64, out_channels=64, inter_channels=64):
15
- super(BasicLatBlk, self).__init__()
16
- inter_channels = in_channels // 4 if config.dec_channels_inter == 'adap' else 64
17
- self.conv = nn.Conv2d(in_channels, out_channels, 1, 1, 0)
18
-
19
- def forward(self, x):
20
- x = self.conv(x)
21
- return x
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
BiRefNet_codes1/models/modules/mlp.py DELETED
@@ -1,118 +0,0 @@
1
- import torch
2
- import torch.nn as nn
3
- from functools import partial
4
-
5
- from timm.models.layers import DropPath, to_2tuple, trunc_normal_
6
- from timm.models.registry import register_model
7
-
8
- import math
9
-
10
-
11
- class MLPLayer(nn.Module):
12
- def __init__(self, in_features, hidden_features=None, out_features=None, act_layer=nn.GELU, drop=0.):
13
- super().__init__()
14
- out_features = out_features or in_features
15
- hidden_features = hidden_features or in_features
16
- self.fc1 = nn.Linear(in_features, hidden_features)
17
- self.act = act_layer()
18
- self.fc2 = nn.Linear(hidden_features, out_features)
19
- self.drop = nn.Dropout(drop)
20
-
21
- def forward(self, x):
22
- x = self.fc1(x)
23
- x = self.act(x)
24
- x = self.drop(x)
25
- x = self.fc2(x)
26
- x = self.drop(x)
27
- return x
28
-
29
-
30
- class Attention(nn.Module):
31
- def __init__(self, dim, num_heads=8, qkv_bias=False, qk_scale=None, attn_drop=0., proj_drop=0., sr_ratio=1):
32
- super().__init__()
33
- assert dim % num_heads == 0, f"dim {dim} should be divided by num_heads {num_heads}."
34
-
35
- self.dim = dim
36
- self.num_heads = num_heads
37
- head_dim = dim // num_heads
38
- self.scale = qk_scale or head_dim ** -0.5
39
-
40
- self.q = nn.Linear(dim, dim, bias=qkv_bias)
41
- self.kv = nn.Linear(dim, dim * 2, bias=qkv_bias)
42
- self.attn_drop = nn.Dropout(attn_drop)
43
- self.proj = nn.Linear(dim, dim)
44
- self.proj_drop = nn.Dropout(proj_drop)
45
-
46
- self.sr_ratio = sr_ratio
47
- if sr_ratio > 1:
48
- self.sr = nn.Conv2d(dim, dim, kernel_size=sr_ratio, stride=sr_ratio)
49
- self.norm = nn.LayerNorm(dim)
50
-
51
- def forward(self, x, H, W):
52
- B, N, C = x.shape
53
- q = self.q(x).reshape(B, N, self.num_heads, C // self.num_heads).permute(0, 2, 1, 3)
54
-
55
- if self.sr_ratio > 1:
56
- x_ = x.permute(0, 2, 1).reshape(B, C, H, W)
57
- x_ = self.sr(x_).reshape(B, C, -1).permute(0, 2, 1)
58
- x_ = self.norm(x_)
59
- kv = self.kv(x_).reshape(B, -1, 2, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4)
60
- else:
61
- kv = self.kv(x).reshape(B, -1, 2, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4)
62
- k, v = kv[0], kv[1]
63
-
64
- attn = (q @ k.transpose(-2, -1)) * self.scale
65
- attn = attn.softmax(dim=-1)
66
- attn = self.attn_drop(attn)
67
-
68
- x = (attn @ v).transpose(1, 2).reshape(B, N, C)
69
- x = self.proj(x)
70
- x = self.proj_drop(x)
71
- return x
72
-
73
-
74
- class Block(nn.Module):
75
- def __init__(self, dim, num_heads, mlp_ratio=4., qkv_bias=False, qk_scale=None, drop=0., attn_drop=0.,
76
- drop_path=0., act_layer=nn.GELU, norm_layer=nn.LayerNorm, sr_ratio=1):
77
- super().__init__()
78
- self.norm1 = norm_layer(dim)
79
- self.attn = Attention(
80
- dim,
81
- num_heads=num_heads, qkv_bias=qkv_bias, qk_scale=qk_scale,
82
- attn_drop=attn_drop, proj_drop=drop, sr_ratio=sr_ratio)
83
- # NOTE: drop path for stochastic depth, we shall see if this is better than dropout here
84
- self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity()
85
- self.norm2 = norm_layer(dim)
86
- mlp_hidden_dim = int(dim * mlp_ratio)
87
- self.mlp = MLPLayer(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop)
88
-
89
- def forward(self, x, H, W):
90
- x = x + self.drop_path(self.attn(self.norm1(x), H, W))
91
- x = x + self.drop_path(self.mlp(self.norm2(x), H, W))
92
- return x
93
-
94
-
95
- class OverlapPatchEmbed(nn.Module):
96
- """ Image to Patch Embedding
97
- """
98
-
99
- def __init__(self, img_size=224, patch_size=7, stride=4, in_channels=3, embed_dim=768):
100
- super().__init__()
101
- img_size = to_2tuple(img_size)
102
- patch_size = to_2tuple(patch_size)
103
-
104
- self.img_size = img_size
105
- self.patch_size = patch_size
106
- self.H, self.W = img_size[0] // patch_size[0], img_size[1] // patch_size[1]
107
- self.num_patches = self.H * self.W
108
- self.proj = nn.Conv2d(in_channels, embed_dim, kernel_size=patch_size, stride=stride,
109
- padding=(patch_size[0] // 2, patch_size[1] // 2))
110
- self.norm = nn.LayerNorm(embed_dim)
111
-
112
- def forward(self, x):
113
- x = self.proj(x)
114
- _, _, H, W = x.shape
115
- x = x.flatten(2).transpose(1, 2)
116
- x = self.norm(x)
117
- return x, H, W
118
-
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
BiRefNet_codes1/models/modules/prompt_encoder.py DELETED
@@ -1,222 +0,0 @@
1
- import numpy as np
2
- import torch
3
- import torch.nn as nn
4
- from typing import Any, Optional, Tuple, Type
5
-
6
-
7
- class PromptEncoder(nn.Module):
8
- def __init__(
9
- self,
10
- embed_dim=256,
11
- image_embedding_size=1024,
12
- input_image_size=(1024, 1024),
13
- mask_in_chans=16,
14
- activation=nn.GELU
15
- ) -> None:
16
- super().__init__()
17
- """
18
- Codes are partially from SAM: https://github.com/facebookresearch/segment-anything/blob/6fdee8f2727f4506cfbbe553e23b895e27956588/segment_anything/modeling/prompt_encoder.py.
19
-
20
- Arguments:
21
- embed_dim (int): The prompts' embedding dimension
22
- image_embedding_size (tuple(int, int)): The spatial size of the
23
- image embedding, as (H, W).
24
- input_image_size (int): The padded size of the image as input
25
- to the image encoder, as (H, W).
26
- mask_in_chans (int): The number of hidden channels used for
27
- encoding input masks.
28
- activation (nn.Module): The activation to use when encoding
29
- input masks.
30
- """
31
- super().__init__()
32
- self.embed_dim = embed_dim
33
- self.input_image_size = input_image_size
34
- self.image_embedding_size = image_embedding_size
35
- self.pe_layer = PositionEmbeddingRandom(embed_dim // 2)
36
-
37
- self.num_point_embeddings: int = 4 # pos/neg point + 2 box corners
38
- point_embeddings = [nn.Embedding(1, embed_dim) for i in range(self.num_point_embeddings)]
39
- self.point_embeddings = nn.ModuleList(point_embeddings)
40
- self.not_a_point_embed = nn.Embedding(1, embed_dim)
41
-
42
- self.mask_input_size = (4 * image_embedding_size[0], 4 * image_embedding_size[1])
43
- self.mask_downscaling = nn.Sequential(
44
- nn.Conv2d(1, mask_in_chans // 4, kernel_size=2, stride=2),
45
- LayerNorm2d(mask_in_chans // 4),
46
- activation(),
47
- nn.Conv2d(mask_in_chans // 4, mask_in_chans, kernel_size=2, stride=2),
48
- LayerNorm2d(mask_in_chans),
49
- activation(),
50
- nn.Conv2d(mask_in_chans, embed_dim, kernel_size=1),
51
- )
52
- self.no_mask_embed = nn.Embedding(1, embed_dim)
53
-
54
- def get_dense_pe(self) -> torch.Tensor:
55
- """
56
- Returns the positional encoding used to encode point prompts,
57
- applied to a dense set of points the shape of the image encoding.
58
-
59
- Returns:
60
- torch.Tensor: Positional encoding with shape
61
- 1x(embed_dim)x(embedding_h)x(embedding_w)
62
- """
63
- return self.pe_layer(self.image_embedding_size).unsqueeze(0)
64
-
65
- def _embed_points(
66
- self,
67
- points: torch.Tensor,
68
- labels: torch.Tensor,
69
- pad: bool,
70
- ) -> torch.Tensor:
71
- """Embeds point prompts."""
72
- points = points + 0.5 # Shift to center of pixel
73
- if pad:
74
- padding_point = torch.zeros((points.shape[0], 1, 2), device=points.device)
75
- padding_label = -torch.ones((labels.shape[0], 1), device=labels.device)
76
- points = torch.cat([points, padding_point], dim=1)
77
- labels = torch.cat([labels, padding_label], dim=1)
78
- point_embedding = self.pe_layer.forward_with_coords(points, self.input_image_size)
79
- point_embedding[labels == -1] = 0.0
80
- point_embedding[labels == -1] += self.not_a_point_embed.weight
81
- point_embedding[labels == 0] += self.point_embeddings[0].weight
82
- point_embedding[labels == 1] += self.point_embeddings[1].weight
83
- return point_embedding
84
-
85
- def _embed_boxes(self, boxes: torch.Tensor) -> torch.Tensor:
86
- """Embeds box prompts."""
87
- boxes = boxes + 0.5 # Shift to center of pixel
88
- coords = boxes.reshape(-1, 2, 2)
89
- corner_embedding = self.pe_layer.forward_with_coords(coords, self.input_image_size)
90
- corner_embedding[:, 0, :] += self.point_embeddings[2].weight
91
- corner_embedding[:, 1, :] += self.point_embeddings[3].weight
92
- return corner_embedding
93
-
94
- def _embed_masks(self, masks: torch.Tensor) -> torch.Tensor:
95
- """Embeds mask inputs."""
96
- mask_embedding = self.mask_downscaling(masks)
97
- return mask_embedding
98
-
99
- def _get_batch_size(
100
- self,
101
- points: Optional[Tuple[torch.Tensor, torch.Tensor]],
102
- boxes: Optional[torch.Tensor],
103
- masks: Optional[torch.Tensor],
104
- ) -> int:
105
- """
106
- Gets the batch size of the output given the batch size of the input prompts.
107
- """
108
- if points is not None:
109
- return points[0].shape[0]
110
- elif boxes is not None:
111
- return boxes.shape[0]
112
- elif masks is not None:
113
- return masks.shape[0]
114
- else:
115
- return 1
116
-
117
- def _get_device(self) -> torch.device:
118
- return self.point_embeddings[0].weight.device
119
-
120
- def forward(
121
- self,
122
- points: Optional[Tuple[torch.Tensor, torch.Tensor]],
123
- boxes: Optional[torch.Tensor],
124
- masks: Optional[torch.Tensor],
125
- ) -> Tuple[torch.Tensor, torch.Tensor]:
126
- """
127
- Embeds different types of prompts, returning both sparse and dense
128
- embeddings.
129
-
130
- Arguments:
131
- points (tuple(torch.Tensor, torch.Tensor) or none): point coordinates
132
- and labels to embed.
133
- boxes (torch.Tensor or none): boxes to embed
134
- masks (torch.Tensor or none): masks to embed
135
-
136
- Returns:
137
- torch.Tensor: sparse embeddings for the points and boxes, with shape
138
- BxNx(embed_dim), where N is determined by the number of input points
139
- and boxes.
140
- torch.Tensor: dense embeddings for the masks, in the shape
141
- Bx(embed_dim)x(embed_H)x(embed_W)
142
- """
143
- bs = self._get_batch_size(points, boxes, masks)
144
- sparse_embeddings = torch.empty((bs, 0, self.embed_dim), device=self._get_device())
145
- if points is not None:
146
- coords, labels = points
147
- point_embeddings = self._embed_points(coords, labels, pad=(boxes is None))
148
- sparse_embeddings = torch.cat([sparse_embeddings, point_embeddings], dim=1)
149
- if boxes is not None:
150
- box_embeddings = self._embed_boxes(boxes)
151
- sparse_embeddings = torch.cat([sparse_embeddings, box_embeddings], dim=1)
152
-
153
- if masks is not None:
154
- dense_embeddings = self._embed_masks(masks)
155
- else:
156
- dense_embeddings = self.no_mask_embed.weight.reshape(1, -1, 1, 1).expand(
157
- bs, -1, self.image_embedding_size[0], self.image_embedding_size[1]
158
- )
159
-
160
- return sparse_embeddings, dense_embeddings
161
-
162
-
163
- class PositionEmbeddingRandom(nn.Module):
164
- """
165
- Positional encoding using random spatial frequencies.
166
- """
167
-
168
- def __init__(self, num_pos_feats: int = 64, scale: Optional[float] = None) -> None:
169
- super().__init__()
170
- if scale is None or scale <= 0.0:
171
- scale = 1.0
172
- self.register_buffer(
173
- "positional_encoding_gaussian_matrix",
174
- scale * torch.randn((2, num_pos_feats)),
175
- )
176
-
177
- def _pe_encoding(self, coords: torch.Tensor) -> torch.Tensor:
178
- """Positionally encode points that are normalized to [0,1]."""
179
- # assuming coords are in [0, 1]^2 square and have d_1 x ... x d_n x 2 shape
180
- coords = 2 * coords - 1
181
- coords = coords @ self.positional_encoding_gaussian_matrix
182
- coords = 2 * np.pi * coords
183
- # outputs d_1 x ... x d_n x C shape
184
- return torch.cat([torch.sin(coords), torch.cos(coords)], dim=-1)
185
-
186
- def forward(self, size: Tuple[int, int]) -> torch.Tensor:
187
- """Generate positional encoding for a grid of the specified size."""
188
- h, w = size
189
- device: Any = self.positional_encoding_gaussian_matrix.device
190
- grid = torch.ones((h, w), device=device, dtype=torch.float32)
191
- y_embed = grid.cumsum(dim=0) - 0.5
192
- x_embed = grid.cumsum(dim=1) - 0.5
193
- y_embed = y_embed / h
194
- x_embed = x_embed / w
195
-
196
- pe = self._pe_encoding(torch.stack([x_embed, y_embed], dim=-1))
197
- return pe.permute(2, 0, 1) # C x H x W
198
-
199
- def forward_with_coords(
200
- self, coords_input: torch.Tensor, image_size: Tuple[int, int]
201
- ) -> torch.Tensor:
202
- """Positionally encode points that are not normalized to [0,1]."""
203
- coords = coords_input.clone()
204
- coords[:, :, 0] = coords[:, :, 0] / image_size[1]
205
- coords[:, :, 1] = coords[:, :, 1] / image_size[0]
206
- return self._pe_encoding(coords.to(torch.float)) # B x N x C
207
-
208
-
209
- class LayerNorm2d(nn.Module):
210
- def __init__(self, num_channels: int, eps: float = 1e-6) -> None:
211
- super().__init__()
212
- self.weight = nn.Parameter(torch.ones(num_channels))
213
- self.bias = nn.Parameter(torch.zeros(num_channels))
214
- self.eps = eps
215
-
216
- def forward(self, x: torch.Tensor) -> torch.Tensor:
217
- u = x.mean(1, keepdim=True)
218
- s = (x - u).pow(2).mean(1, keepdim=True)
219
- x = (x - u) / torch.sqrt(s + self.eps)
220
- x = self.weight[:, None, None] * x + self.bias[:, None, None]
221
- return x
222
-
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
BiRefNet_codes1/models/modules/utils.py DELETED
@@ -1,54 +0,0 @@
1
- import torch.nn as nn
2
-
3
-
4
- def build_act_layer(act_layer):
5
- if act_layer == 'ReLU':
6
- return nn.ReLU(inplace=True)
7
- elif act_layer == 'SiLU':
8
- return nn.SiLU(inplace=True)
9
- elif act_layer == 'GELU':
10
- return nn.GELU()
11
-
12
- raise NotImplementedError(f'build_act_layer does not support {act_layer}')
13
-
14
-
15
- def build_norm_layer(dim,
16
- norm_layer,
17
- in_format='channels_last',
18
- out_format='channels_last',
19
- eps=1e-6):
20
- layers = []
21
- if norm_layer == 'BN':
22
- if in_format == 'channels_last':
23
- layers.append(to_channels_first())
24
- layers.append(nn.BatchNorm2d(dim))
25
- if out_format == 'channels_last':
26
- layers.append(to_channels_last())
27
- elif norm_layer == 'LN':
28
- if in_format == 'channels_first':
29
- layers.append(to_channels_last())
30
- layers.append(nn.LayerNorm(dim, eps=eps))
31
- if out_format == 'channels_first':
32
- layers.append(to_channels_first())
33
- else:
34
- raise NotImplementedError(
35
- f'build_norm_layer does not support {norm_layer}')
36
- return nn.Sequential(*layers)
37
-
38
-
39
- class to_channels_first(nn.Module):
40
-
41
- def __init__(self):
42
- super().__init__()
43
-
44
- def forward(self, x):
45
- return x.permute(0, 3, 1, 2)
46
-
47
-
48
- class to_channels_last(nn.Module):
49
-
50
- def __init__(self):
51
- super().__init__()
52
-
53
- def forward(self, x):
54
- return x.permute(0, 2, 3, 1)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
BiRefNet_codes1/models/refinement/refiner.py DELETED
@@ -1,253 +0,0 @@
1
- import torch
2
- import torch.nn as nn
3
- from collections import OrderedDict
4
- import torch
5
- import torch.nn as nn
6
- import torch.nn.functional as F
7
- from torchvision.models import vgg16, vgg16_bn
8
- from torchvision.models import resnet50
9
-
10
- from config import Config
11
- from dataset import class_labels_TR_sorted
12
- from models.backbones.build_backbone import build_backbone
13
- from models.modules.decoder_blocks import BasicDecBlk
14
- from models.modules.lateral_blocks import BasicLatBlk
15
- from models.modules.ing import *
16
- from models.refinement.stem_layer import StemLayer
17
-
18
-
19
- class RefinerPVTInChannels4(nn.Module):
20
- def __init__(self, in_channels=3+1):
21
- super(RefinerPVTInChannels4, self).__init__()
22
- self.config = Config()
23
- self.epoch = 1
24
- self.bb = build_backbone(self.config.bb, params_settings='in_channels=4')
25
-
26
- lateral_channels_in_collection = {
27
- 'vgg16': [512, 256, 128, 64], 'vgg16bn': [512, 256, 128, 64], 'resnet50': [1024, 512, 256, 64],
28
- 'pvt_v2_b2': [512, 320, 128, 64], 'pvt_v2_b5': [512, 320, 128, 64],
29
- 'swin_v1_b': [1024, 512, 256, 128], 'swin_v1_l': [1536, 768, 384, 192],
30
- }
31
- channels = lateral_channels_in_collection[self.config.bb]
32
- self.squeeze_module = BasicDecBlk(channels[0], channels[0])
33
-
34
- self.decoder = Decoder(channels)
35
-
36
- if 0:
37
- for key, value in self.named_parameters():
38
- if 'bb.' in key:
39
- value.requires_grad = False
40
-
41
- def forward(self, x):
42
- if isinstance(x, list):
43
- x = torch.cat(x, dim=1)
44
- ########## Encoder ##########
45
- if self.config.bb in ['vgg16', 'vgg16bn', 'resnet50']:
46
- x1 = self.bb.conv1(x)
47
- x2 = self.bb.conv2(x1)
48
- x3 = self.bb.conv3(x2)
49
- x4 = self.bb.conv4(x3)
50
- else:
51
- x1, x2, x3, x4 = self.bb(x)
52
-
53
- x4 = self.squeeze_module(x4)
54
-
55
- ########## Decoder ##########
56
-
57
- features = [x, x1, x2, x3, x4]
58
- scaled_preds = self.decoder(features)
59
-
60
- return scaled_preds
61
-
62
-
63
- class Refiner(nn.Module):
64
- def __init__(self, in_channels=3+1):
65
- super(Refiner, self).__init__()
66
- self.config = Config()
67
- self.epoch = 1
68
- self.stem_layer = StemLayer(in_channels=in_channels, inter_channels=48, out_channels=3, norm_layer='BN' if self.config.batch_size > 1 else 'LN')
69
- self.bb = build_backbone(self.config.bb)
70
-
71
- lateral_channels_in_collection = {
72
- 'vgg16': [512, 256, 128, 64], 'vgg16bn': [512, 256, 128, 64], 'resnet50': [1024, 512, 256, 64],
73
- 'pvt_v2_b2': [512, 320, 128, 64], 'pvt_v2_b5': [512, 320, 128, 64],
74
- 'swin_v1_b': [1024, 512, 256, 128], 'swin_v1_l': [1536, 768, 384, 192],
75
- }
76
- channels = lateral_channels_in_collection[self.config.bb]
77
- self.squeeze_module = BasicDecBlk(channels[0], channels[0])
78
-
79
- self.decoder = Decoder(channels)
80
-
81
- if 0:
82
- for key, value in self.named_parameters():
83
- if 'bb.' in key:
84
- value.requires_grad = False
85
-
86
- def forward(self, x):
87
- if isinstance(x, list):
88
- x = torch.cat(x, dim=1)
89
- x = self.stem_layer(x)
90
- ########## Encoder ##########
91
- if self.config.bb in ['vgg16', 'vgg16bn', 'resnet50']:
92
- x1 = self.bb.conv1(x)
93
- x2 = self.bb.conv2(x1)
94
- x3 = self.bb.conv3(x2)
95
- x4 = self.bb.conv4(x3)
96
- else:
97
- x1, x2, x3, x4 = self.bb(x)
98
-
99
- x4 = self.squeeze_module(x4)
100
-
101
- ########## Decoder ##########
102
-
103
- features = [x, x1, x2, x3, x4]
104
- scaled_preds = self.decoder(features)
105
-
106
- return scaled_preds
107
-
108
-
109
- class Decoder(nn.Module):
110
- def __init__(self, channels):
111
- super(Decoder, self).__init__()
112
- self.config = Config()
113
- DecoderBlock = eval('BasicDecBlk')
114
- LateralBlock = eval('BasicLatBlk')
115
-
116
- self.decoder_block4 = DecoderBlock(channels[0], channels[1])
117
- self.decoder_block3 = DecoderBlock(channels[1], channels[2])
118
- self.decoder_block2 = DecoderBlock(channels[2], channels[3])
119
- self.decoder_block1 = DecoderBlock(channels[3], channels[3]//2)
120
-
121
- self.lateral_block4 = LateralBlock(channels[1], channels[1])
122
- self.lateral_block3 = LateralBlock(channels[2], channels[2])
123
- self.lateral_block2 = LateralBlock(channels[3], channels[3])
124
-
125
- if self.config.ms_supervision:
126
- self.conv_ms_spvn_4 = nn.Conv2d(channels[1], 1, 1, 1, 0)
127
- self.conv_ms_spvn_3 = nn.Conv2d(channels[2], 1, 1, 1, 0)
128
- self.conv_ms_spvn_2 = nn.Conv2d(channels[3], 1, 1, 1, 0)
129
- self.conv_out1 = nn.Sequential(nn.Conv2d(channels[3]//2, 1, 1, 1, 0))
130
-
131
- def forward(self, features):
132
- x, x1, x2, x3, x4 = features
133
- outs = []
134
- p4 = self.decoder_block4(x4)
135
- _p4 = F.interpolate(p4, size=x3.shape[2:], mode='bilinear', align_corners=True)
136
- _p3 = _p4 + self.lateral_block4(x3)
137
-
138
- p3 = self.decoder_block3(_p3)
139
- _p3 = F.interpolate(p3, size=x2.shape[2:], mode='bilinear', align_corners=True)
140
- _p2 = _p3 + self.lateral_block3(x2)
141
-
142
- p2 = self.decoder_block2(_p2)
143
- _p2 = F.interpolate(p2, size=x1.shape[2:], mode='bilinear', align_corners=True)
144
- _p1 = _p2 + self.lateral_block2(x1)
145
-
146
- _p1 = self.decoder_block1(_p1)
147
- _p1 = F.interpolate(_p1, size=x.shape[2:], mode='bilinear', align_corners=True)
148
- p1_out = self.conv_out1(_p1)
149
-
150
- if self.config.ms_supervision:
151
- outs.append(self.conv_ms_spvn_4(p4))
152
- outs.append(self.conv_ms_spvn_3(p3))
153
- outs.append(self.conv_ms_spvn_2(p2))
154
- outs.append(p1_out)
155
- return outs
156
-
157
-
158
- class RefUNet(nn.Module):
159
- # Refinement
160
- def __init__(self, in_channels=3+1):
161
- super(RefUNet, self).__init__()
162
- self.encoder_1 = nn.Sequential(
163
- nn.Conv2d(in_channels, 64, 3, 1, 1),
164
- nn.Conv2d(64, 64, 3, 1, 1),
165
- nn.BatchNorm2d(64),
166
- nn.ReLU(inplace=True)
167
- )
168
-
169
- self.encoder_2 = nn.Sequential(
170
- nn.MaxPool2d(2, 2, ceil_mode=True),
171
- nn.Conv2d(64, 64, 3, 1, 1),
172
- nn.BatchNorm2d(64),
173
- nn.ReLU(inplace=True)
174
- )
175
-
176
- self.encoder_3 = nn.Sequential(
177
- nn.MaxPool2d(2, 2, ceil_mode=True),
178
- nn.Conv2d(64, 64, 3, 1, 1),
179
- nn.BatchNorm2d(64),
180
- nn.ReLU(inplace=True)
181
- )
182
-
183
- self.encoder_4 = nn.Sequential(
184
- nn.MaxPool2d(2, 2, ceil_mode=True),
185
- nn.Conv2d(64, 64, 3, 1, 1),
186
- nn.BatchNorm2d(64),
187
- nn.ReLU(inplace=True)
188
- )
189
-
190
- self.pool4 = nn.MaxPool2d(2, 2, ceil_mode=True)
191
- #####
192
- self.decoder_5 = nn.Sequential(
193
- nn.Conv2d(64, 64, 3, 1, 1),
194
- nn.BatchNorm2d(64),
195
- nn.ReLU(inplace=True)
196
- )
197
- #####
198
- self.decoder_4 = nn.Sequential(
199
- nn.Conv2d(128, 64, 3, 1, 1),
200
- nn.BatchNorm2d(64),
201
- nn.ReLU(inplace=True)
202
- )
203
-
204
- self.decoder_3 = nn.Sequential(
205
- nn.Conv2d(128, 64, 3, 1, 1),
206
- nn.BatchNorm2d(64),
207
- nn.ReLU(inplace=True)
208
- )
209
-
210
- self.decoder_2 = nn.Sequential(
211
- nn.Conv2d(128, 64, 3, 1, 1),
212
- nn.BatchNorm2d(64),
213
- nn.ReLU(inplace=True)
214
- )
215
-
216
- self.decoder_1 = nn.Sequential(
217
- nn.Conv2d(128, 64, 3, 1, 1),
218
- nn.BatchNorm2d(64),
219
- nn.ReLU(inplace=True)
220
- )
221
-
222
- self.conv_d0 = nn.Conv2d(64, 1, 3, 1, 1)
223
-
224
- self.upscore2 = nn.Upsample(scale_factor=2, mode='bilinear', align_corners=True)
225
-
226
- def forward(self, x):
227
- outs = []
228
- if isinstance(x, list):
229
- x = torch.cat(x, dim=1)
230
- hx = x
231
-
232
- hx1 = self.encoder_1(hx)
233
- hx2 = self.encoder_2(hx1)
234
- hx3 = self.encoder_3(hx2)
235
- hx4 = self.encoder_4(hx3)
236
-
237
- hx = self.decoder_5(self.pool4(hx4))
238
- hx = torch.cat((self.upscore2(hx), hx4), 1)
239
-
240
- d4 = self.decoder_4(hx)
241
- hx = torch.cat((self.upscore2(d4), hx3), 1)
242
-
243
- d3 = self.decoder_3(hx)
244
- hx = torch.cat((self.upscore2(d3), hx2), 1)
245
-
246
- d2 = self.decoder_2(hx)
247
- hx = torch.cat((self.upscore2(d2), hx1), 1)
248
-
249
- d1 = self.decoder_1(hx)
250
-
251
- x = self.conv_d0(d1)
252
- outs.append(x)
253
- return outs
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
BiRefNet_codes1/models/refinement/stem_layer.py DELETED
@@ -1,45 +0,0 @@
1
- import torch.nn as nn
2
- from models.modules.utils import build_act_layer, build_norm_layer
3
-
4
-
5
- class StemLayer(nn.Module):
6
- r""" Stem layer of InternImage
7
- Args:
8
- in_channels (int): number of input channels
9
- out_channels (int): number of output channels
10
- act_layer (str): activation layer
11
- norm_layer (str): normalization layer
12
- """
13
-
14
- def __init__(self,
15
- in_channels=3+1,
16
- inter_channels=48,
17
- out_channels=96,
18
- act_layer='GELU',
19
- norm_layer='BN'):
20
- super().__init__()
21
- self.conv1 = nn.Conv2d(in_channels,
22
- inter_channels,
23
- kernel_size=3,
24
- stride=1,
25
- padding=1)
26
- self.norm1 = build_norm_layer(
27
- inter_channels, norm_layer, 'channels_first', 'channels_first'
28
- )
29
- self.act = build_act_layer(act_layer)
30
- self.conv2 = nn.Conv2d(inter_channels,
31
- out_channels,
32
- kernel_size=3,
33
- stride=1,
34
- padding=1)
35
- self.norm2 = build_norm_layer(
36
- out_channels, norm_layer, 'channels_first', 'channels_first'
37
- )
38
-
39
- def forward(self, x):
40
- x = self.conv1(x)
41
- x = self.norm1(x)
42
- x = self.act(x)
43
- x = self.conv2(x)
44
- x = self.norm2(x)
45
- return x
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
BiRefNet_codes1/preproc.py DELETED
@@ -1,85 +0,0 @@
1
- from PIL import Image, ImageEnhance
2
- import random
3
- import numpy as np
4
- import random
5
-
6
-
7
- def preproc(image, label, preproc_methods=['flip']):
8
- if 'flip' in preproc_methods:
9
- image, label = cv_random_flip(image, label)
10
- if 'crop' in preproc_methods:
11
- image, label = random_crop(image, label)
12
- if 'rotate' in preproc_methods:
13
- image, label = random_rotate(image, label)
14
- if 'enhance' in preproc_methods:
15
- image = color_enhance(image)
16
- if 'pepper' in preproc_methods:
17
- label = random_pepper(label)
18
- return image, label
19
-
20
-
21
- def cv_random_flip(img, label):
22
- if random.random() > 0.5:
23
- img = img.transpose(Image.FLIP_LEFT_RIGHT)
24
- label = label.transpose(Image.FLIP_LEFT_RIGHT)
25
- return img, label
26
-
27
-
28
- def random_crop(image, label):
29
- border = 30
30
- image_width = image.size[0]
31
- image_height = image.size[1]
32
- border = int(min(image_width, image_height) * 0.1)
33
- crop_win_width = np.random.randint(image_width - border, image_width)
34
- crop_win_height = np.random.randint(image_height - border, image_height)
35
- random_region = (
36
- (image_width - crop_win_width) >> 1, (image_height - crop_win_height) >> 1, (image_width + crop_win_width) >> 1,
37
- (image_height + crop_win_height) >> 1)
38
- return image.crop(random_region), label.crop(random_region)
39
-
40
-
41
- def random_rotate(image, label, angle=15):
42
- mode = Image.BICUBIC
43
- if random.random() > 0.8:
44
- random_angle = np.random.randint(-angle, angle)
45
- image = image.rotate(random_angle, mode)
46
- label = label.rotate(random_angle, mode)
47
- return image, label
48
-
49
-
50
- def color_enhance(image):
51
- bright_intensity = random.randint(5, 15) / 10.0
52
- image = ImageEnhance.Brightness(image).enhance(bright_intensity)
53
- contrast_intensity = random.randint(5, 15) / 10.0
54
- image = ImageEnhance.Contrast(image).enhance(contrast_intensity)
55
- color_intensity = random.randint(0, 20) / 10.0
56
- image = ImageEnhance.Color(image).enhance(color_intensity)
57
- sharp_intensity = random.randint(0, 30) / 10.0
58
- image = ImageEnhance.Sharpness(image).enhance(sharp_intensity)
59
- return image
60
-
61
-
62
- def random_gaussian(image, mean=0.1, sigma=0.35):
63
- def gaussianNoisy(im, mean=mean, sigma=sigma):
64
- for _i in range(len(im)):
65
- im[_i] += random.gauss(mean, sigma)
66
- return im
67
-
68
- img = np.asarray(image)
69
- width, height = img.shape
70
- img = gaussianNoisy(img[:].flatten(), mean, sigma)
71
- img = img.reshape([width, height])
72
- return Image.fromarray(np.uint8(img))
73
-
74
-
75
- def random_pepper(img, N=0.0015):
76
- img = np.array(img)
77
- noiseNum = int(N * img.shape[0] * img.shape[1])
78
- for i in range(noiseNum):
79
- randX = random.randint(0, img.shape[0] - 1)
80
- randY = random.randint(0, img.shape[1] - 1)
81
- if random.randint(0, 1) == 0:
82
- img[randX, randY] = 0
83
- else:
84
- img[randX, randY] = 255
85
- return Image.fromarray(img)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
BiRefNet_codes1/requirements.txt DELETED
@@ -1,15 +0,0 @@
1
- --extra-index-url https://download.pytorch.org/whl/cu118
2
- torch==2.0.1
3
- --extra-index-url https://download.pytorch.org/whl/cu118
4
- torchvision==0.15.2
5
- numpy<2
6
- opencv-python
7
- timm
8
- scipy
9
- scikit-image
10
- kornia
11
-
12
- tqdm
13
- prettytable
14
-
15
- huggingface_hub
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
BiRefNet_codes1/rm_cache.sh DELETED
@@ -1,20 +0,0 @@
1
- #!/bin/bash
2
- rm -rf __pycache__ */__pycache__
3
-
4
- # Val
5
- rm -r tmp*
6
-
7
- # Train
8
- rm slurm*
9
- rm -r ckpt
10
- rm nohup.out*
11
-
12
- # Eval
13
- rm -r evaluation/eval-*
14
- rm -r tmp*
15
- rm -r e_logs/
16
-
17
- # System
18
- rm core-*-python-*
19
-
20
- clear
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
BiRefNet_codes1/sub.sh DELETED
@@ -1,19 +0,0 @@
1
- #!/bin/sh
2
- # Example: ./sub.sh tmp_proj 0,1,2,3 3 --> Use 0,1,2,3 for training, release GPUs, use GPU:3 for inference.
3
-
4
- module load compilers/cuda/11.8
5
-
6
- export PYTHONUNBUFFERED=1
7
- export LD_PRELOAD=/home/bingxing2/apps/compilers/gcc/12.2.0/lib64/libstdc++.so.6
8
- export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:${HOME}/miniconda3/lib:/home/bingxing2/apps/cudnn/8.4.0.27_cuda11.x/lib
9
-
10
- method=${1:-"BSL"}
11
- devices=${2:-0}
12
-
13
- sbatch --nodes=1 -p vip_gpu_ailab -A ai4bio \
14
- --ntasks-per-node=1 \
15
- --gres=gpu:$(($(echo ${devices%%,} | grep -o "," | wc -l)+1)) \
16
- --cpus-per-task=32 \
17
- ./train_test.sh ${method} ${devices}
18
-
19
- hostname
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
BiRefNet_codes1/test.sh DELETED
@@ -1,28 +0,0 @@
1
- devices=${1:-0}
2
- pred_root=${2:-e_preds}
3
-
4
- # Inference
5
-
6
- CUDA_VISIBLE_DEVICES=${devices} python inference.py --pred_root ${pred_root}
7
-
8
- echo Inference finished at $(date)
9
-
10
- # Evaluation
11
- log_dir=e_logs && mkdir ${log_dir}
12
-
13
- task=$(python3 config.py)
14
- case "${task}" in
15
- "DIS5K") testsets='DIS-VD,DIS-TE1,DIS-TE2,DIS-TE3,DIS-TE4' ;;
16
- "COD") testsets='CHAMELEON,NC4K,TE-CAMO,TE-COD10K' ;;
17
- "HRSOD") testsets='DAVIS-S,TE-HRSOD,TE-UHRSD,DUT-OMRON,TE-DUTS' ;;
18
- "DIS5K+HRSOD+HRS10K") testsets='DIS-VD' ;;
19
- "P3M-10k") testsets='TE-P3M-500-P,TE-P3M-500-NP' ;;
20
- esac
21
- testsets=(`echo ${testsets} | tr ',' ' '`) && testsets=${testsets[@]}
22
-
23
- for testset in ${testsets}; do
24
- nohup python eval_existingOnes.py --pred_root ${pred_root} --data_lst ${testset} > ${log_dir}/eval_${testset}.out 2>&1 &
25
- done
26
-
27
-
28
- echo Evaluation started at $(date)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
BiRefNet_codes1/train.py DELETED
@@ -1,377 +0,0 @@
1
- import os
2
- import datetime
3
- import argparse
4
- import torch
5
- import torch.nn as nn
6
- import torch.optim as optim
7
- from torch.autograd import Variable
8
-
9
- from config import Config
10
- from loss import PixLoss, ClsLoss
11
- from dataset import MyData
12
- from models.birefnet import BiRefNet
13
- from utils import Logger, AverageMeter, set_seed, check_state_dict
14
- from evaluation.valid import valid
15
-
16
- from torch.utils.data.distributed import DistributedSampler
17
- from torch.nn.parallel import DistributedDataParallel as DDP
18
- from torch.distributed import init_process_group, destroy_process_group, get_rank
19
- from torch.cuda import amp
20
-
21
-
22
- parser = argparse.ArgumentParser(description='')
23
- parser.add_argument('--resume', default=None, type=str, help='path to latest checkpoint')
24
- parser.add_argument('--epochs', default=120, type=int)
25
- parser.add_argument('--trainset', default='DIS5K', type=str, help="Options: 'DIS5K'")
26
- parser.add_argument('--ckpt_dir', default=None, help='Temporary folder')
27
- parser.add_argument('--testsets', default='DIS-VD+DIS-TE1+DIS-TE2+DIS-TE3+DIS-TE4', type=str)
28
- parser.add_argument('--dist', default=False, type=lambda x: x == 'True')
29
- args = parser.parse_args()
30
-
31
-
32
- config = Config()
33
- if config.rand_seed:
34
- set_seed(config.rand_seed)
35
-
36
- if config.use_fp16:
37
- # Half Precision
38
- scaler = amp.GradScaler(enabled=config.use_fp16)
39
-
40
- # DDP
41
- to_be_distributed = args.dist
42
- if to_be_distributed:
43
- init_process_group(backend="nccl", timeout=datetime.timedelta(seconds=3600*10))
44
- device = int(os.environ["LOCAL_RANK"])
45
- else:
46
- device = config.device
47
-
48
- epoch_st = 1
49
- # make dir for ckpt
50
- os.makedirs(args.ckpt_dir, exist_ok=True)
51
-
52
- # Init log file
53
- logger = Logger(os.path.join(args.ckpt_dir, "log.txt"))
54
- logger_loss_idx = 1
55
-
56
- # log model and optimizer params
57
- # logger.info("Model details:"); logger.info(model)
58
- logger.info("datasets: load_all={}, compile={}.".format(config.load_all, config.compile))
59
- logger.info("Other hyperparameters:"); logger.info(args)
60
- print('batch size:', config.batch_size)
61
-
62
-
63
- if os.path.exists(os.path.join(config.data_root_dir, config.task, args.testsets.strip('+').split('+')[0])):
64
- args.testsets = args.testsets.strip('+').split('+')
65
- else:
66
- args.testsets = []
67
-
68
- # Init model
69
- def prepare_dataloader(dataset: torch.utils.data.Dataset, batch_size: int, to_be_distributed=False, is_train=True):
70
- if to_be_distributed:
71
- return torch.utils.data.DataLoader(
72
- dataset=dataset, batch_size=batch_size, num_workers=min(config.num_workers, batch_size), pin_memory=True,
73
- shuffle=False, sampler=DistributedSampler(dataset), drop_last=True
74
- )
75
- else:
76
- return torch.utils.data.DataLoader(
77
- dataset=dataset, batch_size=batch_size, num_workers=min(config.num_workers, batch_size, 0), pin_memory=True,
78
- shuffle=is_train, drop_last=True
79
- )
80
-
81
-
82
- def init_data_loaders(to_be_distributed):
83
- # Prepare dataset
84
- train_loader = prepare_dataloader(
85
- MyData(datasets=config.training_set, image_size=config.size, is_train=True),
86
- config.batch_size, to_be_distributed=to_be_distributed, is_train=True
87
- )
88
- print(len(train_loader), "batches of train dataloader {} have been created.".format(config.training_set))
89
- test_loaders = {}
90
- for testset in args.testsets:
91
- _data_loader_test = prepare_dataloader(
92
- MyData(datasets=testset, image_size=config.size, is_train=False),
93
- config.batch_size_valid, is_train=False
94
- )
95
- print(len(_data_loader_test), "batches of valid dataloader {} have been created.".format(testset))
96
- test_loaders[testset] = _data_loader_test
97
- return train_loader, test_loaders
98
-
99
-
100
- def init_models_optimizers(epochs, to_be_distributed):
101
- model = BiRefNet(bb_pretrained=True)
102
- if args.resume:
103
- if os.path.isfile(args.resume):
104
- logger.info("=> loading checkpoint '{}'".format(args.resume))
105
- state_dict = torch.load(args.resume, map_location='cpu')
106
- state_dict = check_state_dict(state_dict)
107
- model.load_state_dict(state_dict)
108
- global epoch_st
109
- epoch_st = int(args.resume.rstrip('.pth').split('epoch_')[-1]) + 1
110
- else:
111
- logger.info("=> no checkpoint found at '{}'".format(args.resume))
112
- if to_be_distributed:
113
- model = model.to(device)
114
- model = DDP(model, device_ids=[device])
115
- else:
116
- model = model.to(device)
117
- if config.compile:
118
- model = torch.compile(model, mode=['default', 'reduce-overhead', 'max-autotune'][0])
119
- if config.precisionHigh:
120
- torch.set_float32_matmul_precision('high')
121
-
122
-
123
- # Setting optimizer
124
- if config.optimizer == 'AdamW':
125
- optimizer = optim.AdamW(params=model.parameters(), lr=config.lr, weight_decay=1e-2)
126
- elif config.optimizer == 'Adam':
127
- optimizer = optim.Adam(params=model.parameters(), lr=config.lr, weight_decay=0)
128
- lr_scheduler = torch.optim.lr_scheduler.MultiStepLR(
129
- optimizer,
130
- milestones=[lde if lde > 0 else epochs + lde + 1 for lde in config.lr_decay_epochs],
131
- gamma=config.lr_decay_rate
132
- )
133
- logger.info("Optimizer details:"); logger.info(optimizer)
134
- logger.info("Scheduler details:"); logger.info(lr_scheduler)
135
-
136
- return model, optimizer, lr_scheduler
137
-
138
-
139
- class Trainer:
140
- def __init__(
141
- self, data_loaders, model_opt_lrsch,
142
- ):
143
- self.model, self.optimizer, self.lr_scheduler = model_opt_lrsch
144
- self.train_loader, self.test_loaders = data_loaders
145
- if config.out_ref:
146
- self.criterion_gdt = nn.BCELoss() if not config.use_fp16 else nn.BCEWithLogitsLoss()
147
-
148
- # Setting Losses
149
- self.pix_loss = PixLoss()
150
- self.cls_loss = ClsLoss()
151
-
152
- # Others
153
- self.loss_log = AverageMeter()
154
- if config.lambda_adv_g:
155
- self.optimizer_d, self.lr_scheduler_d, self.disc, self.adv_criterion = self._load_adv_components()
156
- self.disc_update_for_odd = 0
157
-
158
- def _load_adv_components(self):
159
- # AIL
160
- from loss import Discriminator
161
- disc = Discriminator(channels=3, img_size=config.size)
162
- if to_be_distributed:
163
- disc = disc.to(device)
164
- disc = DDP(disc, device_ids=[device], broadcast_buffers=False)
165
- else:
166
- disc = disc.to(device)
167
- if config.compile:
168
- disc = torch.compile(disc, mode=['default', 'reduce-overhead', 'max-autotune'][0])
169
- adv_criterion = nn.BCELoss() if not config.use_fp16 else nn.BCEWithLogitsLoss()
170
- if config.optimizer == 'AdamW':
171
- optimizer_d = optim.AdamW(params=disc.parameters(), lr=config.lr, weight_decay=1e-2)
172
- elif config.optimizer == 'Adam':
173
- optimizer_d = optim.Adam(params=disc.parameters(), lr=config.lr, weight_decay=0)
174
- lr_scheduler_d = torch.optim.lr_scheduler.MultiStepLR(
175
- optimizer_d,
176
- milestones=[lde if lde > 0 else args.epochs + lde + 1 for lde in config.lr_decay_epochs],
177
- gamma=config.lr_decay_rate
178
- )
179
- return optimizer_d, lr_scheduler_d, disc, adv_criterion
180
-
181
- def _train_batch(self, batch):
182
- inputs = batch[0].to(device)
183
- gts = batch[1].to(device)
184
- class_labels = batch[2].to(device)
185
- if config.use_fp16:
186
- with amp.autocast(enabled=config.use_fp16):
187
- scaled_preds, class_preds_lst = self.model(inputs)
188
- if config.out_ref:
189
- (outs_gdt_pred, outs_gdt_label), scaled_preds = scaled_preds
190
- for _idx, (_gdt_pred, _gdt_label) in enumerate(zip(outs_gdt_pred, outs_gdt_label)):
191
- _gdt_pred = nn.functional.interpolate(_gdt_pred, size=_gdt_label.shape[2:], mode='bilinear', align_corners=True)#.sigmoid()
192
- # _gdt_label = _gdt_label.sigmoid()
193
- loss_gdt = self.criterion_gdt(_gdt_pred, _gdt_label) if _idx == 0 else self.criterion_gdt(_gdt_pred, _gdt_label) + loss_gdt
194
- # self.loss_dict['loss_gdt'] = loss_gdt.item()
195
- if None in class_preds_lst:
196
- loss_cls = 0.
197
- else:
198
- loss_cls = self.cls_loss(class_preds_lst, class_labels) * 1.0
199
- self.loss_dict['loss_cls'] = loss_cls.item()
200
-
201
- # Loss
202
- loss_pix = self.pix_loss(scaled_preds, torch.clamp(gts, 0, 1)) * 1.0
203
- self.loss_dict['loss_pix'] = loss_pix.item()
204
- # since there may be several losses for sal, the lambdas for them (lambdas_pix) are inside the loss.py
205
- loss = loss_pix + loss_cls
206
- if config.out_ref:
207
- loss = loss + loss_gdt * 1.0
208
-
209
- if config.lambda_adv_g:
210
- # gen
211
- valid = Variable(torch.cuda.FloatTensor(scaled_preds[-1].shape[0], 1).fill_(1.0), requires_grad=False).to(device)
212
- adv_loss_g = self.adv_criterion(self.disc(scaled_preds[-1] * inputs), valid) * config.lambda_adv_g
213
- loss += adv_loss_g
214
- self.loss_dict['loss_adv'] = adv_loss_g.item()
215
- self.disc_update_for_odd += 1
216
- # self.loss_log.update(loss.item(), inputs.size(0))
217
- # self.optimizer.zero_grad()
218
- # loss.backward()
219
- # self.optimizer.step()
220
- self.optimizer.zero_grad()
221
- scaler.scale(loss).backward()
222
- scaler.step(self.optimizer)
223
- scaler.update()
224
-
225
- if config.lambda_adv_g and self.disc_update_for_odd % 2 == 0:
226
- # disc
227
- fake = Variable(torch.cuda.FloatTensor(scaled_preds[-1].shape[0], 1).fill_(0.0), requires_grad=False).to(device)
228
- adv_loss_real = self.adv_criterion(self.disc(gts * inputs), valid)
229
- adv_loss_fake = self.adv_criterion(self.disc(scaled_preds[-1].detach() * inputs.detach()), fake)
230
- adv_loss_d = (adv_loss_real + adv_loss_fake) / 2 * config.lambda_adv_d
231
- self.loss_dict['loss_adv_d'] = adv_loss_d.item()
232
- # self.optimizer_d.zero_grad()
233
- # adv_loss_d.backward()
234
- # self.optimizer_d.step()
235
- self.optimizer_d.zero_grad()
236
- scaler.scale(adv_loss_d).backward()
237
- scaler.step(self.optimizer_d)
238
- scaler.update()
239
- else:
240
- scaled_preds, class_preds_lst = self.model(inputs)
241
- if config.out_ref:
242
- (outs_gdt_pred, outs_gdt_label), scaled_preds = scaled_preds
243
- for _idx, (_gdt_pred, _gdt_label) in enumerate(zip(outs_gdt_pred, outs_gdt_label)):
244
- _gdt_pred = nn.functional.interpolate(_gdt_pred, size=_gdt_label.shape[2:], mode='bilinear', align_corners=True).sigmoid()
245
- _gdt_label = _gdt_label.sigmoid()
246
- loss_gdt = self.criterion_gdt(_gdt_pred, _gdt_label) if _idx == 0 else self.criterion_gdt(_gdt_pred, _gdt_label) + loss_gdt
247
- # self.loss_dict['loss_gdt'] = loss_gdt.item()
248
- if None in class_preds_lst:
249
- loss_cls = 0.
250
- else:
251
- loss_cls = self.cls_loss(class_preds_lst, class_labels) * 1.0
252
- self.loss_dict['loss_cls'] = loss_cls.item()
253
-
254
- # Loss
255
- loss_pix = self.pix_loss(scaled_preds, torch.clamp(gts, 0, 1)) * 1.0
256
- self.loss_dict['loss_pix'] = loss_pix.item()
257
- # since there may be several losses for sal, the lambdas for them (lambdas_pix) are inside the loss.py
258
- loss = loss_pix + loss_cls
259
- if config.out_ref:
260
- loss = loss + loss_gdt * 1.0
261
-
262
- if config.lambda_adv_g:
263
- # gen
264
- valid = Variable(torch.cuda.FloatTensor(scaled_preds[-1].shape[0], 1).fill_(1.0), requires_grad=False).to(device)
265
- adv_loss_g = self.adv_criterion(self.disc(scaled_preds[-1] * inputs), valid) * config.lambda_adv_g
266
- loss += adv_loss_g
267
- self.loss_dict['loss_adv'] = adv_loss_g.item()
268
- self.disc_update_for_odd += 1
269
- self.loss_log.update(loss.item(), inputs.size(0))
270
- self.optimizer.zero_grad()
271
- loss.backward()
272
- self.optimizer.step()
273
-
274
- if config.lambda_adv_g and self.disc_update_for_odd % 2 == 0:
275
- # disc
276
- fake = Variable(torch.cuda.FloatTensor(scaled_preds[-1].shape[0], 1).fill_(0.0), requires_grad=False).to(device)
277
- adv_loss_real = self.adv_criterion(self.disc(gts * inputs), valid)
278
- adv_loss_fake = self.adv_criterion(self.disc(scaled_preds[-1].detach() * inputs.detach()), fake)
279
- adv_loss_d = (adv_loss_real + adv_loss_fake) / 2 * config.lambda_adv_d
280
- self.loss_dict['loss_adv_d'] = adv_loss_d.item()
281
- self.optimizer_d.zero_grad()
282
- adv_loss_d.backward()
283
- self.optimizer_d.step()
284
-
285
- def train_epoch(self, epoch):
286
- global logger_loss_idx
287
- self.model.train()
288
- self.loss_dict = {}
289
- if epoch > args.epochs + config.IoU_finetune_last_epochs:
290
- self.pix_loss.lambdas_pix_last['bce'] *= 0
291
- self.pix_loss.lambdas_pix_last['ssim'] *= 1
292
- self.pix_loss.lambdas_pix_last['iou'] *= 0.5
293
-
294
- for batch_idx, batch in enumerate(self.train_loader):
295
- self._train_batch(batch)
296
- # Logger
297
- if batch_idx % 20 == 0:
298
- info_progress = 'Epoch[{0}/{1}] Iter[{2}/{3}].'.format(epoch, args.epochs, batch_idx, len(self.train_loader))
299
- info_loss = 'Training Losses'
300
- for loss_name, loss_value in self.loss_dict.items():
301
- info_loss += ', {}: {:.3f}'.format(loss_name, loss_value)
302
- logger.info(' '.join((info_progress, info_loss)))
303
- info_loss = '@==Final== Epoch[{0}/{1}] Training Loss: {loss.avg:.3f} '.format(epoch, args.epochs, loss=self.loss_log)
304
- logger.info(info_loss)
305
-
306
- self.lr_scheduler.step()
307
- if config.lambda_adv_g:
308
- self.lr_scheduler_d.step()
309
- return self.loss_log.avg
310
-
311
- def validate_model(self, epoch):
312
- num_image_testset_all = {'DIS-VD': 470, 'DIS-TE1': 500, 'DIS-TE2': 500, 'DIS-TE3': 500, 'DIS-TE4': 500}
313
- num_image_testset = {}
314
- for testset in args.testsets:
315
- if 'DIS-TE' in testset:
316
- num_image_testset[testset] = num_image_testset_all[testset]
317
- weighted_scores = {'f_max': 0, 'f_mean': 0, 'f_wfm': 0, 'sm': 0, 'e_max': 0, 'e_mean': 0, 'mae': 0}
318
- len_all_data_loaders = 0
319
- self.model.epoch = epoch
320
- for testset, data_loader_test in self.test_loaders.items():
321
- print('Validating {}...'.format(testset))
322
- performance_dict = valid(
323
- self.model,
324
- data_loader_test,
325
- pred_dir='.',
326
- method=args.ckpt_dir.split('/')[-1] if args.ckpt_dir.split('/')[-1].strip('.').strip('/') else 'tmp_val',
327
- testset=testset,
328
- only_S_MAE=config.only_S_MAE,
329
- device=device
330
- )
331
- print('Test set: {}:'.format(testset))
332
- if config.only_S_MAE:
333
- print('Smeasure: {:.4f}, MAE: {:.4f}'.format(
334
- performance_dict['sm'], performance_dict['mae']
335
- ))
336
- else:
337
- print('Fmax: {:.4f}, Fwfm: {:.4f}, Smeasure: {:.4f}, Emean: {:.4f}, MAE: {:.4f}'.format(
338
- performance_dict['f_max'], performance_dict['f_wfm'], performance_dict['sm'], performance_dict['e_mean'], performance_dict['mae']
339
- ))
340
- if '-TE' in testset:
341
- for metric in ['sm', 'mae'] if config.only_S_MAE else ['f_max', 'f_mean', 'f_wfm', 'sm', 'e_max', 'e_mean', 'mae']:
342
- weighted_scores[metric] += performance_dict[metric] * len(data_loader_test)
343
- len_all_data_loaders += len(data_loader_test)
344
- print('Weighted Scores:')
345
- for metric, score in weighted_scores.items():
346
- if score:
347
- print('\t{}: {:.4f}.'.format(metric, score / len_all_data_loaders))
348
-
349
-
350
- def main():
351
-
352
- trainer = Trainer(
353
- data_loaders=init_data_loaders(to_be_distributed),
354
- model_opt_lrsch=init_models_optimizers(args.epochs, to_be_distributed)
355
- )
356
-
357
- for epoch in range(epoch_st, args.epochs+1):
358
- train_loss = trainer.train_epoch(epoch)
359
- # Save checkpoint
360
- # DDP
361
- if epoch >= args.epochs - config.save_last and epoch % config.save_step == 0:
362
- torch.save(
363
- trainer.model.module.state_dict() if to_be_distributed else trainer.model.state_dict(),
364
- os.path.join(args.ckpt_dir, 'epoch_{}.pth'.format(epoch))
365
- )
366
- if config.val_step and epoch >= args.epochs - config.save_last and (args.epochs - epoch) % config.val_step == 0:
367
- if to_be_distributed:
368
- if get_rank() == 0:
369
- print('Validating at rank-{}...'.format(get_rank()))
370
- trainer.validate_model(epoch)
371
- else:
372
- trainer.validate_model(epoch)
373
- if to_be_distributed:
374
- destroy_process_group()
375
-
376
- if __name__ == '__main__':
377
- main()
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
BiRefNet_codes1/train.sh DELETED
@@ -1,41 +0,0 @@
1
- #!/bin/bash
2
- # Run script
3
- # Settings of training & test for different tasks.
4
- method="$1"
5
- task=$(python3 config.py)
6
- case "${task}" in
7
- "DIS5K") epochs=600 && val_last=100 && step=5 ;;
8
- "COD") epochs=150 && val_last=50 && step=5 ;;
9
- "HRSOD") epochs=150 && val_last=50 && step=5 ;;
10
- "DIS5K+HRSOD+HRS10K") epochs=250 && val_last=50 && step=5 ;;
11
- "P3M-10k") epochs=150 && val_last=50 && step=5 ;;
12
- esac
13
- testsets=NO # Non-existing folder to skip.
14
- # testsets=TE-COD10K # for COD
15
-
16
- # Train
17
- devices=$2
18
- nproc_per_node=$(echo ${devices%%,} | grep -o "," | wc -l)
19
-
20
- to_be_distributed=`echo ${nproc_per_node} | awk '{if($e > 0) print "True"; else print "False";}'`
21
-
22
- echo Training started at $(date)
23
- if [ ${to_be_distributed} == "True" ]
24
- then
25
- # Adapt the nproc_per_node by the number of GPUs. Give 8989 as the default value of master_port.
26
- echo "Multi-GPU mode received..."
27
- CUDA_VISIBLE_DEVICES=${devices} \
28
- torchrun --nproc_per_node $((nproc_per_node+1)) --master_port=${3:-8989} \
29
- train.py --ckpt_dir ckpt/${method} --epochs ${epochs} \
30
- --testsets ${testsets} \
31
- --dist ${to_be_distributed}
32
- else
33
- echo "Single-GPU mode received..."
34
- CUDA_VISIBLE_DEVICES=${devices} \
35
- python train.py --ckpt_dir ckpt/${method} --epochs ${epochs} \
36
- --testsets ${testsets} \
37
- --dist ${to_be_distributed} \
38
- --resume ckpt/xx/ep100.pth
39
- fi
40
-
41
- echo Training finished at $(date)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
BiRefNet_codes1/train_test.sh DELETED
@@ -1,11 +0,0 @@
1
- #!/bin/sh
2
-
3
- method=${1:-"BSL"}
4
- devices=${2:-"0,1,2,3,4,5,6,7"}
5
-
6
- bash train.sh ${method} ${devices}
7
-
8
- devices_test=${3:-0}
9
- bash test.sh ${devices_test}
10
-
11
- hostname
 
 
 
 
 
 
 
 
 
 
 
 
BiRefNet_codes1/utils.py DELETED
@@ -1,97 +0,0 @@
1
- import logging
2
- import os
3
- import torch
4
- from torchvision import transforms
5
- import numpy as np
6
- import random
7
- import cv2
8
- from PIL import Image
9
-
10
-
11
- def path_to_image(path, size=(1024, 1024), color_type=['rgb', 'gray'][0]):
12
- if color_type.lower() == 'rgb':
13
- image = cv2.imread(path)
14
- elif color_type.lower() == 'gray':
15
- image = cv2.imread(path, cv2.IMREAD_GRAYSCALE)
16
- else:
17
- print('Select the color_type to return, either to RGB or gray image.')
18
- return
19
- if size:
20
- image = cv2.resize(image, size, interpolation=cv2.INTER_LINEAR)
21
- if color_type.lower() == 'rgb':
22
- image = Image.fromarray(cv2.cvtColor(image, cv2.COLOR_BGR2RGB)).convert('RGB')
23
- else:
24
- image = Image.fromarray(image).convert('L')
25
- return image
26
-
27
-
28
-
29
- def check_state_dict(state_dict, unwanted_prefix='_orig_mod.'):
30
- for k, v in list(state_dict.items()):
31
- if k.startswith(unwanted_prefix):
32
- state_dict[k[len(unwanted_prefix):]] = state_dict.pop(k)
33
- return state_dict
34
-
35
-
36
- def generate_smoothed_gt(gts):
37
- epsilon = 0.001
38
- new_gts = (1-epsilon)*gts+epsilon/2
39
- return new_gts
40
-
41
-
42
- class Logger():
43
- def __init__(self, path="log.txt"):
44
- self.logger = logging.getLogger('BiRefNet')
45
- self.file_handler = logging.FileHandler(path, "w")
46
- self.stdout_handler = logging.StreamHandler()
47
- self.stdout_handler.setFormatter(logging.Formatter('%(asctime)s %(levelname)s %(message)s'))
48
- self.file_handler.setFormatter(logging.Formatter('%(asctime)s %(levelname)s %(message)s'))
49
- self.logger.addHandler(self.file_handler)
50
- self.logger.addHandler(self.stdout_handler)
51
- self.logger.setLevel(logging.INFO)
52
- self.logger.propagate = False
53
-
54
- def info(self, txt):
55
- self.logger.info(txt)
56
-
57
- def close(self):
58
- self.file_handler.close()
59
- self.stdout_handler.close()
60
-
61
-
62
- class AverageMeter(object):
63
- """Computes and stores the average and current value"""
64
- def __init__(self):
65
- self.reset()
66
-
67
- def reset(self):
68
- self.val = 0.0
69
- self.avg = 0.0
70
- self.sum = 0.0
71
- self.count = 0.0
72
-
73
- def update(self, val, n=1):
74
- self.val = val
75
- self.sum += val * n
76
- self.count += n
77
- self.avg = self.sum / self.count
78
-
79
-
80
- def save_checkpoint(state, path, filename="latest.pth"):
81
- torch.save(state, os.path.join(path, filename))
82
-
83
-
84
- def save_tensor_img(tenor_im, path):
85
- im = tenor_im.cpu().clone()
86
- im = im.squeeze(0)
87
- tensor2pil = transforms.ToPILImage()
88
- im = tensor2pil(im)
89
- im.save(path)
90
-
91
-
92
- def set_seed(seed):
93
- torch.manual_seed(seed)
94
- torch.cuda.manual_seed_all(seed)
95
- np.random.seed(seed)
96
- random.seed(seed)
97
- torch.backends.cudnn.deterministic = True
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
BiRefNet_codes1/waiting4eval.py DELETED
@@ -1,141 +0,0 @@
1
- # --------------------------------------------------------
2
- # Make evaluation along with training. Swith time with space/computation.
3
- # Licensed under The MIT License [see LICENSE for details]
4
- # Written by Peng Zheng
5
- # --------------------------------------------------------
6
- import os
7
- from glob import glob
8
- from time import sleep
9
- import argparse
10
- import torch
11
-
12
- from config import Config
13
- from models.birefnet import BiRefNet
14
- from dataset import MyData
15
- from evaluation.valid import valid
16
-
17
-
18
- parser = argparse.ArgumentParser(description='')
19
- parser.add_argument('--cuda_idx', default=-1, type=int)
20
- parser.add_argument('--val_step', default=5*1, type=int)
21
- parser.add_argument('--program_id', default=0, type=int)
22
- # id-th one of this program will evaluate val_step * N + program_id -th epoch model.
23
- # Test more models, number of programs == number of GPUs: [models[num_all - program_id_1], models[num_all - program_id_max(n, val_step-1)], ...] programs with id>val_step will speed up the evaluation on (val_step - id)%val_step -th epoch models.
24
- # Test fastest, only sequentially searched val_step*N -th models -- set all program_id as the same.
25
- parser.add_argument('--testsets', default='DIS-VD+DIS-TE1+DIS-TE2+DIS-TE3+DIS-TE4', type=str)
26
- args_eval = parser.parse_args()
27
-
28
- args_eval.program_id = (args_eval.val_step - args_eval.program_id) % args_eval.val_step
29
-
30
- config = Config()
31
- config.only_S_MAE = True
32
- device = 'cpu' if args_eval.cuda_idx < 0 else 'cuda:{}'.format(args_eval.cuda_idx)
33
- ckpt_dir, testsets = glob(os.path.join('ckpt', '*'))[0], args_eval.testsets
34
-
35
-
36
- def validate_model(model, test_loaders, epoch):
37
- num_image_testset_all = {'DIS-VD': 470, 'DIS-TE1': 500, 'DIS-TE2': 500, 'DIS-TE3': 500, 'DIS-TE4': 500}
38
- num_image_testset = {}
39
- for testset in testsets.split('+'):
40
- if 'DIS-TE' in testset:
41
- num_image_testset[testset] = num_image_testset_all[testset]
42
- weighted_scores = {'f_max': 0, 'sm': 0, 'e_max': 0, 'mae': 0}
43
- len_all_data_loaders = 0
44
- model.epoch = epoch
45
- for testset, data_loader_test in test_loaders.items():
46
- print('Validating {}...'.format(testset))
47
- performance_dict = valid(
48
- model,
49
- data_loader_test,
50
- pred_dir='.',
51
- method=ckpt_dir.split('/')[-1] if ckpt_dir.split('/')[-1].strip('.').strip('/') else 'tmp_val',
52
- testset=testset,
53
- only_S_MAE=config.only_S_MAE,
54
- device=device
55
- )
56
- print('Test set: {}:'.format(testset))
57
- if config.only_S_MAE:
58
- print('Smeasure: {:.4f}, MAE: {:.4f}'.format(
59
- performance_dict['sm'], performance_dict['mae']
60
- ))
61
- else:
62
- print('Fmax: {:.4f}, Fwfm: {:.4f}, Smeasure: {:.4f}, Emean: {:.4f}, MAE: {:.4f}'.format(
63
- performance_dict['f_max'], performance_dict['f_wfm'], performance_dict['sm'], performance_dict['e_mean'], performance_dict['mae']
64
- ))
65
- if '-TE' in testset:
66
- for metric in ['sm', 'mae'] if config.only_S_MAE else ['f_max', 'f_wfm', 'sm', 'e_mean', 'mae']:
67
- weighted_scores[metric] += performance_dict[metric] * len(data_loader_test)
68
- len_all_data_loaders += len(data_loader_test)
69
- print('Weighted Scores:')
70
- for metric, score in weighted_scores.items():
71
- if score:
72
- print('\t{}: {:.4f}.'.format(metric, score / len_all_data_loaders))
73
-
74
- @torch.no_grad()
75
- def main():
76
- config = Config()
77
- # Dataloader
78
- test_loaders = {}
79
- for testset in testsets.split('+'):
80
- dataset = MyData(
81
- datasets=testset,
82
- image_size=config.size, is_train=False
83
- )
84
- _data_loader_test = torch.utils.data.DataLoader(
85
- dataset=dataset, batch_size=config.batch_size_valid, num_workers=min(config.num_workers, config.batch_size_valid),
86
- pin_memory=device != 'cpu', shuffle=False
87
- )
88
- print(len(_data_loader_test), "batches of valid dataloader {} have been created.".format(testset))
89
- test_loaders[testset] = _data_loader_test
90
-
91
- # Model, 3070MiB GPU memory for inference
92
- model = BiRefNet(bb_pretrained=False).to(device)
93
- models_evaluated = []
94
- continous_sleep_time = 0
95
- while True:
96
- if (
97
- (models_evaluated and continous_sleep_time > 60*60*2) or
98
- (not models_evaluated and continous_sleep_time > 60*60*24)
99
- ):
100
- # If no ckpt has been saved, we wait for 24h;
101
- # elif some ckpts have been saved, we wait for 2h for new ones;
102
- # else: exit this waiting.
103
- print('Exiting the waiting for evaluation.')
104
- break
105
- models_evaluated_record = 'tmp_models_evaluated.txt'
106
- if os.path.exists(models_evaluated_record):
107
- with open(models_evaluated_record, 'r') as f:
108
- models_evaluated_global = f.read().splitlines()
109
- else:
110
- models_evaluated_global = []
111
- models_detected = [
112
- m for idx_m, m in enumerate(sorted(
113
- glob(os.path.join(ckpt_dir, '*.pth')),
114
- key=lambda x: int(x.rstrip('.pth').split('epoch_')[-1]), reverse=True
115
- )) if idx_m % args_eval.val_step == args_eval.program_id and m not in models_evaluated + models_evaluated_global
116
- ]
117
- if models_detected:
118
- from time import time
119
- time_st = time()
120
- # register the evaluated models
121
- model_not_evaluated_latest = models_detected[0]
122
- with open('tmp_models_evaluated.txt', 'a') as f:
123
- f.write(model_not_evaluated_latest + '\n')
124
- models_evaluated.append(model_not_evaluated_latest)
125
- print('Loading {} for validation...'.format(model_not_evaluated_latest))
126
-
127
- # evaluate the current model
128
- state_dict = torch.load(model_not_evaluated_latest, map_location=device)
129
- model.load_state_dict(state_dict, strict=False)
130
- validate_model(model, test_loaders, int(model_not_evaluated_latest.rstrip('.pth').split('epoch_')[-1]))
131
- continous_sleep_time = 0
132
- print('Duration of this evaluation:', time() - time_st)
133
- else:
134
- sleep_interval = 60 * 2
135
- sleep(sleep_interval)
136
- continous_sleep_time += sleep_interval
137
- continue
138
-
139
-
140
- if __name__ == '__main__':
141
- main()