ppo-LunarLander-v2 / config.json
Zakia's picture
Upload PPO LunarLander-v2 trained agent
fb8d90c
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7d208eaa20e0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7d208eaa2170>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7d208eaa2200>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7d208eaa2290>", "_build": "<function ActorCriticPolicy._build at 0x7d208eaa2320>", "forward": "<function ActorCriticPolicy.forward at 0x7d208eaa23b0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7d208eaa2440>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7d208eaa24d0>", "_predict": "<function ActorCriticPolicy._predict at 0x7d208eaa2560>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7d208eaa25f0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7d208eaa2680>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7d208eaa2710>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7d20efb49f40>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1696695120592634718, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAADOG8bwoaYm8yJrNPc29dT2d98G9S4DWPAAAgD8AAIA/wCiaPTDLET/me4084+CjvkqRUjytgWG9AAAAAAAAAACAtSQ9rba3P0MwDD/dlpo90jYEvIK0tz0AAAAAAAAAADNcLr3Jg6o/WqkVv24CCb8ZCCM8yChTvQAAAAAAAAAAmuLavJ/b/ru55Qc+Me3PPA/Zeb3+MKs9AACAPwAAgD+aAGk9+KJxPw+qOjxzJ9O+LT87PabSQ70AAAAAAAAAAICj4b3WnQg/hkiAPi1ynL4XPN87EQ2wPQAAAAAAAAAAAJb+PVLmqT6QAn297iCuvlpekTz9eRe9AAAAAAAAAAAzsqo9j9IHugfhGjpV1wA1m2oiu4sfMrkAAAAAAACAP1pQzD0QnMI/ywfcPjtND71sUxQ+1nuUPgAAAAAAAAAAmnHAvMMBW7pe7B8zXFFcMOzxrDmGZL6zAACAPwAAgD8AojI9H6WJOJIfojrN5WQ0Jqeyu9BywbkAAIA/AACAP+DJRD6nGVU/w6o5vV/mwL6/bRM+V5kMvgAAAAAAAAAAYJgHPo7CgLwACfA9ItgFPSJ4370Sys49AACAPwAAgD+zABE9O6+tPQpTEL49Ype+teKQvfACtzwAAAAAAAAAAGa2Vb0Z+7M+d6kMvZ9Alr5BxWC9r7pKPAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVGwwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHDBLidat9yMAWyUS/eMAXSUR0CSsFNX5nDjdX2UKGgGR0Bv9CGvfTCtaAdNDgFoCEdAkrDr+Lm6oXV9lChoBkdAcPD8CxNZeWgHTSUBaAhHQJKxsEB8x9J1fZQoaAZHQG6lGA9V3lloB01kAWgIR0CSshke6qbSdX2UKGgGR0BvWdpXZGrkaAdL9WgIR0CSspuOS4e+dX2UKGgGR0BwzCgAZKnOaAdNMgFoCEdAkrLTKDCgsnV9lChoBkdAcJlOgxrSE2gHS+RoCEdAkrLaAOJ+D3V9lChoBkdATutvbXYlIGgHS9FoCEdAkrMgzLwF1XV9lChoBkdAcGMMdLg4wWgHS/doCEdAkrMnerMkhXV9lChoBkdAcAs6Kcd5p2gHS/BoCEdAkrNd70Fr23V9lChoBkdAOvpXhfjS5WgHS9BoCEdAkrVCfYjB23V9lChoBkdAbTIk4WDYiGgHS/ZoCEdAkrVucYqG13V9lChoBkdAcW+N9H+ZPWgHTVIBaAhHQJK1f7WNFSd1fZQoaAZHQGyGvGACnxdoB00EAWgIR0CStcjt5UtJdX2UKGgGR0By5cMjNY8uaAdNDQFoCEdAkrYmHgxagXV9lChoBkdAcTOX9zfaYmgHTRoBaAhHQJK2klu3trt1fZQoaAZHQHDyVZgXuVpoB00DAWgIR0CSty2oegctdX2UKGgGR0BwYu1eBxxUaAdNEgFoCEdAkriIyKvV3HV9lChoBkdAcLbK64Ds+mgHTQwBaAhHQJK5g6aLGaR1fZQoaAZHQHG6KIrOJLxoB0v8aAhHQJK6ObMHKOl1fZQoaAZHQG9nejEehf1oB00CAWgIR0CSumBLwnYydX2UKGgGR0BzTHdnCfpVaAdL8mgIR0CSuosHSncddX2UKGgGR0Bys0SYgJTmaAdNLAFoCEdAkrrjziCJ43V9lChoBkdAcPNgi/wiJWgHTSEBaAhHQJK7C2+fywx1fZQoaAZHQEtVgqmTC+FoB0u/aAhHQJK7rbzshPl1fZQoaAZHQHNuxMewLVpoB00uAWgIR0CSu9+pOvdNdX2UKGgGR0BxAQn3L3bmaAdNRAFoCEdAkrxw8fV7QnV9lChoBkdAcLrAwfyPMmgHS/JoCEdAkrysgdOqN3V9lChoBkdAcQgkyULUkWgHTSQBaAhHQJK99ahYeT51fZQoaAZHQHCQ8vmHP/toB00tAWgIR0CSvg3UQTVUdX2UKGgGR0BxGMCbMHKPaAdNEgFoCEdAkr4wbQ1JlXV9lChoBkdARa4j8k2P1mgHS7xoCEdAkr/MZLqUvHV9lChoBkdAcHM16mfoR2gHTVABaAhHQJLBIrGza9N1fZQoaAZHQHC9q5wwTM9oB00NAWgIR0CSwcs6JZW8dX2UKGgGR0BvhZ1oxpL3aAdNEwFoCEdAksHUXLvCuXV9lChoBkdAc0i3evZAZGgHS/hoCEdAksLzjWCmM3V9lChoBkdAb74IjW07bWgHTS0BaAhHQJLDqeZof0V1fZQoaAZHQHD5L3bmEGtoB0vsaAhHQJLDsz3yqdZ1fZQoaAZHQHB/2YfGMn9oB01CAWgIR0CSw8n+hoM8dX2UKGgGR0BwG6HVPN3XaAdL+WgIR0CSw8xqO939dX2UKGgGR0Byxb9wWFewaAdNKwFoCEdAksRd+LFXJnV9lChoBkdAcfrz0Yj0MGgHS91oCEdAksTokVvddnV9lChoBkdAcDC7/n4fwWgHTeEBaAhHQJLbzR/mT1V1fZQoaAZHQG6oaVlf7aZoB0vvaAhHQJLb84iosI51fZQoaAZHQHCIrpRoAXFoB02uAWgIR0CS3AvhqCYkdX2UKGgGR0BvQUir1dxAaAdL7WgIR0CS3BzbN8mbdX2UKGgGR0Bs2Rb+tKZlaAdNCAFoCEdAkt4ZwwTM7nV9lChoBkdAclA0se4kNWgHS+5oCEdAkt6LHIZIhHV9lChoBkdAbSZhwVCXyGgHS+9oCEdAkt8nTI/7i3V9lChoBkdAcaSs7MgU12gHTRYBaAhHQJLgWixmkFh1fZQoaAZHQHKEfPw/gR9oB00aAWgIR0CS4Z9lEqlQdX2UKGgGR0BwKM2CNCJGaAdNCQFoCEdAkuG+SW7e23V9lChoBkdAcyCaBZpztGgHTQwBaAhHQJLh8hPj4pN1fZQoaAZHQHJ1s495hSdoB0vqaAhHQJLh73wkPc11fZQoaAZHQG8mGBvrGBFoB00LAWgIR0CS4e7ALy+YdX2UKGgGR0Bw5b889wFUaAdNEQFoCEdAkuICEpRXOnV9lChoBkdAcTROd5IH1WgHTQsBaAhHQJLibhky1u11fZQoaAZHQG35yWiUPhBoB0v+aAhHQJLi7CP6sQx1fZQoaAZHQG7pxv3rUspoB00GAWgIR0CS4zYDTz/ZdX2UKGgGR0BxAmLsKLKnaAdNKgFoCEdAkuPQXVLBbnV9lChoBkdAcLQBHTZxrGgHTS4BaAhHQJLkDm2b5M11fZQoaAZHQHFWs1fmcONoB0vwaAhHQJLkxNtZV4p1fZQoaAZHQHGYRVZLZjBoB0vwaAhHQJLlMhfShJ11fZQoaAZHQG97kEC/47BoB0v1aAhHQJLl3r2QGOd1fZQoaAZHQHBb8kt29tdoB0vxaAhHQJLm4KhL5AR1fZQoaAZHQHE4RciW3SdoB0vsaAhHQJLoKZjQRf51fZQoaAZHQHFTCuIRAbBoB0v9aAhHQJLot0yP+4t1fZQoaAZHQHHHMbBGhEloB00LAWgIR0CS6NoZydWidX2UKGgGR0Bvk0WCVbA2aAdNBwFoCEdAkujY8yN4q3V9lChoBkdAcChpZwGW2WgHS/hoCEdAkukge3hGY3V9lChoBkdAcJvTSsr/bWgHTSUBaAhHQJLp2tdRiw11fZQoaAZHQHIrfCl7+kxoB00yAWgIR0CS6ks54nnddX2UKGgGR0Bwpcg/1QIlaAdNEAFoCEdAkuqtzr/sFHV9lChoBkdAcm5jx0+1SmgHTSkBaAhHQJLrE7o0Q9R1fZQoaAZHQHL9IOtnwodoB00XAWgIR0CS64nCfpUxdX2UKGgGR0BwMvjGT9sKaAdL/2gIR0CS6/j4HoovdX2UKGgGR0BU8lghKUV0aAdN6ANoCEdAkuwswlByCHV9lChoBkdAcWeoG6f8M2gHTQIBaAhHQJLshfmcOLB1fZQoaAZHQHHjiGetjkNoB01iAWgIR0CS7bT3Zf2LdX2UKGgGR0Bul7kjopx4aAdNKAFoCEdAku9HrdFfA3V9lChoBkdAcRLetjkMkWgHTQUBaAhHQJLvhdqtYCB1fZQoaAZHQG7PnVPN3W5oB0vzaAhHQJLv7LpzLfV1fZQoaAZHQG5HWGh24d9oB0v+aAhHQJLv92bG3nZ1fZQoaAZHQHDXqvV3EAJoB0vuaAhHQJLwjSH/Lkl1fZQoaAZHQHDraN2ki2VoB00cAWgIR0CS8M8n/kvLdX2UKGgGR0BuRPHFPznSaAdNIAFoCEdAkvDPvrnkk3V9lChoBkdAUi1e7cwg1WgHS75oCEdAkvFAmeDnNnV9lChoBkdAcNqfJ3gUDmgHTSEBaAhHQJLyp6+nIhh1fZQoaAZHQHEL95MURFtoB00DAWgIR0CS8rIlt0mudX2UKGgGR0BwdhBMSK3vaAdNGQFoCEdAkvLS4nWrfnV9lChoBkdAcrEgRK6FumgHTT0BaAhHQJLzDAM2FWZ1fZQoaAZHQHGtEf1YhdNoB0v1aAhHQJLzQSYgJTl1fZQoaAZHQEvwwsXizcBoB0ufaAhHQJL0INZvDP51fZQoaAZHQEPYrc0tRN1oB0u1aAhHQJL0yNEPUa11fZQoaAZHQHLglF6Rhc9oB01AAWgIR0CS9OSeRPoFdX2UKGgGR0BwFK/j81n/aAdNIAFoCEdAkvWeRYA80XV9lChoBkdAb40L2pQ1rWgHS/FoCEdAkvXEOqebu3V9lChoBkdAcP2OpbUwz2gHS+ZoCEdAkvbhoM8YAXV9lChoBkdAcITlcyFfzGgHS/5oCEdAkvdI9gWrO3V9lChoBkdAcLjPoFFDv2gHTXQCaAhHQJL3ST3Zf2N1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.120+-x86_64-with-glibc2.35 # 1 SMP Wed Aug 30 11:19:59 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.23.5", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}