File size: 38,371 Bytes
ebca029
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
# Copyright 2023 Bingxin Ke, ETH Zurich. All rights reserved.
# Last modified: 2024-05-24
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# --------------------------------------------------------------------------
# If you find this code useful, we kindly ask you to cite our paper in your work.
# Please find bibtex at: https://github.com/prs-eth/Marigold#-citation
# More information about the method can be found at https://marigoldmonodepth.github.io
# --------------------------------------------------------------------------

import logging
from diffusers.image_processor import VaeImageProcessor
import pdb
from typing import Dict, Optional, Union
import PIL.Image
import numpy as np
import torch
from diffusers import (
    AutoencoderKL,
    DDIMScheduler,
    DiffusionPipeline,
    LCMScheduler,
    PNDMScheduler,
    UNet2DConditionModel,
)
from .duplicate_unet import DoubleUNet2DConditionModel
from torch.nn import Conv2d
from PIL import ImageDraw, ImageFont
from torch.nn.parameter import Parameter
from diffusers.utils import BaseOutput, make_image_grid
from PIL import Image
from torch.utils.data import DataLoader, TensorDataset
from torchvision.transforms import InterpolationMode
from torchvision.transforms.functional import pil_to_tensor, resize
from tqdm.auto import tqdm
from transformers import CLIPTextModel, CLIPTokenizer

from .util.batchsize import find_batch_size
from .util.ensemble import ensemble_depth
from .util.image_util import (
    chw2hwc,
    colorize_depth_maps,
    get_tv_resample_method,
    resize_max_res,
)

def rescale_noise_cfg(noise_cfg, noise_pred_text, guidance_rescale=0.0):
    """
    Rescale `noise_cfg` according to `guidance_rescale`. Based on findings of [Common Diffusion Noise Schedules and
    Sample Steps are Flawed](https://arxiv.org/pdf/2305.08891.pdf). See Section 3.4
    """
    std_text = noise_pred_text.std(dim=list(range(1, noise_pred_text.ndim)), keepdim=True)
    std_cfg = noise_cfg.std(dim=list(range(1, noise_cfg.ndim)), keepdim=True)
    # rescale the results from guidance (fixes overexposure)
    noise_pred_rescaled = noise_cfg * (std_text / std_cfg)
    # mix with the original results from guidance by factor guidance_rescale to avoid "plain looking" images
    noise_cfg = guidance_rescale * noise_pred_rescaled + (1 - guidance_rescale) * noise_cfg
    return noise_cfg

class MarigoldDepthOutput(BaseOutput):
    """
    Output class for Marigold monocular depth prediction pipeline.

    Args:
        depth_np (`np.ndarray`):
            Predicted depth map, with depth values in the range of [0, 1].
        depth_colored (`PIL.Image.Image`):
            Colorized depth map, with the shape of [3, H, W] and values in [0, 1].
        uncertainty (`None` or `np.ndarray`):
            Uncalibrated uncertainty(MAD, median absolute deviation) coming from ensembling.
    """

    depth_np: np.ndarray
    depth_colored: Union[None, Image.Image]
    uncertainty: Union[None, np.ndarray]

class MarigoldInpaintPipeline(DiffusionPipeline):
    """
    Pipeline for monocular depth estimation using Marigold: https://marigoldmonodepth.github.io.

    This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods the
    library implements for all the pipelines (such as downloading or saving, running on a particular device, etc.)

    Args:
        unet (`UNet2DConditionModel`):
            Conditional U-Net to denoise the depth latent, conditioned on image latent.
        vae (`AutoencoderKL`):
            Variational Auto-Encoder (VAE) Model to encode and decode images and depth maps
            to and from latent representations.
        scheduler (`DDIMScheduler`):
            A scheduler to be used in combination with `unet` to denoise the encoded image latents.
        text_encoder (`CLIPTextModel`):
            Text-encoder, for empty text embedding.
        tokenizer (`CLIPTokenizer`):
            CLIP tokenizer.
        scale_invariant (`bool`, *optional*):
            A model property specifying whether the predicted depth maps are scale-invariant. This value must be set in
            the model config. When used together with the `shift_invariant=True` flag, the model is also called
            "affine-invariant". NB: overriding this value is not supported.
        shift_invariant (`bool`, *optional*):
            A model property specifying whether the predicted depth maps are shift-invariant. This value must be set in
            the model config. When used together with the `scale_invariant=True` flag, the model is also called
            "affine-invariant". NB: overriding this value is not supported.
        default_denoising_steps (`int`, *optional*):
            The minimum number of denoising diffusion steps that are required to produce a prediction of reasonable
            quality with the given model. This value must be set in the model config. When the pipeline is called
            without explicitly setting `num_inference_steps`, the default value is used. This is required to ensure
            reasonable results with various model flavors compatible with the pipeline, such as those relying on very
            short denoising schedules (`LCMScheduler`) and those with full diffusion schedules (`DDIMScheduler`).
        default_processing_resolution (`int`, *optional*):
            The recommended value of the `processing_resolution` parameter of the pipeline. This value must be set in
            the model config. When the pipeline is called without explicitly setting `processing_resolution`, the
            default value is used. This is required to ensure reasonable results with various model flavors trained
            with varying optimal processing resolution values.
    """

    rgb_latent_scale_factor = 0.18215
    depth_latent_scale_factor = 0.18215

    def __init__(
        self,
        unet: DoubleUNet2DConditionModel,
        vae: AutoencoderKL,
        scheduler: Union[DDIMScheduler, LCMScheduler],
        text_encoder: CLIPTextModel,
        tokenizer: CLIPTokenizer,
        scale_invariant: Optional[bool] = True,
        shift_invariant: Optional[bool] = True,
        default_denoising_steps: Optional[int] = None,
        default_processing_resolution: Optional[int] = None,
        requires_safety_checker: bool = False,
    ):
        super().__init__()

        self.register_modules(
            unet=unet,
            vae=vae,
            scheduler=scheduler,
            text_encoder=text_encoder,
            tokenizer=tokenizer,
        )
        self.register_to_config(
            scale_invariant=scale_invariant,
            shift_invariant=shift_invariant,
            default_denoising_steps=default_denoising_steps,
            default_processing_resolution=default_processing_resolution,
        )

        self.scale_invariant = scale_invariant
        self.shift_invariant = shift_invariant
        self.default_denoising_steps = default_denoising_steps
        self.default_processing_resolution = default_processing_resolution
        self.rgb_scheduler = None
        self.depth_scheduler = None

        self.empty_text_embed = None
        self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1)
        self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor)
        self.mask_processor = VaeImageProcessor(
            vae_scale_factor=self.vae_scale_factor, do_normalize=False, do_binarize=True, do_convert_grayscale=True
        )
        self.register_to_config(requires_safety_checker=requires_safety_checker)
        self.separate_list = [0,0]

    @torch.no_grad()
    def __call__(
        self,
        input_image: Union[Image.Image, torch.Tensor],
        denoising_steps: Optional[int] = None,
        ensemble_size: int = 5,
        processing_res: Optional[int] = None,
        match_input_res: bool = True,
        resample_method: str = "bilinear",
        batch_size: int = 0,
        generator: Union[torch.Generator, None] = None,
        color_map: str = "Spectral",
        show_progress_bar: bool = True,
        ensemble_kwargs: Dict = None,
    ) -> MarigoldDepthOutput:
        """
        Function invoked when calling the pipeline.

        Args:
            input_image (`Image`):
                Input RGB (or gray-scale) image.
            denoising_steps (`int`, *optional*, defaults to `None`):
                Number of denoising diffusion steps during inference. The default value `None` results in automatic
                selection. The number of steps should be at least 10 with the full Marigold models, and between 1 and 4
                for Marigold-LCM models.
            ensemble_size (`int`, *optional*, defaults to `10`):
                Number of predictions to be ensembled.
            processing_res (`int`, *optional*, defaults to `None`):
                Effective processing resolution. When set to `0`, processes at the original image resolution. This
                produces crisper predictions, but may also lead to the overall loss of global context. The default
                value `None` resolves to the optimal value from the model config.
            match_input_res (`bool`, *optional*, defaults to `True`):
                Resize depth prediction to match input resolution.
                Only valid if `processing_res` > 0.
            resample_method: (`str`, *optional*, defaults to `bilinear`):
                Resampling method used to resize images and depth predictions. This can be one of `bilinear`, `bicubic` or `nearest`, defaults to: `bilinear`.
            batch_size (`int`, *optional*, defaults to `0`):
                Inference batch size, no bigger than `num_ensemble`.
                If set to 0, the script will automatically decide the proper batch size.
            generator (`torch.Generator`, *optional*, defaults to `None`)
                Random generator for initial noise generation.
            show_progress_bar (`bool`, *optional*, defaults to `True`):
                Display a progress bar of diffusion denoising.
            color_map (`str`, *optional*, defaults to `"Spectral"`, pass `None` to skip colorized depth map generation):
                Colormap used to colorize the depth map.
            scale_invariant (`str`, *optional*, defaults to `True`):
                Flag of scale-invariant prediction, if True, scale will be adjusted from the raw prediction.
            shift_invariant (`str`, *optional*, defaults to `True`):
                Flag of shift-invariant prediction, if True, shift will be adjusted from the raw prediction, if False, near plane will be fixed at 0m.
            ensemble_kwargs (`dict`, *optional*, defaults to `None`):
                Arguments for detailed ensembling settings.
        Returns:
            `MarigoldDepthOutput`: Output class for Marigold monocular depth prediction pipeline, including:
            - **depth_np** (`np.ndarray`) Predicted depth map, with depth values in the range of [0, 1]
            - **depth_colored** (`PIL.Image.Image`) Colorized depth map, with the shape of [3, H, W] and values in [0, 1], None if `color_map` is `None`
            - **uncertainty** (`None` or `np.ndarray`) Uncalibrated uncertainty(MAD, median absolute deviation)
                    coming from ensembling. None if `ensemble_size = 1`
        """
        # Model-specific optimal default values leading to fast and reasonable results.
        if denoising_steps is None:
            denoising_steps = self.default_denoising_steps
        if processing_res is None:
            processing_res = self.default_processing_resolution

        assert processing_res >= 0
        assert ensemble_size >= 1

        # Check if denoising step is reasonable
        self._check_inference_step(denoising_steps)

        resample_method: InterpolationMode = get_tv_resample_method(resample_method)

        # ----------------- Image Preprocess -----------------
        # Convert to torch tensor
        if isinstance(input_image, Image.Image):
            input_image = input_image.convert("RGB")
            # convert to torch tensor [H, W, rgb] -> [rgb, H, W]
            rgb = pil_to_tensor(input_image)
            rgb = rgb.unsqueeze(0)  # [1, rgb, H, W]
        elif isinstance(input_image, torch.Tensor):
            rgb = input_image
        else:
            raise TypeError(f"Unknown input type: {type(input_image) = }")
        input_size = rgb.shape
        assert (
            4 == rgb.dim() and 3 == input_size[-3]
        ), f"Wrong input shape {input_size}, expected [1, rgb, H, W]"

        # Resize image
        if processing_res > 0:
            rgb = resize_max_res(
                rgb,
                max_edge_resolution=processing_res,
                resample_method=resample_method,
            )

        # Normalize rgb values
        rgb_norm: torch.Tensor = rgb / 255.0 * 2.0 - 1.0  #  [0, 255] -> [-1, 1]
        rgb_norm = rgb_norm.to(self.dtype)
        assert rgb_norm.min() >= -1.0 and rgb_norm.max() <= 1.0

        # ----------------- Predicting depth -----------------
        # Batch repeated input image
        duplicated_rgb = rgb_norm.expand(ensemble_size, -1, -1, -1)
        single_rgb_dataset = TensorDataset(duplicated_rgb)
        if batch_size > 0:
            _bs = batch_size
        else:
            _bs = find_batch_size(
                ensemble_size=ensemble_size,
                input_res=max(rgb_norm.shape[1:]),
                dtype=self.dtype,
            )

        single_rgb_loader = DataLoader(
            single_rgb_dataset, batch_size=_bs, shuffle=False
        )

        # Predict depth maps (batched)
        depth_pred_ls = []
        if show_progress_bar:
            iterable = tqdm(
                single_rgb_loader, desc=" " * 2 + "Inference batches", leave=False
            )
        else:
            iterable = single_rgb_loader
        for batch in iterable:
            (batched_img,) = batch
            depth_pred_raw = self.single_infer(
                rgb_in=batched_img,
                num_inference_steps=denoising_steps,
                show_pbar=show_progress_bar,
                generator=generator,
            )
            depth_pred_ls.append(depth_pred_raw.detach())
        depth_preds = torch.concat(depth_pred_ls, dim=0)
        torch.cuda.empty_cache()  # clear vram cache for ensembling

        # ----------------- Test-time ensembling -----------------
        if ensemble_size > 1:
            depth_pred, pred_uncert = ensemble_depth(
                depth_preds,
                scale_invariant=self.scale_invariant,
                shift_invariant=self.shift_invariant,
                max_res=50,
                **(ensemble_kwargs or {}),
            )
        else:
            depth_pred = depth_preds
            pred_uncert = None

        # Resize back to original resolution
        if match_input_res:
            depth_pred = resize(
                depth_pred,
                input_size[-2:],
                interpolation=resample_method,
                antialias=True,
            )

        # Convert to numpy
        depth_pred = depth_pred.squeeze()
        depth_pred = depth_pred.cpu().numpy()
        if pred_uncert is not None:
            pred_uncert = pred_uncert.squeeze().cpu().numpy()

        # Clip output range
        depth_pred = depth_pred.clip(0, 1)

        # Colorize
        if color_map is not None:
            depth_colored = colorize_depth_maps(
                depth_pred, 0, 1, cmap=color_map
            ).squeeze()  # [3, H, W], value in (0, 1)
            depth_colored = (depth_colored * 255).astype(np.uint8)
            depth_colored_hwc = chw2hwc(depth_colored)
            depth_colored_img = Image.fromarray(depth_colored_hwc)
        else:
            depth_colored_img = None

        return MarigoldDepthOutput(
            depth_np=depth_pred,
            depth_colored=depth_colored_img,
            uncertainty=pred_uncert,
        )

    def _replace_unet_conv_in(self):
        # replace the first layer to accept 8 in_channels
        _weight = self.unet.conv_in.weight.clone()  # [320, 4, 3, 3]
        _bias = self.unet.conv_in.bias.clone()  # [320]
        zero_weight = torch.zeros(_weight.shape).to(_weight.device)
        _weight = torch.cat([_weight, zero_weight], dim=1)
        # _weight = _weight.repeat((1, 2, 1, 1))  # Keep selected channel(s)
        # half the activation magnitude
        # _weight *= 0.5
        # new conv_in channel
        _n_convin_out_channel = self.unet.conv_in.out_channels
        _new_conv_in = Conv2d(
            8, _n_convin_out_channel, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)
        )
        _new_conv_in.weight = Parameter(_weight)
        _new_conv_in.bias = Parameter(_bias)
        self.unet.conv_in = _new_conv_in
        logging.info("Unet conv_in layer is replaced")
        # replace config
        self.unet.config["in_channels"] = 8
        logging.info("Unet config is updated")
        return

    def _replace_unet_conv_out(self):
        # replace the first layer to accept 8 in_channels
        _weight = self.unet.conv_out.weight.clone()  # [8, 320, 3, 3]
        _bias = self.unet.conv_out.bias.clone()  # [320]
        _weight = _weight.repeat((2, 1, 1, 1))  # Keep selected channel(s)
        _bias = _bias.repeat((2))
        # half the activation magnitude

        # new conv_in channel
        _n_convin_out_channel = self.unet.conv_out.out_channels
        _new_conv_out = Conv2d(
            _n_convin_out_channel, 8, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)
        )
        _new_conv_out.weight = Parameter(_weight)
        _new_conv_out.bias = Parameter(_bias)
        self.unet.conv_out = _new_conv_out
        logging.info("Unet conv_out layer is replaced")
        # replace config
        self.unet.config["out_channels"] = 8
        logging.info("Unet config is updated")
        return

    def _check_inference_step(self, n_step: int) -> None:
        """
        Check if denoising step is reasonable
        Args:
            n_step (`int`): denoising steps
        """
        assert n_step >= 1

        if isinstance(self.scheduler, DDIMScheduler):
            if n_step < 10:
                logging.warning(
                    f"Too few denoising steps: {n_step}. Recommended to use the LCM checkpoint for few-step inference."
                )
        elif isinstance(self.scheduler, LCMScheduler):
            if not 1 <= n_step <= 4:
                logging.warning(
                    f"Non-optimal setting of denoising steps: {n_step}. Recommended setting is 1-4 steps."
                )
        elif isinstance(self.scheduler, PNDMScheduler):
            if n_step < 10:
                logging.warning(
                    f"Too few denoising steps: {n_step}. Recommended to use the LCM checkpoint for few-step inference."
                )
        else:
            raise RuntimeError(f"Unsupported scheduler type: {type(self.scheduler)}")

    def encode_empty_text(self):
        """
        Encode text embedding for empty prompt
        """
        prompt = ""
        text_inputs = self.tokenizer(
            prompt,
            padding="max_length",
            max_length=self.tokenizer.model_max_length,
            truncation=True,
            return_tensors="pt",
        )
        text_input_ids = text_inputs.input_ids.to(self.text_encoder.device)
        self.empty_text_embed = self.text_encoder(text_input_ids)[0].to(self.dtype)

    def encode_text(self, prompt):
        """
        Encode text embedding for empty prompt
        """
        text_inputs = self.tokenizer(
            prompt,
            padding="max_length",
            max_length=self.tokenizer.model_max_length,
            truncation=True,
            return_tensors="pt",
        )
        text_input_ids = text_inputs.input_ids.to(self.text_encoder.device)
        text_embed = self.text_encoder(text_input_ids)[0].to(self.dtype)
        return text_embed

    def numpy_to_pil(self, images: np.ndarray) -> PIL.Image.Image:
        """
        Convert a numpy image or a batch of images to a PIL image.
        """
        if images.ndim == 3:
            images = images[None, ...]
        images = (images * 255).round().astype("uint8")
        if images.shape[-1] == 1:
            # special case for grayscale (single channel) images
            pil_images = [Image.fromarray(image.squeeze(), mode="L") for image in images]
        else:
            pil_images = [Image.fromarray(image) for image in images]

        return pil_images

    def full_depth_rgb_inpaint(self,
                               rgb_in,
                               depth_in,
                               image_mask,
                               text_embed,
                               timesteps,
                               generator,
                               guidance_scale,
                               ):
        depth_latent = self.encode_depth(depth_in)
        depth_mask = torch.zeros_like(image_mask)
        depth_mask_latent = self.encode_depth(depth_in)

        rgb_latent = torch.randn(
            depth_latent.shape,
            device=self.device,
            dtype=self.unet.dtype,
            generator=generator,
        ) * self.rgb_scheduler.init_noise_sigma
        rgb_mask = image_mask
        rgb_mask_latent = self.encode_rgb(rgb_in * (image_mask.squeeze() < 0.5), generator=generator)

        rgb_mask = torch.nn.functional.interpolate(rgb_mask, size=rgb_latent.shape[-2:])
        depth_mask = torch.nn.functional.interpolate(depth_mask, size=rgb_latent.shape[-2:])

        for i, t in enumerate(timesteps):
            cat_latent = torch.cat(
                [rgb_latent, rgb_mask, rgb_mask_latent, depth_mask_latent, depth_latent, depth_mask, rgb_mask_latent,
                 depth_mask_latent], dim=1
            ).float()  # [B, 9*2, h, w]

            latent_model_input = torch.cat([cat_latent] * 2)

            # predict the noise residual
            with torch.no_grad():
                partial_noise_pred = self.unet(
                    latent_model_input,
                    rgb_timestep=t,
                    depth_timestep=t,
                    encoder_hidden_states=text_embed,
                    return_dict=False,
                    depth2rgb_scale=0.2
                )[0]
                noise_pred = self.unet(
                    latent_model_input,
                    rgb_timestep=t,
                    depth_timestep=t,
                    encoder_hidden_states=text_embed,
                    return_dict=False,
                    # separate_list=self.separate_list
                )[0]
            # perform guidance
            rgb_pred_wo_depth_text = partial_noise_pred[0, :4, :, :]
            rgb_pred_wo_text = noise_pred[0, :4, :, :]
            rgb_pred = noise_pred[1, :4, :, :]
            noise_pred = rgb_pred_wo_depth_text + 2 * (rgb_pred_wo_text - rgb_pred_wo_depth_text) + 3 * (rgb_pred - rgb_pred_wo_text)

            # compute the previous noisy sample x_t -> x_t-1
            rgb_latent = self.rgb_scheduler.step(noise_pred, t, rgb_latent).prev_sample
        return rgb_latent, depth_latent

    def full_rgb_depth_inpaint(self,
                               rgb_in,
                               depth_in,
                               image_mask,
                               text_embed,
                               timesteps,
                               generator,
                               guidance_scale
                               ):
        rgb_latent = self.encode_rgb(rgb_in)
        rgb_mask = torch.zeros_like(image_mask)
        rgb_mask_latent = self.encode_rgb(rgb_in)

        depth_latent = torch.randn(
            rgb_latent.shape,
            device=self.device,
            dtype=self.unet.dtype,
            generator=generator,
        ) * self.depth_scheduler.init_noise_sigma
        depth_mask = image_mask
        depth_mask_latent = self.encode_depth(depth_in * (image_mask.squeeze() < 0.5))

        rgb_mask = torch.nn.functional.interpolate(rgb_mask, size=rgb_latent.shape[-2:])
        depth_mask = torch.nn.functional.interpolate(depth_mask, size=rgb_latent.shape[-2:])

        for i, t in enumerate(timesteps):
            cat_latent = torch.cat(
                [rgb_latent, rgb_mask, rgb_mask_latent, depth_mask_latent, depth_latent, depth_mask, rgb_mask_latent,
                 depth_mask_latent], dim=1
            ).float()  # [B, 9*2, h, w]

            latent_model_input = torch.cat([cat_latent] * 2)

            # predict the noise residual
            with torch.no_grad():
                partial_noise_pred = self.unet(
                    latent_model_input,
                    rgb_timestep=t,
                    depth_timestep=t,
                    encoder_hidden_states=text_embed,
                    return_dict=False,
                    rgb2depth_scale=0.2
                )[0]
                noise_pred = self.unet(
                    latent_model_input,
                    rgb_timestep=t,
                    depth_timestep=t,
                    encoder_hidden_states=text_embed,
                    return_dict=False,
                    # separate_list=self.separate_list
                )[0]
            # compute the previous noisy sample x_t -> x_t-1
            depth_pre_wo_rgb = partial_noise_pred[1, 4:, :, :]

            depth_pre = depth_pre_wo_rgb + 4 * (noise_pred[1, 4:, :, :] - depth_pre_wo_rgb)

            depth_latent = self.depth_scheduler.step(depth_pre, t, depth_latent, generator=generator).prev_sample
        return rgb_latent, depth_latent

    def joint_inpaint(self,
                           rgb_in,
                           depth_in,
                           image_mask,
                           text_embed,
                           timesteps,
                           generator,
                           guidance_scale
                           ):
        bs = rgb_in.shape[0]
        h, w = int(rgb_in.shape[-2]/8), int(rgb_in.shape[-1]/8)
        rgb_latent = torch.randn(
            [bs, 4, h, w],
            device=self.device,
            dtype=self.unet.dtype,
            generator=generator,
        ) * self.rgb_scheduler.init_noise_sigma
        rgb_mask = image_mask
        rgb_mask_latent = self.encode_rgb(rgb_in * (rgb_mask.squeeze() < 0.5), generator=generator)

        depth_latent = torch.randn(
            [bs, 4, h, w],
            device=self.device,
            dtype=self.unet.dtype,
            generator=generator,
        ) * self.depth_scheduler.init_noise_sigma
        depth_mask = image_mask
        depth_mask_latent = self.encode_depth(depth_in * (image_mask.squeeze() < 0.5))

        rgb_mask = torch.nn.functional.interpolate(rgb_mask, size=rgb_latent.shape[-2:])
        depth_mask = torch.nn.functional.interpolate(depth_mask, size=rgb_latent.shape[-2:])

        for i, t in enumerate(timesteps):
            cat_latent = torch.cat(
                [rgb_latent, rgb_mask, rgb_mask_latent, depth_mask_latent, depth_latent, depth_mask, rgb_mask_latent, depth_mask_latent], dim=1
            ).float()  # [B, 9*2, h, w]

            latent_model_input = torch.cat([cat_latent] * 2)
            # predict the noise residual
            with torch.no_grad():
                partial_noise_pred = self.unet(
                    latent_model_input,
                    rgb_timestep=t,
                    depth_timestep=t,
                    encoder_hidden_states=text_embed,
                    return_dict=False,
                    depth2rgb_scale=0,
                    rgb2depth_scale=0.2
                )[0]
                noise_pred = self.unet(
                    latent_model_input,
                    rgb_timestep=t,
                    depth_timestep=t,
                    encoder_hidden_states=text_embed,
                    return_dict=False,
                )[0]

            # perform guidance
            noise_pred_untext_undual, noise_pred_undual = partial_noise_pred.chunk(2)
            noise_pred_untext, noise_pred_cond = noise_pred.chunk(2)

            # noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
            depth_noise_pred = noise_pred_undual + 3 * (noise_pred_cond - noise_pred_undual)

            rgb_latent = self.rgb_scheduler.step(noise_pred_cond[:, :4, :, :], t, rgb_latent, return_dict=False)[0]
            depth_latent = self.depth_scheduler.step(depth_noise_pred[:, 4:, :, :], t, depth_latent, generator=generator, return_dict=False)[0]
        return rgb_latent, depth_latent

    @torch.no_grad()
    def _rgbd_inpaint(self,
                  input_image: [torch.Tensor, PIL.Image.Image],
                  depth_image: [torch.Tensor, PIL.Image.Image],
                  mask: [torch.Tensor, PIL.Image.Image],
                  prompt: str = '',
                  guidance_scale: float = 4.5,
                  generator: Union[torch.Generator, None] = None,
                  num_inference_steps: int = 50,
                  resample_method: str = "bilinear",
                  processing_res: int = 512,
                  mode: str = 'full_depth_rgb_inpaint'
                  ) -> PIL.Image:
        self._check_inference_step(num_inference_steps)

        resample_method: InterpolationMode = get_tv_resample_method(resample_method)

        # ----------------- encoder prompt -----------------
        if isinstance(prompt, list):
            bs = len(prompt)
            batch_text_embed = []
            for p in prompt:
                batch_text_embed.append(self.encode_text(p))
            batch_text_embed = torch.cat(batch_text_embed, dim=0)
        elif isinstance(prompt, str):
            bs = 1
            batch_text_embed = self.encode_text(prompt).unsqueeze(0)
        else:
            raise NotImplementedError

        if self.empty_text_embed is None:
            self.encode_empty_text()
        batch_empty_text_embed = self.empty_text_embed.repeat(
            (batch_text_embed.shape[0], 1, 1)
        ).to(self.device)  # [B, 2, 1024]
        text_embed = torch.cat([batch_empty_text_embed, batch_text_embed], dim=0)

        # ----------------- Image Preprocess -----------------
        # Convert to torch tensor
        if isinstance(input_image, Image.Image):
            rgb_in = self.image_processor.preprocess(input_image, height=processing_res,
                                                     width=processing_res).to(self.dtype).to(self.device)
        elif isinstance(input_image, torch.Tensor):
            rgb = input_image.unsqueeze(0)
            input_size = rgb.shape
            assert (
                    4 == rgb.dim() and 3 == input_size[-3]
            ), f"Wrong input shape {input_size}, expected [1, rgb, H, W]"
            if processing_res > 0:
                rgb = resize(rgb, [processing_res, processing_res], resample_method, antialias=True)
            rgb_norm: torch.Tensor = rgb / 255.0 * 2.0 - 1.0  # [0, 255] -> [-1, 1]
            rgb_in = rgb_norm.to(self.dtype).to(self.device)
            assert rgb_norm.min() >= -1.0 and rgb_norm.max() <= 1.0

        if isinstance(depth_image, Image.Image):
            depth = pil_to_tensor(depth_image)
            depth = depth.unsqueeze(0)  # [1, rgb, H, W]
        elif isinstance(depth_image, torch.Tensor):
            if len(depth_image.shape) == 3:
                depth = depth_image.unsqueeze(0)
            else:
                depth = depth_image
        # pdb.set_trace()
        depth = depth.repeat(1, 3, 1, 1)
        input_size = depth.shape
        assert (
                4 == depth.dim() and 3 == input_size[-3]
        ), f"Wrong input shape {input_size}, expected [1, 1, H, W]"
        if processing_res > 0:
            depth = resize(depth, [processing_res, processing_res], resample_method, antialias=True)
        depth_norm: torch.Tensor = (depth - depth.min()) / (
                    depth.max() - depth.min()) * 2.0 - 1.0  # [0, 255] -> [-1, 1]
        depth_in = depth_norm.to(self.dtype).to(self.device)
        assert depth_norm.min() >= -1.0 and depth_norm.max() <= 1.0

        if (mask.max() - mask.min()) != 0:
            mask = (mask - mask.min()) / (mask.max() - mask.min()) * 255
        image_mask = self.mask_processor.preprocess(mask, height=processing_res, width=processing_res).to(self.device)

        self.rgb_scheduler.set_timesteps(num_inference_steps, device=self.device)
        self.depth_scheduler.set_timesteps(num_inference_steps, device=self.device)
        timesteps = self.rgb_scheduler.timesteps

        if mode == 'full_rgb_depth_inpaint':
            rgb_latent, depth_latent = self.full_rgb_depth_inpaint(rgb_in, depth_in, image_mask, text_embed, timesteps,
                                                                   generator, guidance_scale=guidance_scale)
        if mode == 'partial_depth_rgb_inpaint':
            rgb_latent, depth_latent = self.partial_depth_rgb_inpaint(rgb_in, depth_in, image_mask, text_embed, timesteps,
                                                                   generator, guidance_scale=guidance_scale)
        if mode == 'full_depth_rgb_inpaint':
            rgb_latent, depth_latent = self.full_depth_rgb_inpaint(rgb_in, depth_in, image_mask, text_embed, timesteps,
                                                                   generator, guidance_scale=guidance_scale)
        if mode == 'joint_inpaint':
            rgb_latent, depth_latent = self.joint_inpaint(rgb_in, depth_in, image_mask, text_embed, timesteps,
                                                                   generator, guidance_scale=guidance_scale)

        image = self.decode_image(rgb_latent)
        image = self.numpy_to_pil(image)[0]

        d_image = self.decode_depth(depth_latent)
        d_image = d_image.cpu().permute(0, 2, 3, 1).numpy()
        d_image = (d_image - d_image.min()) / (d_image.max() - d_image.min())
        d_image = self.numpy_to_pil(d_image)[0]

        depth = depth.squeeze().permute(1, 2, 0).cpu().numpy()
        depth = (depth - depth.min()) / (depth.max() - depth.min())
        ori_depth = self.numpy_to_pil(depth)[0]

        ori_image = input_image.squeeze().permute(1, 2, 0).cpu().numpy()
        ori_image = self.numpy_to_pil(ori_image/255)[0]

        image_mask = self.numpy_to_pil(image_mask.permute(0, 2, 3, 1).cpu().numpy())[0]
        cat_image = make_image_grid([ori_image, ori_depth, image_mask, image, d_image], rows=1, cols=5)
        return cat_image


    def encode_rgb(self, rgb_in: torch.Tensor, generator=None) -> torch.Tensor:
        """
        Encode RGB image into latent.

        Args:
            rgb_in (`torch.Tensor`):
                Input RGB image to be encoded.

        Returns:
            `torch.Tensor`: Image latent.
        """
        # encode
        image_latents = self.vae.encode(rgb_in).latent_dist.sample(generator=generator)
        image_latents = self.vae.config.scaling_factor * image_latents
        return image_latents

    def encode_depth(self, depth_in: torch.Tensor) -> torch.Tensor:
        """
        Encode RGB image into latent.

        Args:
            rgb_in (`torch.Tensor`):
                Input RGB image to be encoded.

        Returns:
            `torch.Tensor`: Image latent.
        """
        # encode
        h = self.vae.encoder(depth_in)
        moments = self.vae.quant_conv(h)
        mean, logvar = torch.chunk(moments, 2, dim=1)
        # scale latent
        depth_latent = mean * self.depth_latent_scale_factor
        return depth_latent

    def decode_image(self, latents):
        latents = 1 / self.vae.config.scaling_factor * latents
        z = self.vae.post_quant_conv(latents)
        image = self.vae.decoder(z)
        image = (image / 2 + 0.5).clamp(0, 1)
        # we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16
        image = image.cpu().permute(0, 2, 3, 1).float().numpy()
        return image

    def decode_depth(self, depth_latent: torch.Tensor) -> torch.Tensor:
        """
        Decode depth latent into depth map.

        Args:
            depth_latent (`torch.Tensor`):
                Depth latent to be decoded.

        Returns:
            `torch.Tensor`: Decoded depth map.
        """
        # scale latent
        depth_latent = depth_latent / self.depth_latent_scale_factor
        # decode
        z = self.vae.post_quant_conv(depth_latent)
        stacked = self.vae.decoder(z)
        # mean of output channels
        depth_mean = stacked.mean(dim=1, keepdim=True)
        return depth_mean

    def post_process_rgbd(self, prompts, rgb_image, depth_image):

        rgbd_images = []
        for idx, p in enumerate(prompts):
            image1, image2 = rgb_image[idx], depth_image[idx]

            width1, height1 = image1.size
            width2, height2 = image2.size

            font = ImageFont.load_default(size=20)
            text = p
            draw = ImageDraw.Draw(image1)
            text_bbox = draw.textbbox((0, 0), text, font=font)
            text_width = text_bbox[2] - text_bbox[0]
            text_height = text_bbox[3] - text_bbox[1]

            new_image = Image.new('RGB', (width1 + width2, max(height1, height2) + text_height), (255, 255, 255))

            text_x = (new_image.width - text_width) // 2
            text_y = 0
            draw = ImageDraw.Draw(new_image)
            draw.text((text_x, text_y), text, fill="black", font=font)

            new_image.paste(image1, (0, text_height))
            new_image.paste(image2, (width1, text_height))

            rgbd_images.append(pil_to_tensor(new_image))

        return rgbd_images