|
|
|
from typing import Dict, List, Any, Tuple |
|
import os |
|
import requests |
|
from io import BytesIO |
|
import cv2 |
|
import numpy as np |
|
from PIL import Image |
|
import torch |
|
from torchvision import transforms |
|
from transformers import AutoModelForImageSegmentation |
|
|
|
torch.set_float32_matmul_precision(["high", "highest"][0]) |
|
|
|
device = "cuda" if torch.cuda.is_available() else "cpu" |
|
|
|
|
|
def refine_foreground(image, mask, r=90): |
|
if mask.size != image.size: |
|
mask = mask.resize(image.size) |
|
image = np.array(image) / 255.0 |
|
mask = np.array(mask) / 255.0 |
|
estimated_foreground = FB_blur_fusion_foreground_estimator_2(image, mask, r=r) |
|
image_masked = Image.fromarray((estimated_foreground * 255.0).astype(np.uint8)) |
|
return image_masked |
|
|
|
|
|
def FB_blur_fusion_foreground_estimator_2(image, alpha, r=90): |
|
|
|
alpha = alpha[:, :, None] |
|
F, blur_B = FB_blur_fusion_foreground_estimator(image, image, image, alpha, r) |
|
return FB_blur_fusion_foreground_estimator(image, F, blur_B, alpha, r=6)[0] |
|
|
|
|
|
def FB_blur_fusion_foreground_estimator(image, F, B, alpha, r=90): |
|
if isinstance(image, Image.Image): |
|
image = np.array(image) / 255.0 |
|
blurred_alpha = cv2.blur(alpha, (r, r))[:, :, None] |
|
|
|
blurred_FA = cv2.blur(F * alpha, (r, r)) |
|
blurred_F = blurred_FA / (blurred_alpha + 1e-5) |
|
|
|
blurred_B1A = cv2.blur(B * (1 - alpha), (r, r)) |
|
blurred_B = blurred_B1A / ((1 - blurred_alpha) + 1e-5) |
|
F = blurred_F + alpha * \ |
|
(image - alpha * blurred_F - (1 - alpha) * blurred_B) |
|
F = np.clip(F, 0, 1) |
|
return F, blurred_B |
|
|
|
|
|
class ImagePreprocessor(): |
|
def __init__(self, resolution: Tuple[int, int] = (1024, 1024)) -> None: |
|
self.transform_image = transforms.Compose([ |
|
transforms.Resize(resolution), |
|
transforms.ToTensor(), |
|
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]), |
|
]) |
|
|
|
def proc(self, image: Image.Image) -> torch.Tensor: |
|
image = self.transform_image(image) |
|
return image |
|
|
|
usage_to_weights_file = { |
|
'General': 'BiRefNet', |
|
'General-Lite': 'BiRefNet_lite', |
|
'General-Lite-2K': 'BiRefNet_lite-2K', |
|
'General-reso_512': 'BiRefNet-reso_512', |
|
'Matting': 'BiRefNet-matting', |
|
'Portrait': 'BiRefNet-portrait', |
|
'DIS': 'BiRefNet-DIS5K', |
|
'HRSOD': 'BiRefNet-HRSOD', |
|
'COD': 'BiRefNet-COD', |
|
'DIS-TR_TEs': 'BiRefNet-DIS5K-TR_TEs', |
|
'General-legacy': 'BiRefNet-legacy' |
|
} |
|
|
|
|
|
usage = 'General-legacy' |
|
|
|
|
|
if usage in ['General-Lite-2K']: |
|
resolution = (2560, 1440) |
|
elif usage in ['General-reso_512']: |
|
resolution = (512, 512) |
|
else: |
|
resolution = (1024, 1024) |
|
|
|
|
|
class EndpointHandler(): |
|
def __init__(self, path=''): |
|
self.birefnet = AutoModelForImageSegmentation.from_pretrained( |
|
'/'.join(('zhengpeng7', usage_to_weights_file[usage])), trust_remote_code=True |
|
) |
|
self.birefnet.to(device) |
|
self.birefnet.eval() |
|
|
|
def __call__(self, data: Dict[str, Any]): |
|
""" |
|
data args: |
|
inputs (:obj: `str`) |
|
date (:obj: `str`) |
|
Return: |
|
A :obj:`list` | `dict`: will be serialized and returned |
|
""" |
|
print('data["inputs"] = ', data["inputs"]) |
|
image_src = data["inputs"] |
|
if isinstance(image_src, str): |
|
if os.path.isfile(image_src): |
|
image_ori = Image.open(image_src) |
|
else: |
|
response = requests.get(image_src) |
|
image_data = BytesIO(response.content) |
|
image_ori = Image.open(image_data) |
|
else: |
|
image_ori = Image.fromarray(image_src) |
|
|
|
image = image_ori.convert('RGB') |
|
|
|
image_preprocessor = ImagePreprocessor(resolution=tuple(resolution)) |
|
image_proc = image_preprocessor.proc(image) |
|
image_proc = image_proc.unsqueeze(0) |
|
|
|
|
|
with torch.no_grad(): |
|
preds = self.birefnet(image_proc.to(device))[-1].sigmoid().cpu() |
|
pred = preds[0].squeeze() |
|
|
|
|
|
pred_pil = transforms.ToPILImage()(pred) |
|
image_masked = refine_foreground(image, pred_pil) |
|
image_masked.putalpha(pred_pil.resize(image.size)) |
|
return image_masked |
|
|