ZhangCheng
commited on
Commit
·
9084332
1
Parent(s):
71be6a5
Create README.md
Browse files
README.md
ADDED
@@ -0,0 +1,63 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
language: en
|
3 |
+
datasets:
|
4 |
+
- squad
|
5 |
+
tags:
|
6 |
+
- Question Generation
|
7 |
+
widget:
|
8 |
+
- text: "<answer> T5v1.1 <context> Cheng fine-tuned T5v1.1 on SQuAD for question generation."
|
9 |
+
example_title: "Example 1"
|
10 |
+
- text: "<answer> SQuAD <context> Cheng fine-tuned T5v1.1 on SQuAD dataset for question generation."
|
11 |
+
example_title: "Example 2"
|
12 |
+
- text: "<answer> thousands <context> Transformers provides thousands of pre-trained models to perform tasks on different modalities such as text, vision, and audio."
|
13 |
+
example_title: "Example 3"
|
14 |
+
---
|
15 |
+
|
16 |
+
# T5v1.1-Base Fine-Tuned on SQuAD for Question Generation
|
17 |
+
|
18 |
+
### Model in Action:
|
19 |
+
|
20 |
+
```python
|
21 |
+
import torch
|
22 |
+
from transformers import T5Tokenizer, T5ForConditionalGeneration
|
23 |
+
|
24 |
+
trained_model_path = 'ZhangCheng/T5v1.1-Base-Fine-Tuned-for-Question-Generation'
|
25 |
+
trained_tokenizer_path = 'ZhangCheng/T5v1.1-Base-Fine-Tuned-for-Question-Generation'
|
26 |
+
|
27 |
+
class QuestionGeneration:
|
28 |
+
|
29 |
+
def __init__(self):
|
30 |
+
self.model = T5ForConditionalGeneration.from_pretrained(trained_model_path)
|
31 |
+
self.tokenizer = T5Tokenizer.from_pretrained(trained_tokenizer_path)
|
32 |
+
self.device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
33 |
+
self.model = self.model.to(self.device)
|
34 |
+
self.model.eval()
|
35 |
+
|
36 |
+
def generate(self, answer:str, context:str):
|
37 |
+
input_text = '<answer> %s <context> %s ' % (answer, context)
|
38 |
+
encoding = self.tokenizer.encode_plus(
|
39 |
+
input_text,
|
40 |
+
return_tensors='pt'
|
41 |
+
)
|
42 |
+
input_ids = encoding['input_ids'].to(self.device)
|
43 |
+
attention_mask = encoding['attention_mask'].to(self.device)
|
44 |
+
outputs = self.model.generate(
|
45 |
+
input_ids = input_ids,
|
46 |
+
attention_mask = attention_mask
|
47 |
+
)
|
48 |
+
question = self.tokenizer.decode(
|
49 |
+
outputs[0],
|
50 |
+
skip_special_tokens = True,
|
51 |
+
clean_up_tokenization_spaces = True
|
52 |
+
)
|
53 |
+
return {'question': question, 'answer': answer}
|
54 |
+
|
55 |
+
if __name__ == "__main__":
|
56 |
+
context = 'ZhangCheng fine-tuned T5v1.1 on SQuAD dataset for question generation.'
|
57 |
+
answer = 'ZhangCheng'
|
58 |
+
QG = QuestionGeneration()
|
59 |
+
qa = QG.generate(answer, context)
|
60 |
+
print(qa['question'])
|
61 |
+
# Output:
|
62 |
+
# Who fine-tuned T5v1.1 on SQuAD?
|
63 |
+
```
|