Duplicate from deepseek-ai/DeepSeek-V2-Lite
Browse filesCo-authored-by: Fuli Luo <[email protected]>
- .gitattributes +35 -0
- LICENSE +91 -0
- README.md +267 -0
- config.json +59 -0
- configuration_deepseek.py +206 -0
- generation_config.json +9 -0
- model-00001-of-000004.safetensors +3 -0
- model-00002-of-000004.safetensors +3 -0
- model-00003-of-000004.safetensors +3 -0
- model-00004-of-000004.safetensors +3 -0
- model.safetensors.index.json +0 -0
- modeling_deepseek.py +1916 -0
- tokenization_deepseek_fast.py +38 -0
- tokenizer.json +0 -0
- tokenizer_config.json +35 -0
.gitattributes
ADDED
@@ -0,0 +1,35 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
*.7z filter=lfs diff=lfs merge=lfs -text
|
2 |
+
*.arrow filter=lfs diff=lfs merge=lfs -text
|
3 |
+
*.bin filter=lfs diff=lfs merge=lfs -text
|
4 |
+
*.bz2 filter=lfs diff=lfs merge=lfs -text
|
5 |
+
*.ckpt filter=lfs diff=lfs merge=lfs -text
|
6 |
+
*.ftz filter=lfs diff=lfs merge=lfs -text
|
7 |
+
*.gz filter=lfs diff=lfs merge=lfs -text
|
8 |
+
*.h5 filter=lfs diff=lfs merge=lfs -text
|
9 |
+
*.joblib filter=lfs diff=lfs merge=lfs -text
|
10 |
+
*.lfs.* filter=lfs diff=lfs merge=lfs -text
|
11 |
+
*.mlmodel filter=lfs diff=lfs merge=lfs -text
|
12 |
+
*.model filter=lfs diff=lfs merge=lfs -text
|
13 |
+
*.msgpack filter=lfs diff=lfs merge=lfs -text
|
14 |
+
*.npy filter=lfs diff=lfs merge=lfs -text
|
15 |
+
*.npz filter=lfs diff=lfs merge=lfs -text
|
16 |
+
*.onnx filter=lfs diff=lfs merge=lfs -text
|
17 |
+
*.ot filter=lfs diff=lfs merge=lfs -text
|
18 |
+
*.parquet filter=lfs diff=lfs merge=lfs -text
|
19 |
+
*.pb filter=lfs diff=lfs merge=lfs -text
|
20 |
+
*.pickle filter=lfs diff=lfs merge=lfs -text
|
21 |
+
*.pkl filter=lfs diff=lfs merge=lfs -text
|
22 |
+
*.pt filter=lfs diff=lfs merge=lfs -text
|
23 |
+
*.pth filter=lfs diff=lfs merge=lfs -text
|
24 |
+
*.rar filter=lfs diff=lfs merge=lfs -text
|
25 |
+
*.safetensors filter=lfs diff=lfs merge=lfs -text
|
26 |
+
saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
27 |
+
*.tar.* filter=lfs diff=lfs merge=lfs -text
|
28 |
+
*.tar filter=lfs diff=lfs merge=lfs -text
|
29 |
+
*.tflite filter=lfs diff=lfs merge=lfs -text
|
30 |
+
*.tgz filter=lfs diff=lfs merge=lfs -text
|
31 |
+
*.wasm filter=lfs diff=lfs merge=lfs -text
|
32 |
+
*.xz filter=lfs diff=lfs merge=lfs -text
|
33 |
+
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
+
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
+
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
LICENSE
ADDED
@@ -0,0 +1,91 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
DEEPSEEK LICENSE AGREEMENT
|
2 |
+
|
3 |
+
Version 1.0, 23 October 2023
|
4 |
+
|
5 |
+
Copyright (c) 2023 DeepSeek
|
6 |
+
|
7 |
+
Section I: PREAMBLE
|
8 |
+
|
9 |
+
Large generative models are being widely adopted and used, and have the potential to transform the way individuals conceive and benefit from AI or ML technologies.
|
10 |
+
|
11 |
+
Notwithstanding the current and potential benefits that these artifacts can bring to society at large, there are also concerns about potential misuses of them, either due to their technical limitations or ethical considerations.
|
12 |
+
|
13 |
+
In short, this license strives for both the open and responsible downstream use of the accompanying model. When it comes to the open character, we took inspiration from open source permissive licenses regarding the grant of IP rights. Referring to the downstream responsible use, we added use-based restrictions not permitting the use of the model in very specific scenarios, in order for the licensor to be able to enforce the license in case potential misuses of the Model may occur. At the same time, we strive to promote open and responsible research on generative models for content generation.
|
14 |
+
|
15 |
+
Even though downstream derivative versions of the model could be released under different licensing terms, the latter will always have to include - at minimum - the same use-based restrictions as the ones in the original license (this license). We believe in the intersection between open and responsible AI development; thus, this agreement aims to strike a balance between both in order to enable responsible open-science in the field of AI.
|
16 |
+
|
17 |
+
This License governs the use of the model (and its derivatives) and is informed by the model card associated with the model.
|
18 |
+
|
19 |
+
NOW THEREFORE, You and DeepSeek agree as follows:
|
20 |
+
|
21 |
+
1. Definitions
|
22 |
+
"License" means the terms and conditions for use, reproduction, and Distribution as defined in this document.
|
23 |
+
"Data" means a collection of information and/or content extracted from the dataset used with the Model, including to train, pretrain, or otherwise evaluate the Model. The Data is not licensed under this License.
|
24 |
+
"Output" means the results of operating a Model as embodied in informational content resulting therefrom.
|
25 |
+
"Model" means any accompanying machine-learning based assemblies (including checkpoints), consisting of learnt weights, parameters (including optimizer states), corresponding to the model architecture as embodied in the Complementary Material, that have been trained or tuned, in whole or in part on the Data, using the Complementary Material.
|
26 |
+
"Derivatives of the Model" means all modifications to the Model, works based on the Model, or any other model which is created or initialized by transfer of patterns of the weights, parameters, activations or output of the Model, to the other model, in order to cause the other model to perform similarly to the Model, including - but not limited to - distillation methods entailing the use of intermediate data representations or methods based on the generation of synthetic data by the Model for training the other model.
|
27 |
+
"Complementary Material" means the accompanying source code and scripts used to define, run, load, benchmark or evaluate the Model, and used to prepare data for training or evaluation, if any. This includes any accompanying documentation, tutorials, examples, etc, if any.
|
28 |
+
"Distribution" means any transmission, reproduction, publication or other sharing of the Model or Derivatives of the Model to a third party, including providing the Model as a hosted service made available by electronic or other remote means - e.g. API-based or web access.
|
29 |
+
"DeepSeek" (or "we") means Beijing DeepSeek Artificial Intelligence Fundamental Technology Research Co., Ltd., Hangzhou DeepSeek Artificial Intelligence Fundamental Technology Research Co., Ltd. and/or any of their affiliates.
|
30 |
+
"You" (or "Your") means an individual or Legal Entity exercising permissions granted by this License and/or making use of the Model for whichever purpose and in any field of use, including usage of the Model in an end-use application - e.g. chatbot, translator, etc.
|
31 |
+
"Third Parties" means individuals or legal entities that are not under common control with DeepSeek or You.
|
32 |
+
|
33 |
+
Section II: INTELLECTUAL PROPERTY RIGHTS
|
34 |
+
|
35 |
+
Both copyright and patent grants apply to the Model, Derivatives of the Model and Complementary Material. The Model and Derivatives of the Model are subject to additional terms as described in Section III.
|
36 |
+
|
37 |
+
2. Grant of Copyright License. Subject to the terms and conditions of this License, DeepSeek hereby grants to You a perpetual, worldwide, non-exclusive, no-charge, royalty-free, irrevocable copyright license to reproduce, prepare, publicly display, publicly perform, sublicense, and distribute the Complementary Material, the Model, and Derivatives of the Model.
|
38 |
+
|
39 |
+
3. Grant of Patent License. Subject to the terms and conditions of this License and where and as applicable, DeepSeek hereby grants to You a perpetual, worldwide, non-exclusive, no-charge, royalty-free, irrevocable (except as stated in this paragraph) patent license to make, have made, use, offer to sell, sell, import, and otherwise transfer the Model and the Complementary Material, where such license applies only to those patent claims licensable by DeepSeek that are necessarily infringed by its contribution(s). If You institute patent litigation against any entity (including a cross-claim or counterclaim in a lawsuit) alleging that the Model and/or Complementary Material constitutes direct or contributory patent infringement, then any patent licenses granted to You under this License for the Model and/or works shall terminate as of the date such litigation is asserted or filed.
|
40 |
+
|
41 |
+
|
42 |
+
Section III: CONDITIONS OF USAGE, DISTRIBUTION AND REDISTRIBUTION
|
43 |
+
|
44 |
+
4. Distribution and Redistribution. You may host for Third Party remote access purposes (e.g. software-as-a-service), reproduce and distribute copies of the Model or Derivatives of the Model thereof in any medium, with or without modifications, provided that You meet the following conditions:
|
45 |
+
a. Use-based restrictions as referenced in paragraph 5 MUST be included as an enforceable provision by You in any type of legal agreement (e.g. a license) governing the use and/or distribution of the Model or Derivatives of the Model, and You shall give notice to subsequent users You Distribute to, that the Model or Derivatives of the Model are subject to paragraph 5. This provision does not apply to the use of Complementary Material.
|
46 |
+
b. You must give any Third Party recipients of the Model or Derivatives of the Model a copy of this License;
|
47 |
+
c. You must cause any modified files to carry prominent notices stating that You changed the files;
|
48 |
+
d. You must retain all copyright, patent, trademark, and attribution notices excluding those notices that do not pertain to any part of the Model, Derivatives of the Model.
|
49 |
+
e. You may add Your own copyright statement to Your modifications and may provide additional or different license terms and conditions - respecting paragraph 4.a. – for use, reproduction, or Distribution of Your modifications, or for any such Derivatives of the Model as a whole, provided Your use, reproduction, and Distribution of the Model otherwise complies with the conditions stated in this License.
|
50 |
+
|
51 |
+
5. Use-based restrictions. The restrictions set forth in Attachment A are considered Use-based restrictions. Therefore You cannot use the Model and the Derivatives of the Model for the specified restricted uses. You may use the Model subject to this License, including only for lawful purposes and in accordance with the License. Use may include creating any content with, finetuning, updating, running, training, evaluating and/or reparametrizing the Model. You shall require all of Your users who use the Model or a Derivative of the Model to comply with the terms of this paragraph (paragraph 5).
|
52 |
+
|
53 |
+
6. The Output You Generate. Except as set forth herein, DeepSeek claims no rights in the Output You generate using the Model. You are accountable for the Output you generate and its subsequent uses. No use of the output can contravene any provision as stated in the License.
|
54 |
+
|
55 |
+
Section IV: OTHER PROVISIONS
|
56 |
+
|
57 |
+
7. Updates and Runtime Restrictions. To the maximum extent permitted by law, DeepSeek reserves the right to restrict (remotely or otherwise) usage of the Model in violation of this License.
|
58 |
+
|
59 |
+
8. Trademarks and related. Nothing in this License permits You to make use of DeepSeek’ trademarks, trade names, logos or to otherwise suggest endorsement or misrepresent the relationship between the parties; and any rights not expressly granted herein are reserved by DeepSeek.
|
60 |
+
|
61 |
+
9. Personal information, IP rights and related. This Model may contain personal information and works with IP rights. You commit to complying with applicable laws and regulations in the handling of personal information and the use of such works. Please note that DeepSeek's license granted to you to use the Model does not imply that you have obtained a legitimate basis for processing the related information or works. As an independent personal information processor and IP rights user, you need to ensure full compliance with relevant legal and regulatory requirements when handling personal information and works with IP rights that may be contained in the Model, and are willing to assume solely any risks and consequences that may arise from that.
|
62 |
+
|
63 |
+
10. Disclaimer of Warranty. Unless required by applicable law or agreed to in writing, DeepSeek provides the Model and the Complementary Material on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied, including, without limitation, any warranties or conditions of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A PARTICULAR PURPOSE. You are solely responsible for determining the appropriateness of using or redistributing the Model, Derivatives of the Model, and the Complementary Material and assume any risks associated with Your exercise of permissions under this License.
|
64 |
+
|
65 |
+
11. Limitation of Liability. In no event and under no legal theory, whether in tort (including negligence), contract, or otherwise, unless required by applicable law (such as deliberate and grossly negligent acts) or agreed to in writing, shall DeepSeek be liable to You for damages, including any direct, indirect, special, incidental, or consequential damages of any character arising as a result of this License or out of the use or inability to use the Model and the Complementary Material (including but not limited to damages for loss of goodwill, work stoppage, computer failure or malfunction, or any and all other commercial damages or losses), even if DeepSeek has been advised of the possibility of such damages.
|
66 |
+
|
67 |
+
12. Accepting Warranty or Additional Liability. While redistributing the Model, Derivatives of the Model and the Complementary Material thereof, You may choose to offer, and charge a fee for, acceptance of support, warranty, indemnity, or other liability obligations and/or rights consistent with this License. However, in accepting such obligations, You may act only on Your own behalf and on Your sole responsibility, not on behalf of DeepSeek, and only if You agree to indemnify, defend, and hold DeepSeek harmless for any liability incurred by, or claims asserted against, DeepSeek by reason of your accepting any such warranty or additional liability.
|
68 |
+
|
69 |
+
13. If any provision of this License is held to be invalid, illegal or unenforceable, the remaining provisions shall be unaffected thereby and remain valid as if such provision had not been set forth herein.
|
70 |
+
|
71 |
+
14. Governing Law and Jurisdiction. This agreement will be governed and construed under PRC laws without regard to choice of law principles, and the UN Convention on Contracts for the International Sale of Goods does not apply to this agreement. The courts located in the domicile of Hangzhou DeepSeek Artificial Intelligence Fundamental Technology Research Co., Ltd. shall have exclusive jurisdiction of any dispute arising out of this agreement.
|
72 |
+
|
73 |
+
END OF TERMS AND CONDITIONS
|
74 |
+
|
75 |
+
Attachment A
|
76 |
+
|
77 |
+
Use Restrictions
|
78 |
+
|
79 |
+
You agree not to use the Model or Derivatives of the Model:
|
80 |
+
|
81 |
+
- In any way that violates any applicable national or international law or regulation or infringes upon the lawful rights and interests of any third party;
|
82 |
+
- For military use in any way;
|
83 |
+
- For the purpose of exploiting, harming or attempting to exploit or harm minors in any way;
|
84 |
+
- To generate or disseminate verifiably false information and/or content with the purpose of harming others;
|
85 |
+
- To generate or disseminate inappropriate content subject to applicable regulatory requirements;
|
86 |
+
- To generate or disseminate personal identifiable information without due authorization or for unreasonable use;
|
87 |
+
- To defame, disparage or otherwise harass others;
|
88 |
+
- For fully automated decision making that adversely impacts an individual’s legal rights or otherwise creates or modifies a binding, enforceable obligation;
|
89 |
+
- For any use intended to or which has the effect of discriminating against or harming individuals or groups based on online or offline social behavior or known or predicted personal or personality characteristics;
|
90 |
+
- To exploit any of the vulnerabilities of a specific group of persons based on their age, social, physical or mental characteristics, in order to materially distort the behavior of a person pertaining to that group in a manner that causes or is likely to cause that person or another person physical or psychological harm;
|
91 |
+
- For any use intended to or which has the effect of discriminating against individuals or groups based on legally protected characteristics or categories.
|
README.md
ADDED
@@ -0,0 +1,267 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
<!-- markdownlint-disable first-line-h1 -->
|
2 |
+
<!-- markdownlint-disable html -->
|
3 |
+
<!-- markdownlint-disable no-duplicate-header -->
|
4 |
+
|
5 |
+
<div align="center">
|
6 |
+
<img src="https://github.com/deepseek-ai/DeepSeek-V2/blob/main/figures/logo.svg?raw=true" width="60%" alt="DeepSeek LLM" />
|
7 |
+
</div>
|
8 |
+
<hr>
|
9 |
+
<div align="center">
|
10 |
+
|
11 |
+
<a href="https://www.deepseek.com/" target="_blank">
|
12 |
+
<img alt="Homepage" src="https://github.com/deepseek-ai/DeepSeek-V2/blob/main/figures/badge.svg?raw=true" style="display: inline-block; vertical-align: middle;"/>
|
13 |
+
</a>
|
14 |
+
<a href="https://chat.deepseek.com/" target="_blank">
|
15 |
+
<img alt="Chat" src="https://img.shields.io/badge/🤖%20Chat-DeepSeek%20LLM-536af5?color=536af5&logoColor=white?raw=true" style="display: inline-block; vertical-align: middle;"/>
|
16 |
+
</a>
|
17 |
+
<a href="https://huggingface.co/deepseek-ai" target="_blank">
|
18 |
+
<img alt="Hugging Face" src="https://img.shields.io/badge/%F0%9F%A4%97%20Hugging%20Face-DeepSeek%20AI-ffc107?color=ffc107&logoColor=white?raw=true" style="display: inline-block; vertical-align: middle;"/>
|
19 |
+
</a>
|
20 |
+
|
21 |
+
<a href="https://discord.gg/Tc7c45Zzu5" target="_blank">
|
22 |
+
<img alt="Discord" src="https://img.shields.io/badge/Discord-DeepSeek%20AI-7289da?logo=discord&logoColor=white&color=7289da?raw=true" style="display: inline-block; vertical-align: middle;"/>
|
23 |
+
</a>
|
24 |
+
<a href="https://github.com/deepseek-ai/DeepSeek-V2/blob/main/figures/qr.jpeg" target="_blank">
|
25 |
+
<img alt="Wechat" src="https://img.shields.io/badge/WeChat-DeepSeek%20AI-brightgreen?logo=wechat&logoColor=white?raw=true"style="display: inline-block; vertical-align: middle;" />
|
26 |
+
</a>
|
27 |
+
<a href="https://twitter.com/deepseek_ai" target="_blank">
|
28 |
+
<img alt="Twitter Follow" src="https://img.shields.io/badge/Twitter-deepseek_ai-white?logo=x&logoColor=white?raw=true" style="display: inline-block; vertical-align: middle;"/>
|
29 |
+
</a>
|
30 |
+
<a href="LICENSE-CODE">
|
31 |
+
<img alt="Code License" src="https://img.shields.io/badge/Code_License-MIT-f5de53?&color=f5de53?raw=true"style="display: inline-block; vertical-align: middle;">
|
32 |
+
</a>
|
33 |
+
<a href="LICENSE-MODEL">
|
34 |
+
<img alt="Model License" src="https://img.shields.io/badge/Model_License-Model_Agreement-f5de53?&color=f5de53?raw=true"style="display: inline-block; vertical-align: middle;">
|
35 |
+
</a>
|
36 |
+
</div>
|
37 |
+
|
38 |
+
|
39 |
+
<p align="center">
|
40 |
+
<a href="#2-model-downloads">Model Download</a> |
|
41 |
+
<a href="#3-evaluation-results">Evaluation Results</a> |
|
42 |
+
<a href="#4-model-architecture">Model Architecture</a> |
|
43 |
+
<a href="#6-api-platform">API Platform</a> |
|
44 |
+
<a href="#8-license">License</a> |
|
45 |
+
<a href="#9-citation">Citation</a>
|
46 |
+
</p>
|
47 |
+
|
48 |
+
<p align="center">
|
49 |
+
<a href="https://arxiv.org/abs/2405.04434"><b>Paper Link</b>👁️</a>
|
50 |
+
</p>
|
51 |
+
|
52 |
+
# DeepSeek-V2: A Strong, Economical, and Efficient Mixture-of-Experts Language Model
|
53 |
+
|
54 |
+
## 1. Introduction
|
55 |
+
|
56 |
+
Last week, the release and buzz around DeepSeek-V2 have ignited widespread interest in MLA (Multi-head Latent Attention)! Many in the community suggested open-sourcing a smaller MoE model for in-depth research. And now DeepSeek-V2-Lite comes out:
|
57 |
+
|
58 |
+
- 16B total params, 2.4B active params, scratch training with 5.7T tokens
|
59 |
+
- Outperforms 7B dense and 16B MoE on many English & Chinese benchmarks
|
60 |
+
- Deployable on single 40G GPU, fine-tunable on 8x80G GPUs
|
61 |
+
|
62 |
+
DeepSeek-V2, a strong Mixture-of-Experts (MoE) language model characterized by economical training and efficient inference. DeepSeek-V2 adopts innovative architectures including Multi-head Latent Attention (MLA) and DeepSeekMoE. MLA guarantees efficient inference through significantly compressing the Key-Value (KV) cache into a latent vector, while DeepSeekMoE enables training strong models at an economical cost through sparse computation.
|
63 |
+
|
64 |
+
## 2. News
|
65 |
+
|
66 |
+
- 2024.05.16: We released the DeepSeek-V2-Lite.
|
67 |
+
- 2024.05.06: We released the DeepSeek-V2.
|
68 |
+
|
69 |
+
## 3. Model Downloads
|
70 |
+
|
71 |
+
With DeepSeek-V2, we are open-sourcing base and chat models across two sizes:
|
72 |
+
|
73 |
+
<div align="center">
|
74 |
+
|
75 |
+
| **Model** | **#Total Params** | **#Activated Params** | **Context Length** | **Download** |
|
76 |
+
| :------------: | :------------: | :------------: | :------------: | :------------: |
|
77 |
+
| DeepSeek-V2-Lite | 16B | 2.4B | 32k | [🤗 HuggingFace](https://huggingface.co/deepseek-ai/DeepSeek-V2-Lite) |
|
78 |
+
| DeepSeek-V2-Lite-Chat (SFT) | 16B | 2.4B | 32k | [🤗 HuggingFace](https://huggingface.co/deepseek-ai/DeepSeek-V2-Lite-Chat) |
|
79 |
+
| DeepSeek-V2 | 236B | 21B | 128k | [🤗 HuggingFace](https://huggingface.co/deepseek-ai/DeepSeek-V2) |
|
80 |
+
| DeepSeek-V2-Chat (RL) | 236B | 21B | 128k | [🤗 HuggingFace](https://huggingface.co/deepseek-ai/DeepSeek-V2-Chat) |
|
81 |
+
|
82 |
+
</div>
|
83 |
+
|
84 |
+
Due to the constraints of HuggingFace, the open-source code currently experiences slower performance than our internal codebase when running on GPUs with Huggingface. To facilitate the efficient execution of our model, we offer a dedicated vllm solution that optimizes performance for running our model effectively.
|
85 |
+
|
86 |
+
## 4. Evaluation Results
|
87 |
+
### Base Model
|
88 |
+
#### Standard Benchmark
|
89 |
+
<div align="center">
|
90 |
+
|
91 |
+
| **Benchmark** | **Domain** | **DeepSeek 7B (Dense)** | **DeepSeekMoE 16B** | **DeepSeek-V2-Lite (MoE-16B)** |
|
92 |
+
|:-------------:|:----------:|:--------------:|:-----------------:|:--------------------------:|
|
93 |
+
| **Architecture** | - | MHA+Dense | MHA+MoE | MLA+MoE |
|
94 |
+
| **MMLU** | English | 48.2 | 45.0 | 58.3 |
|
95 |
+
| **BBH** | English | 39.5 | 38.9 | 44.1 |
|
96 |
+
| **C-Eval** | Chinese | 45.0 | 40.6 | 60.3 |
|
97 |
+
| **CMMLU** | Chinese | 47.2 | 42.5 | 64.3 |
|
98 |
+
| **HumanEval** | Code | 26.2 | 26.8 | 29.9 |
|
99 |
+
| **MBPP** | Code | 39.0 | 39.2 | 43.2 |
|
100 |
+
| **GSM8K** | Math | 17.4 | 18.8 | 41.1 |
|
101 |
+
| **Math** | Math | 3.3 | 4.3 | 17.1 |
|
102 |
+
|
103 |
+
</div>
|
104 |
+
For more evaluation details, such as few-shot settings and prompts, please check our paper.
|
105 |
+
|
106 |
+
|
107 |
+
### Chat Model
|
108 |
+
#### Standard Benchmark
|
109 |
+
|
110 |
+
<div align="center">
|
111 |
+
|
112 |
+
| Benchmark | Domain | DeepSeek 7B Chat (SFT) | DeepSeekMoE 16B Chat (SFT) | DeepSeek-V2-Lite 16B Chat (SFT) |
|
113 |
+
|:-----------:|:----------------:|:------------------:|:---------------:|:---------------------:|
|
114 |
+
| **MMLU** | English | 49.7 | 47.2 | 55.7 |
|
115 |
+
| **BBH** | English | 43.1 | 42.2 | 48.1 |
|
116 |
+
| **C-Eval** | Chinese | 44.7 | 40.0 | 60.1 |
|
117 |
+
| **CMMLU** | Chinese | 51.2 | 49.3 | 62.5 |
|
118 |
+
| **HumanEval** | Code | 45.1 | 45.7 | 57.3 |
|
119 |
+
| **MBPP** | Code | 39.0 | 46.2 | 45.8 |
|
120 |
+
| **GSM8K** | Math | 62.6 | 62.2 | 72.0 |
|
121 |
+
| **Math** | Math | 14.7 | 15.2 | 27.9 |
|
122 |
+
|
123 |
+
</div>
|
124 |
+
|
125 |
+
|
126 |
+
## 5. Model Architecture
|
127 |
+
DeepSeek-V2 adopts innovative architectures to guarantee economical training and efficient inference:
|
128 |
+
- For attention, we design MLA (Multi-head Latent Attention), which utilizes low-rank key-value union compression to eliminate the bottleneck of inference-time key-value cache, thus supporting efficient inference.
|
129 |
+
- For Feed-Forward Networks (FFNs), we adopt DeepSeekMoE architecture, a high-performance MoE architecture that enables training stronger models at lower costs.
|
130 |
+
|
131 |
+
<p align="center">
|
132 |
+
<img width="90%" src="https://github.com/deepseek-ai/DeepSeek-V2/blob/main/figures/architecture.png?raw=true" />
|
133 |
+
</p>
|
134 |
+
|
135 |
+
DeepSeek-V2-Lite has 27 layers and a hidden dimension of 2048. It also employs MLA and has 16 attention heads, where each head has a dimension of 128. Its KV compression dimension is 512, but slightly different from DeepSeek-V2, it does not compress the queries. For the decoupled queries and key, it has a per-head dimension of 64. DeepSeek-V2-Lite also employs DeepSeekMoE, and all FFNs except for the first layer are replaced with MoE layers. Each MoE layer consists of 2 shared experts and 64 routed experts, where the intermediate hidden dimension of each expert is 1408. Among the routed experts, 6 experts will be activated for each token. Under this configuration, DeepSeek-V2-Lite comprises 15.7B total parameters, of which 2.4B are activated for each token.
|
136 |
+
|
137 |
+
|
138 |
+
## 6. Training Details
|
139 |
+
DeepSeek-V2-Lite is also trained from scratch on the same pre-training corpus of DeepSeek-V2, which is not polluted by any SFT data. It uses the AdamW optimizer with hyper-parameters set to $\beta_1=0.9$, $\beta_2=0.95$, and $\mathrm{weight_decay}=0.1$. The learning rate is scheduled using a warmup-and-step-decay strategy. Initially, the learning rate linearly increases from 0 to the maximum value during the first 2K steps. Subsequently, the learning rate is multiplied by 0.316 after training about 80% of tokens, and again by 0.316 after training about 90% of tokens. The maximum learning rate is set to $4.2 \times 10^{-4}$, and the gradient clipping norm is set to 1.0. We do not employ the batch size scheduling strategy for it, and it is trained with a constant batch size of 4608 sequences. During pre-training, we set the maximum sequence length to 4K, and train DeepSeek-V2-Lite on 5.7T tokens. We leverage pipeline parallelism to deploy different layers of it on different devices, but for each layer, all experts will be deployed on the same device. Therefore, we only employ a small expert-level balance loss with $\alpha_{1}=0.001$, and do not employ device-level balance loss and communication balance loss for it. After pre-training, we also perform long-context extension, SFT for DeepSeek-V2-Lite and get a chat model called DeepSeek-V2-Lite Chat.
|
140 |
+
|
141 |
+
## 7. How to run locally
|
142 |
+
|
143 |
+
**To utilize DeepSeek-V2-Lite in BF16 format for inference, 40GB*1 GPU is required.**
|
144 |
+
### Inference with Huggingface's Transformers
|
145 |
+
You can directly employ [Huggingface's Transformers](https://github.com/huggingface/transformers) for model inference.
|
146 |
+
|
147 |
+
#### Text Completion
|
148 |
+
```python
|
149 |
+
import torch
|
150 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM, GenerationConfig
|
151 |
+
|
152 |
+
model_name = "deepseek-ai/DeepSeek-V2-Lite"
|
153 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True)
|
154 |
+
model = AutoModelForCausalLM.from_pretrained(model_name, trust_remote_code=True, torch_dtype=torch.bfloat16).cuda()
|
155 |
+
model.generation_config = GenerationConfig.from_pretrained(model_name)
|
156 |
+
model.generation_config.pad_token_id = model.generation_config.eos_token_id
|
157 |
+
|
158 |
+
text = "An attention function can be described as mapping a query and a set of key-value pairs to an output, where the query, keys, values, and output are all vectors. The output is"
|
159 |
+
inputs = tokenizer(text, return_tensors="pt")
|
160 |
+
outputs = model.generate(**inputs.to(model.device), max_new_tokens=100)
|
161 |
+
|
162 |
+
result = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
163 |
+
print(result)
|
164 |
+
```
|
165 |
+
|
166 |
+
#### Chat Completion
|
167 |
+
```python
|
168 |
+
import torch
|
169 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM, GenerationConfig
|
170 |
+
|
171 |
+
model_name = "deepseek-ai/DeepSeek-V2-Lite-Chat"
|
172 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True)
|
173 |
+
model = AutoModelForCausalLM.from_pretrained(model_name, trust_remote_code=True, torch_dtype=torch.bfloat16).cuda()
|
174 |
+
model.generation_config = GenerationConfig.from_pretrained(model_name)
|
175 |
+
model.generation_config.pad_token_id = model.generation_config.eos_token_id
|
176 |
+
|
177 |
+
messages = [
|
178 |
+
{"role": "user", "content": "Write a piece of quicksort code in C++"}
|
179 |
+
]
|
180 |
+
input_tensor = tokenizer.apply_chat_template(messages, add_generation_prompt=True, return_tensors="pt")
|
181 |
+
outputs = model.generate(input_tensor.to(model.device), max_new_tokens=100)
|
182 |
+
|
183 |
+
result = tokenizer.decode(outputs[0][input_tensor.shape[1]:], skip_special_tokens=True)
|
184 |
+
print(result)
|
185 |
+
```
|
186 |
+
|
187 |
+
The complete chat template can be found within `tokenizer_config.json` located in the huggingface model repository.
|
188 |
+
|
189 |
+
An example of chat template is as belows:
|
190 |
+
|
191 |
+
```bash
|
192 |
+
<|begin▁of▁sentence|>User: {user_message_1}
|
193 |
+
|
194 |
+
Assistant: {assistant_message_1}<|end▁of▁sentence|>User: {user_message_2}
|
195 |
+
|
196 |
+
Assistant:
|
197 |
+
```
|
198 |
+
|
199 |
+
You can also add an optional system message:
|
200 |
+
|
201 |
+
```bash
|
202 |
+
<|begin▁of▁sentence|>{system_message}
|
203 |
+
|
204 |
+
User: {user_message_1}
|
205 |
+
|
206 |
+
Assistant: {assistant_message_1}<|end▁of▁sentence|>User: {user_message_2}
|
207 |
+
|
208 |
+
Assistant:
|
209 |
+
```
|
210 |
+
|
211 |
+
### Inference with vLLM (recommended)
|
212 |
+
To utilize [vLLM](https://github.com/vllm-project/vllm) for model inference, please merge this Pull Request into your vLLM codebase: https://github.com/vllm-project/vllm/pull/4650.
|
213 |
+
|
214 |
+
```python
|
215 |
+
from transformers import AutoTokenizer
|
216 |
+
from vllm import LLM, SamplingParams
|
217 |
+
|
218 |
+
max_model_len, tp_size = 8192, 1
|
219 |
+
model_name = "deepseek-ai/DeepSeek-V2-Lite-Chat"
|
220 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
221 |
+
llm = LLM(model=model_name, tensor_parallel_size=tp_size, max_model_len=max_model_len, trust_remote_code=True, enforce_eager=True)
|
222 |
+
sampling_params = SamplingParams(temperature=0.3, max_tokens=256, stop_token_ids=[tokenizer.eos_token_id])
|
223 |
+
|
224 |
+
messages_list = [
|
225 |
+
[{"role": "user", "content": "Who are you?"}],
|
226 |
+
[{"role": "user", "content": "Translate the following content into Chinese directly: DeepSeek-V2 adopts innovative architectures to guarantee economical training and efficient inference."}],
|
227 |
+
[{"role": "user", "content": "Write a piece of quicksort code in C++."}],
|
228 |
+
]
|
229 |
+
|
230 |
+
prompt_token_ids = [tokenizer.apply_chat_template(messages, add_generation_prompt=True) for messages in messages_list]
|
231 |
+
|
232 |
+
outputs = llm.generate(prompt_token_ids=prompt_token_ids, sampling_params=sampling_params)
|
233 |
+
|
234 |
+
generated_text = [output.outputs[0].text for output in outputs]
|
235 |
+
print(generated_text)
|
236 |
+
```
|
237 |
+
|
238 |
+
### LangChain Support
|
239 |
+
Since our API is compatible with OpenAI, you can easily use it in [langchain](https://www.langchain.com/).
|
240 |
+
Here is an example:
|
241 |
+
|
242 |
+
```
|
243 |
+
from langchain_openai import ChatOpenAI
|
244 |
+
llm = ChatOpenAI(
|
245 |
+
model='deepseek-chat',
|
246 |
+
openai_api_key=<your-deepseek-api-key>,
|
247 |
+
openai_api_base='https://api.deepseek.com/v1',
|
248 |
+
temperature=0.85,
|
249 |
+
max_tokens=8000)
|
250 |
+
```
|
251 |
+
## 8. License
|
252 |
+
This code repository is licensed under [the MIT License](LICENSE-CODE). The use of DeepSeek-V2 Base/Chat models is subject to [the Model License](LICENSE-MODEL). DeepSeek-V2 series (including Base and Chat) supports commercial use.
|
253 |
+
|
254 |
+
## 9. Citation
|
255 |
+
```
|
256 |
+
@misc{deepseekv2,
|
257 |
+
title={DeepSeek-V2: A Strong, Economical, and Efficient Mixture-of-Experts Language Model},
|
258 |
+
author={DeepSeek-AI},
|
259 |
+
year={2024},
|
260 |
+
eprint={2405.04434},
|
261 |
+
archivePrefix={arXiv},
|
262 |
+
primaryClass={cs.CL}
|
263 |
+
}
|
264 |
+
```
|
265 |
+
|
266 |
+
## 10. Contact
|
267 |
+
If you have any questions, please raise an issue or contact us at [[email protected]]([email protected]).
|
config.json
ADDED
@@ -0,0 +1,59 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"architectures": [
|
3 |
+
"DeepseekV2ForCausalLM"
|
4 |
+
],
|
5 |
+
"attention_bias": false,
|
6 |
+
"attention_dropout": 0.0,
|
7 |
+
"auto_map": {
|
8 |
+
"AutoConfig": "configuration_deepseek.DeepseekV2Config",
|
9 |
+
"AutoModel": "modeling_deepseek.DeepseekV2Model",
|
10 |
+
"AutoModelForCausalLM": "modeling_deepseek.DeepseekV2ForCausalLM"
|
11 |
+
},
|
12 |
+
"aux_loss_alpha": 0.001,
|
13 |
+
"bos_token_id": 100000,
|
14 |
+
"eos_token_id": 100001,
|
15 |
+
"first_k_dense_replace": 1,
|
16 |
+
"hidden_act": "silu",
|
17 |
+
"hidden_size": 2048,
|
18 |
+
"initializer_range": 0.02,
|
19 |
+
"intermediate_size": 10944,
|
20 |
+
"kv_lora_rank": 512,
|
21 |
+
"max_position_embeddings": 163840,
|
22 |
+
"model_type": "deepseek_v2",
|
23 |
+
"moe_intermediate_size": 1408,
|
24 |
+
"moe_layer_freq": 1,
|
25 |
+
"n_group": 1,
|
26 |
+
"n_routed_experts": 64,
|
27 |
+
"n_shared_experts": 2,
|
28 |
+
"norm_topk_prob": false,
|
29 |
+
"num_attention_heads": 16,
|
30 |
+
"num_experts_per_tok": 6,
|
31 |
+
"num_hidden_layers": 27,
|
32 |
+
"num_key_value_heads": 16,
|
33 |
+
"pretraining_tp": 1,
|
34 |
+
"q_lora_rank": null,
|
35 |
+
"qk_nope_head_dim": 128,
|
36 |
+
"qk_rope_head_dim": 64,
|
37 |
+
"rms_norm_eps": 1e-06,
|
38 |
+
"rope_scaling": {
|
39 |
+
"beta_fast": 32,
|
40 |
+
"beta_slow": 1,
|
41 |
+
"factor": 40,
|
42 |
+
"mscale": 0.707,
|
43 |
+
"mscale_all_dim": 0.707,
|
44 |
+
"original_max_position_embeddings": 4096,
|
45 |
+
"type": "yarn"
|
46 |
+
},
|
47 |
+
"rope_theta": 10000,
|
48 |
+
"routed_scaling_factor": 1.0,
|
49 |
+
"scoring_func": "softmax",
|
50 |
+
"seq_aux": true,
|
51 |
+
"tie_word_embeddings": false,
|
52 |
+
"topk_group": 1,
|
53 |
+
"topk_method": "greedy",
|
54 |
+
"torch_dtype": "bfloat16",
|
55 |
+
"transformers_version": "4.33.1",
|
56 |
+
"use_cache": true,
|
57 |
+
"v_head_dim": 128,
|
58 |
+
"vocab_size": 102400
|
59 |
+
}
|
configuration_deepseek.py
ADDED
@@ -0,0 +1,206 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from transformers.configuration_utils import PretrainedConfig
|
2 |
+
from transformers.utils import logging
|
3 |
+
|
4 |
+
logger = logging.get_logger(__name__)
|
5 |
+
|
6 |
+
DEEPSEEK_PRETRAINED_CONFIG_ARCHIVE_MAP = {}
|
7 |
+
class DeepseekV2Config(PretrainedConfig):
|
8 |
+
r"""
|
9 |
+
This is the configuration class to store the configuration of a [`DeepseekV2Model`]. It is used to instantiate an DeepSeek
|
10 |
+
model according to the specified arguments, defining the model architecture. Instantiating a configuration with the
|
11 |
+
defaults will yield a similar configuration to that of the DeepSeek-V2.
|
12 |
+
|
13 |
+
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
|
14 |
+
documentation from [`PretrainedConfig`] for more information.
|
15 |
+
|
16 |
+
|
17 |
+
Args:
|
18 |
+
vocab_size (`int`, *optional*, defaults to 102400):
|
19 |
+
Vocabulary size of the Deep model. Defines the number of different tokens that can be represented by the
|
20 |
+
`inputs_ids` passed when calling [`DeepseekV2Model`]
|
21 |
+
hidden_size (`int`, *optional*, defaults to 4096):
|
22 |
+
Dimension of the hidden representations.
|
23 |
+
intermediate_size (`int`, *optional*, defaults to 11008):
|
24 |
+
Dimension of the MLP representations.
|
25 |
+
moe_intermediate_size (`int`, *optional*, defaults to 1407):
|
26 |
+
Dimension of the MoE representations.
|
27 |
+
num_hidden_layers (`int`, *optional*, defaults to 32):
|
28 |
+
Number of hidden layers in the Transformer decoder.
|
29 |
+
num_attention_heads (`int`, *optional*, defaults to 32):
|
30 |
+
Number of attention heads for each attention layer in the Transformer decoder.
|
31 |
+
n_shared_experts (`int`, *optional*, defaults to None):
|
32 |
+
Number of shared experts, None means dense model.
|
33 |
+
n_routed_experts (`int`, *optional*, defaults to None):
|
34 |
+
Number of routed experts, None means dense model.
|
35 |
+
routed_scaling_factor (`float`, *optional*, defaults to 1.0):
|
36 |
+
Scaling factor or routed experts.
|
37 |
+
topk_method (`str`, *optional*, defaults to `gready`):
|
38 |
+
Topk method used in routed gate.
|
39 |
+
n_group (`int`, *optional*, defaults to None):
|
40 |
+
Number of groups for routed experts.
|
41 |
+
topk_group (`int`, *optional*, defaults to None):
|
42 |
+
Number of selected groups for each token(for each token, ensuring the selected experts is only within `topk_group` groups).
|
43 |
+
num_experts_per_tok (`int`, *optional*, defaults to None):
|
44 |
+
Number of selected experts, None means dense model.
|
45 |
+
moe_layer_freq (`int`, *optional*, defaults to 1):
|
46 |
+
The frequency of the MoE layer: one expert layer for every `moe_layer_freq - 1` dense layers.
|
47 |
+
first_k_dense_replace (`int`, *optional*, defaults to 0):
|
48 |
+
Number of dense layers in shallow layers(embed->dense->dense->...->dense->moe->moe...->lm_head).
|
49 |
+
\--k dense layers--/
|
50 |
+
norm_topk_prob (`bool`, *optional*, defaults to False):
|
51 |
+
Whether to normalize the weights of the routed experts.
|
52 |
+
scoring_func (`str`, *optional*, defaults to 'softmax'):
|
53 |
+
Method of computing expert weights.
|
54 |
+
aux_loss_alpha (`float`, *optional*, defaults to 0.001):
|
55 |
+
Auxiliary loss weight coefficient.
|
56 |
+
seq_aux = (`bool`, *optional*, defaults to True):
|
57 |
+
Whether to compute the auxiliary loss for each individual sample.
|
58 |
+
num_key_value_heads (`int`, *optional*):
|
59 |
+
This is the number of key_value heads that should be used to implement Grouped Query Attention. If
|
60 |
+
`num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if
|
61 |
+
`num_key_value_heads=1 the model will use Multi Query Attention (MQA) otherwise GQA is used. When
|
62 |
+
converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed
|
63 |
+
by meanpooling all the original heads within that group. For more details checkout [this
|
64 |
+
paper](https://arxiv.org/pdf/2305.13245.pdf). If it is not specified, will default to
|
65 |
+
`num_attention_heads`.
|
66 |
+
hidden_act (`str` or `function`, *optional*, defaults to `"silu"`):
|
67 |
+
The non-linear activation function (function or string) in the decoder.
|
68 |
+
max_position_embeddings (`int`, *optional*, defaults to 2048):
|
69 |
+
The maximum sequence length that this model might ever be used with.
|
70 |
+
initializer_range (`float`, *optional*, defaults to 0.02):
|
71 |
+
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
|
72 |
+
rms_norm_eps (`float`, *optional*, defaults to 1e-06):
|
73 |
+
The epsilon used by the rms normalization layers.
|
74 |
+
use_cache (`bool`, *optional*, defaults to `True`):
|
75 |
+
Whether or not the model should return the last key/values attentions (not used by all models). Only
|
76 |
+
relevant if `config.is_decoder=True`.
|
77 |
+
pad_token_id (`int`, *optional*):
|
78 |
+
Padding token id.
|
79 |
+
bos_token_id (`int`, *optional*, defaults to 1):
|
80 |
+
Beginning of stream token id.
|
81 |
+
eos_token_id (`int`, *optional*, defaults to 2):
|
82 |
+
End of stream token id.
|
83 |
+
pretraining_tp (`int`, *optional*, defaults to 1):
|
84 |
+
Experimental feature. Tensor parallelism rank used during pretraining. Please refer to [this
|
85 |
+
document](https://huggingface.co/docs/transformers/parallelism) to understand more about it. This value is
|
86 |
+
necessary to ensure exact reproducibility of the pretraining results. Please refer to [this
|
87 |
+
issue](https://github.com/pytorch/pytorch/issues/76232).
|
88 |
+
tie_word_embeddings (`bool`, *optional*, defaults to `False`):
|
89 |
+
Whether to tie weight embeddings
|
90 |
+
rope_theta (`float`, *optional*, defaults to 10000.0):
|
91 |
+
The base period of the RoPE embeddings.
|
92 |
+
rope_scaling (`Dict`, *optional*):
|
93 |
+
Dictionary containing the scaling configuration for the RoPE embeddings. Currently supports two scaling
|
94 |
+
strategies: linear and dynamic. Their scaling factor must be a float greater than 1. The expected format is
|
95 |
+
`{"type": strategy name, "factor": scaling factor}`. When using this flag, don't update
|
96 |
+
`max_position_embeddings` to the expected new maximum.
|
97 |
+
attention_bias (`bool`, defaults to `False`, *optional*, defaults to `False`):
|
98 |
+
Whether to use a bias in the query, key, value and output projection layers during self-attention.
|
99 |
+
attention_dropout (`float`, *optional*, defaults to 0.0):
|
100 |
+
The dropout ratio for the attention probabilities.
|
101 |
+
|
102 |
+
```python
|
103 |
+
>>> from transformers import DeepseekV2Model, DeepseekV2Config
|
104 |
+
|
105 |
+
>>> # Initializing a Deepseek-V2 style configuration
|
106 |
+
>>> configuration = DeepseekV2Config()
|
107 |
+
|
108 |
+
>>> # Accessing the model configuration
|
109 |
+
>>> configuration = model.config
|
110 |
+
```"""
|
111 |
+
|
112 |
+
model_type = "deepseek_v2"
|
113 |
+
keys_to_ignore_at_inference = ["past_key_values"]
|
114 |
+
|
115 |
+
def __init__(
|
116 |
+
self,
|
117 |
+
vocab_size=102400,
|
118 |
+
hidden_size=4096,
|
119 |
+
intermediate_size=11008,
|
120 |
+
moe_intermediate_size = 1407,
|
121 |
+
num_hidden_layers=30,
|
122 |
+
num_attention_heads=32,
|
123 |
+
num_key_value_heads=32,
|
124 |
+
n_shared_experts = None,
|
125 |
+
n_routed_experts = None,
|
126 |
+
ep_size = 1,
|
127 |
+
routed_scaling_factor = 1.0,
|
128 |
+
kv_lora_rank = 512,
|
129 |
+
q_lora_rank = 1536,
|
130 |
+
qk_rope_head_dim = 64,
|
131 |
+
v_head_dim = 128,
|
132 |
+
qk_nope_head_dim = 128,
|
133 |
+
topk_method = 'gready',
|
134 |
+
n_group = None,
|
135 |
+
topk_group = None,
|
136 |
+
num_experts_per_tok = None,
|
137 |
+
moe_layer_freq = 1,
|
138 |
+
first_k_dense_replace = 0,
|
139 |
+
norm_topk_prob = False,
|
140 |
+
scoring_func = 'softmax',
|
141 |
+
aux_loss_alpha = 0.001,
|
142 |
+
seq_aux = True,
|
143 |
+
hidden_act="silu",
|
144 |
+
max_position_embeddings=2048,
|
145 |
+
initializer_range=0.02,
|
146 |
+
rms_norm_eps=1e-6,
|
147 |
+
use_cache=True,
|
148 |
+
pad_token_id=None,
|
149 |
+
bos_token_id=100000,
|
150 |
+
eos_token_id=100001,
|
151 |
+
pretraining_tp=1,
|
152 |
+
tie_word_embeddings=False,
|
153 |
+
rope_theta=10000.0,
|
154 |
+
rope_scaling=None,
|
155 |
+
attention_bias=False,
|
156 |
+
attention_dropout=0.0,
|
157 |
+
**kwargs,
|
158 |
+
):
|
159 |
+
self.vocab_size = vocab_size
|
160 |
+
self.max_position_embeddings = max_position_embeddings
|
161 |
+
self.hidden_size = hidden_size
|
162 |
+
self.intermediate_size = intermediate_size
|
163 |
+
self.moe_intermediate_size = moe_intermediate_size
|
164 |
+
self.num_hidden_layers = num_hidden_layers
|
165 |
+
self.num_attention_heads = num_attention_heads
|
166 |
+
self.n_shared_experts = n_shared_experts
|
167 |
+
self.n_routed_experts = n_routed_experts
|
168 |
+
self.ep_size = ep_size
|
169 |
+
self.routed_scaling_factor = routed_scaling_factor
|
170 |
+
self.kv_lora_rank = kv_lora_rank
|
171 |
+
self.q_lora_rank = q_lora_rank
|
172 |
+
self.qk_rope_head_dim = qk_rope_head_dim
|
173 |
+
self.v_head_dim = v_head_dim
|
174 |
+
self.qk_nope_head_dim = qk_nope_head_dim
|
175 |
+
self.topk_method = topk_method
|
176 |
+
self.n_group = n_group
|
177 |
+
self.topk_group = topk_group
|
178 |
+
self.num_experts_per_tok = num_experts_per_tok
|
179 |
+
self.moe_layer_freq = moe_layer_freq
|
180 |
+
self.first_k_dense_replace = first_k_dense_replace
|
181 |
+
self.norm_topk_prob = norm_topk_prob
|
182 |
+
self.scoring_func = scoring_func
|
183 |
+
self.aux_loss_alpha = aux_loss_alpha
|
184 |
+
self.seq_aux = seq_aux
|
185 |
+
# for backward compatibility
|
186 |
+
if num_key_value_heads is None:
|
187 |
+
num_key_value_heads = num_attention_heads
|
188 |
+
|
189 |
+
self.num_key_value_heads = num_key_value_heads
|
190 |
+
self.hidden_act = hidden_act
|
191 |
+
self.initializer_range = initializer_range
|
192 |
+
self.rms_norm_eps = rms_norm_eps
|
193 |
+
self.pretraining_tp = pretraining_tp
|
194 |
+
self.use_cache = use_cache
|
195 |
+
self.rope_theta = rope_theta
|
196 |
+
self.rope_scaling = rope_scaling
|
197 |
+
self.attention_bias = attention_bias
|
198 |
+
self.attention_dropout = attention_dropout
|
199 |
+
|
200 |
+
super().__init__(
|
201 |
+
pad_token_id=pad_token_id,
|
202 |
+
bos_token_id=bos_token_id,
|
203 |
+
eos_token_id=eos_token_id,
|
204 |
+
tie_word_embeddings=tie_word_embeddings,
|
205 |
+
**kwargs,
|
206 |
+
)
|
generation_config.json
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_from_model_config": true,
|
3 |
+
"bos_token_id": 100000,
|
4 |
+
"eos_token_id": 100001,
|
5 |
+
"do_sample": true,
|
6 |
+
"temperature": 0.3,
|
7 |
+
"top_p": 0.95,
|
8 |
+
"transformers_version": "4.39.3"
|
9 |
+
}
|
model-00001-of-000004.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:0d7e9f39bde40111a4c0f390b87497dce4565cf578d916395e6b2c7851f1e8da
|
3 |
+
size 8594887408
|
model-00002-of-000004.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:e0656832b0d594b4a64cad40ff8465231de6ed44c854f74f6b217797660aa4bb
|
3 |
+
size 8591757448
|
model-00003-of-000004.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:843ec689624f3a520526e040f0326c4dc9865e8172942ca98a084fe136fdb21a
|
3 |
+
size 8590718520
|
model-00004-of-000004.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:cfb51658f67cedfbbc4d62ad14187830ceec8ee82c788c5f718feea98905ef31
|
3 |
+
size 5636263200
|
model.safetensors.index.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
modeling_deepseek.py
ADDED
@@ -0,0 +1,1916 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2023 DeepSeek-AI and The HuggingFace Inc. team. All rights reserved.
|
3 |
+
#
|
4 |
+
# This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX
|
5 |
+
# and OPT implementations in this library. It has been modified from its
|
6 |
+
# original forms to accommodate minor architectural differences compared
|
7 |
+
# to GPT-NeoX and OPT used by the Meta AI team that trained the model.
|
8 |
+
#
|
9 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
10 |
+
# you may not use this file except in compliance with the License.
|
11 |
+
# You may obtain a copy of the License at
|
12 |
+
#
|
13 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
14 |
+
#
|
15 |
+
# Unless required by applicable law or agreed to in writing, software
|
16 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
17 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
18 |
+
# See the License for the specific language governing permissions and
|
19 |
+
# limitations under the License.
|
20 |
+
""" PyTorch DeepSeek model."""
|
21 |
+
import math
|
22 |
+
import warnings
|
23 |
+
from typing import List, Optional, Tuple, Union
|
24 |
+
|
25 |
+
import torch
|
26 |
+
import torch.nn.functional as F
|
27 |
+
import torch.utils.checkpoint
|
28 |
+
from torch import nn
|
29 |
+
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
|
30 |
+
|
31 |
+
from transformers.activations import ACT2FN
|
32 |
+
from transformers.cache_utils import Cache, DynamicCache
|
33 |
+
from transformers.modeling_attn_mask_utils import (
|
34 |
+
AttentionMaskConverter,
|
35 |
+
_prepare_4d_attention_mask,
|
36 |
+
_prepare_4d_causal_attention_mask,
|
37 |
+
)
|
38 |
+
from transformers.modeling_outputs import (
|
39 |
+
BaseModelOutputWithPast,
|
40 |
+
CausalLMOutputWithPast,
|
41 |
+
SequenceClassifierOutputWithPast,
|
42 |
+
)
|
43 |
+
from transformers.modeling_utils import PreTrainedModel
|
44 |
+
from transformers.pytorch_utils import (
|
45 |
+
ALL_LAYERNORM_LAYERS,
|
46 |
+
is_torch_greater_or_equal_than_1_13,
|
47 |
+
)
|
48 |
+
from transformers.utils import (
|
49 |
+
add_start_docstrings,
|
50 |
+
add_start_docstrings_to_model_forward,
|
51 |
+
is_flash_attn_2_available,
|
52 |
+
is_flash_attn_greater_or_equal_2_10,
|
53 |
+
logging,
|
54 |
+
replace_return_docstrings,
|
55 |
+
)
|
56 |
+
from transformers.utils.import_utils import is_torch_fx_available
|
57 |
+
from .configuration_deepseek import DeepseekV2Config
|
58 |
+
import torch.distributed as dist
|
59 |
+
import numpy as np
|
60 |
+
|
61 |
+
if is_flash_attn_2_available():
|
62 |
+
from flash_attn import flash_attn_func, flash_attn_varlen_func
|
63 |
+
from flash_attn.bert_padding import index_first_axis, pad_input, unpad_input # noqa
|
64 |
+
|
65 |
+
|
66 |
+
# This makes `_prepare_4d_causal_attention_mask` a leaf function in the FX graph.
|
67 |
+
# It means that the function will not be traced through and simply appear as a node in the graph.
|
68 |
+
if is_torch_fx_available():
|
69 |
+
if not is_torch_greater_or_equal_than_1_13:
|
70 |
+
import torch.fx
|
71 |
+
|
72 |
+
_prepare_4d_causal_attention_mask = torch.fx.wrap(_prepare_4d_causal_attention_mask)
|
73 |
+
|
74 |
+
|
75 |
+
logger = logging.get_logger(__name__)
|
76 |
+
|
77 |
+
_CONFIG_FOR_DOC = "DeepseekV2Config"
|
78 |
+
|
79 |
+
|
80 |
+
def _get_unpad_data(attention_mask):
|
81 |
+
seqlens_in_batch = attention_mask.sum(dim=-1, dtype=torch.int32)
|
82 |
+
indices = torch.nonzero(attention_mask.flatten(), as_tuple=False).flatten()
|
83 |
+
max_seqlen_in_batch = seqlens_in_batch.max().item()
|
84 |
+
cu_seqlens = F.pad(
|
85 |
+
torch.cumsum(seqlens_in_batch, dim=0, dtype=torch.torch.int32), (1, 0)
|
86 |
+
)
|
87 |
+
return (
|
88 |
+
indices,
|
89 |
+
cu_seqlens,
|
90 |
+
max_seqlen_in_batch,
|
91 |
+
)
|
92 |
+
|
93 |
+
|
94 |
+
class DeepseekV2RMSNorm(nn.Module):
|
95 |
+
def __init__(self, hidden_size, eps=1e-6):
|
96 |
+
"""
|
97 |
+
DeepseekV2RMSNorm is equivalent to T5LayerNorm
|
98 |
+
"""
|
99 |
+
super().__init__()
|
100 |
+
self.weight = nn.Parameter(torch.ones(hidden_size))
|
101 |
+
self.variance_epsilon = eps
|
102 |
+
|
103 |
+
def forward(self, hidden_states):
|
104 |
+
input_dtype = hidden_states.dtype
|
105 |
+
hidden_states = hidden_states.to(torch.float32)
|
106 |
+
variance = hidden_states.pow(2).mean(-1, keepdim=True)
|
107 |
+
hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon)
|
108 |
+
return self.weight * hidden_states.to(input_dtype)
|
109 |
+
|
110 |
+
|
111 |
+
ALL_LAYERNORM_LAYERS.append(DeepseekV2RMSNorm)
|
112 |
+
|
113 |
+
|
114 |
+
class DeepseekV2RotaryEmbedding(nn.Module):
|
115 |
+
def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None):
|
116 |
+
super().__init__()
|
117 |
+
|
118 |
+
self.dim = dim
|
119 |
+
self.max_position_embeddings = max_position_embeddings
|
120 |
+
self.base = base
|
121 |
+
inv_freq = 1.0 / (
|
122 |
+
self.base ** (torch.arange(0, self.dim, 2).float().to(device) / self.dim)
|
123 |
+
)
|
124 |
+
self.register_buffer("inv_freq", inv_freq, persistent=False)
|
125 |
+
|
126 |
+
# Build here to make `torch.jit.trace` work.
|
127 |
+
self._set_cos_sin_cache(
|
128 |
+
seq_len=max_position_embeddings,
|
129 |
+
device=self.inv_freq.device,
|
130 |
+
dtype=torch.get_default_dtype(),
|
131 |
+
)
|
132 |
+
self.max_seq_len_cached = None
|
133 |
+
|
134 |
+
def _set_cos_sin_cache(self, seq_len, device, dtype):
|
135 |
+
self.max_seq_len_cached = seq_len
|
136 |
+
t = torch.arange(
|
137 |
+
self.max_seq_len_cached, device=device, dtype=self.inv_freq.dtype
|
138 |
+
)
|
139 |
+
|
140 |
+
freqs = torch.outer(t, self.inv_freq.to(t.device))
|
141 |
+
# Different from paper, but it uses a different permutation in order to obtain the same calculation
|
142 |
+
emb = torch.cat((freqs, freqs), dim=-1)
|
143 |
+
self.register_buffer("cos_cached", emb.cos().to(dtype), persistent=False)
|
144 |
+
self.register_buffer("sin_cached", emb.sin().to(dtype), persistent=False)
|
145 |
+
|
146 |
+
def forward(self, x, seq_len=None):
|
147 |
+
# x: [bs, num_attention_heads, seq_len, head_size]
|
148 |
+
if self.max_seq_len_cached is None or seq_len > self.max_seq_len_cached:
|
149 |
+
self._set_cos_sin_cache(seq_len=seq_len, device=x.device, dtype=x.dtype)
|
150 |
+
|
151 |
+
return (
|
152 |
+
self.cos_cached[:seq_len].to(dtype=x.dtype),
|
153 |
+
self.sin_cached[:seq_len].to(dtype=x.dtype),
|
154 |
+
)
|
155 |
+
|
156 |
+
|
157 |
+
# Copied from transformers.models.llama.modeling_llama.LlamaLinearScalingRotaryEmbedding with Llama->DeepseekV2
|
158 |
+
class DeepseekV2LinearScalingRotaryEmbedding(DeepseekV2RotaryEmbedding):
|
159 |
+
"""DeepseekV2RotaryEmbedding extended with linear scaling. Credits to the Reddit user /u/kaiokendev"""
|
160 |
+
|
161 |
+
def __init__(
|
162 |
+
self,
|
163 |
+
dim,
|
164 |
+
max_position_embeddings=2048,
|
165 |
+
base=10000,
|
166 |
+
device=None,
|
167 |
+
scaling_factor=1.0,
|
168 |
+
):
|
169 |
+
self.scaling_factor = scaling_factor
|
170 |
+
super().__init__(dim, max_position_embeddings, base, device)
|
171 |
+
|
172 |
+
def _set_cos_sin_cache(self, seq_len, device, dtype):
|
173 |
+
self.max_seq_len_cached = seq_len
|
174 |
+
t = torch.arange(
|
175 |
+
self.max_seq_len_cached, device=device, dtype=self.inv_freq.dtype
|
176 |
+
)
|
177 |
+
t = t / self.scaling_factor
|
178 |
+
|
179 |
+
freqs = torch.outer(t, self.inv_freq)
|
180 |
+
# Different from paper, but it uses a different permutation in order to obtain the same calculation
|
181 |
+
emb = torch.cat((freqs, freqs), dim=-1)
|
182 |
+
self.register_buffer("cos_cached", emb.cos().to(dtype), persistent=False)
|
183 |
+
self.register_buffer("sin_cached", emb.sin().to(dtype), persistent=False)
|
184 |
+
|
185 |
+
|
186 |
+
# Copied from transformers.models.llama.modeling_llama.LlamaDynamicNTKScalingRotaryEmbedding with Llama->DeepseekV2
|
187 |
+
class DeepseekV2DynamicNTKScalingRotaryEmbedding(DeepseekV2RotaryEmbedding):
|
188 |
+
"""DeepseekV2RotaryEmbedding extended with Dynamic NTK scaling. Credits to the Reddit users /u/bloc97 and /u/emozilla"""
|
189 |
+
|
190 |
+
def __init__(
|
191 |
+
self,
|
192 |
+
dim,
|
193 |
+
max_position_embeddings=2048,
|
194 |
+
base=10000,
|
195 |
+
device=None,
|
196 |
+
scaling_factor=1.0,
|
197 |
+
):
|
198 |
+
self.scaling_factor = scaling_factor
|
199 |
+
super().__init__(dim, max_position_embeddings, base, device)
|
200 |
+
|
201 |
+
def _set_cos_sin_cache(self, seq_len, device, dtype):
|
202 |
+
self.max_seq_len_cached = seq_len
|
203 |
+
|
204 |
+
if seq_len > self.max_position_embeddings:
|
205 |
+
base = self.base * (
|
206 |
+
(self.scaling_factor * seq_len / self.max_position_embeddings)
|
207 |
+
- (self.scaling_factor - 1)
|
208 |
+
) ** (self.dim / (self.dim - 2))
|
209 |
+
inv_freq = 1.0 / (
|
210 |
+
base ** (torch.arange(0, self.dim, 2).float().to(device) / self.dim)
|
211 |
+
)
|
212 |
+
self.register_buffer("inv_freq", inv_freq, persistent=False)
|
213 |
+
|
214 |
+
t = torch.arange(
|
215 |
+
self.max_seq_len_cached, device=device, dtype=self.inv_freq.dtype
|
216 |
+
)
|
217 |
+
|
218 |
+
freqs = torch.outer(t, self.inv_freq)
|
219 |
+
# Different from paper, but it uses a different permutation in order to obtain the same calculation
|
220 |
+
emb = torch.cat((freqs, freqs), dim=-1)
|
221 |
+
self.register_buffer("cos_cached", emb.cos().to(dtype), persistent=False)
|
222 |
+
self.register_buffer("sin_cached", emb.sin().to(dtype), persistent=False)
|
223 |
+
|
224 |
+
|
225 |
+
# Inverse dim formula to find dim based on number of rotations
|
226 |
+
def yarn_find_correction_dim(
|
227 |
+
num_rotations, dim, base=10000, max_position_embeddings=2048
|
228 |
+
):
|
229 |
+
return (dim * math.log(max_position_embeddings / (num_rotations * 2 * math.pi))) / (
|
230 |
+
2 * math.log(base)
|
231 |
+
)
|
232 |
+
|
233 |
+
|
234 |
+
# Find dim range bounds based on rotations
|
235 |
+
def yarn_find_correction_range(
|
236 |
+
low_rot, high_rot, dim, base=10000, max_position_embeddings=2048
|
237 |
+
):
|
238 |
+
low = math.floor(
|
239 |
+
yarn_find_correction_dim(low_rot, dim, base, max_position_embeddings)
|
240 |
+
)
|
241 |
+
high = math.ceil(
|
242 |
+
yarn_find_correction_dim(high_rot, dim, base, max_position_embeddings)
|
243 |
+
)
|
244 |
+
return max(low, 0), min(high, dim - 1) # Clamp values just in case
|
245 |
+
|
246 |
+
|
247 |
+
def yarn_get_mscale(scale=1, mscale=1):
|
248 |
+
if scale <= 1:
|
249 |
+
return 1.0
|
250 |
+
return 0.1 * mscale * math.log(scale) + 1.0
|
251 |
+
|
252 |
+
|
253 |
+
def yarn_linear_ramp_mask(min, max, dim):
|
254 |
+
if min == max:
|
255 |
+
max += 0.001 # Prevent singularity
|
256 |
+
|
257 |
+
linear_func = (torch.arange(dim, dtype=torch.float32) - min) / (max - min)
|
258 |
+
ramp_func = torch.clamp(linear_func, 0, 1)
|
259 |
+
return ramp_func
|
260 |
+
|
261 |
+
|
262 |
+
class DeepseekV2YarnRotaryEmbedding(DeepseekV2RotaryEmbedding):
|
263 |
+
|
264 |
+
def __init__(
|
265 |
+
self,
|
266 |
+
dim,
|
267 |
+
max_position_embeddings=2048,
|
268 |
+
base=10000,
|
269 |
+
device=None,
|
270 |
+
scaling_factor=1.0,
|
271 |
+
original_max_position_embeddings=4096,
|
272 |
+
beta_fast=32,
|
273 |
+
beta_slow=1,
|
274 |
+
mscale=1,
|
275 |
+
mscale_all_dim=0,
|
276 |
+
):
|
277 |
+
self.scaling_factor = scaling_factor
|
278 |
+
self.original_max_position_embeddings = original_max_position_embeddings
|
279 |
+
self.beta_fast = beta_fast
|
280 |
+
self.beta_slow = beta_slow
|
281 |
+
self.mscale = mscale
|
282 |
+
self.mscale_all_dim = mscale_all_dim
|
283 |
+
super().__init__(dim, max_position_embeddings, base, device)
|
284 |
+
|
285 |
+
def _set_cos_sin_cache(self, seq_len, device, dtype):
|
286 |
+
self.max_seq_len_cached = seq_len
|
287 |
+
dim = self.dim
|
288 |
+
|
289 |
+
freq_extra = 1.0 / (
|
290 |
+
self.base
|
291 |
+
** (torch.arange(0, dim, 2, dtype=torch.float32, device=device) / dim)
|
292 |
+
)
|
293 |
+
freq_inter = 1.0 / (
|
294 |
+
self.scaling_factor
|
295 |
+
* self.base
|
296 |
+
** (torch.arange(0, dim, 2, dtype=torch.float32, device=device) / dim)
|
297 |
+
)
|
298 |
+
|
299 |
+
low, high = yarn_find_correction_range(
|
300 |
+
self.beta_fast,
|
301 |
+
self.beta_slow,
|
302 |
+
dim,
|
303 |
+
self.base,
|
304 |
+
self.original_max_position_embeddings,
|
305 |
+
)
|
306 |
+
inv_freq_mask = 1.0 - yarn_linear_ramp_mask(low, high, dim // 2).to(
|
307 |
+
device=device, dtype=torch.float32
|
308 |
+
)
|
309 |
+
inv_freq = freq_inter * (1 - inv_freq_mask) + freq_extra * inv_freq_mask
|
310 |
+
self.register_buffer("inv_freq", inv_freq, persistent=False)
|
311 |
+
|
312 |
+
t = torch.arange(seq_len, device=device, dtype=torch.float32)
|
313 |
+
|
314 |
+
freqs = torch.outer(t, inv_freq)
|
315 |
+
|
316 |
+
_mscale = float(
|
317 |
+
yarn_get_mscale(self.scaling_factor, self.mscale)
|
318 |
+
/ yarn_get_mscale(self.scaling_factor, self.mscale_all_dim)
|
319 |
+
)
|
320 |
+
|
321 |
+
emb = torch.cat((freqs, freqs), dim=-1)
|
322 |
+
self.register_buffer(
|
323 |
+
"cos_cached", (emb.cos() * _mscale).to(dtype), persistent=False
|
324 |
+
)
|
325 |
+
self.register_buffer(
|
326 |
+
"sin_cached", (emb.sin() * _mscale).to(dtype), persistent=False
|
327 |
+
)
|
328 |
+
|
329 |
+
|
330 |
+
# Copied from transformers.models.llama.modeling_llama.rotate_half
|
331 |
+
def rotate_half(x):
|
332 |
+
"""Rotates half the hidden dims of the input."""
|
333 |
+
x1 = x[..., : x.shape[-1] // 2]
|
334 |
+
x2 = x[..., x.shape[-1] // 2 :]
|
335 |
+
return torch.cat((-x2, x1), dim=-1)
|
336 |
+
|
337 |
+
|
338 |
+
# Copied from transformers.models.llama.modeling_llama.apply_rotary_pos_emb
|
339 |
+
def apply_rotary_pos_emb(q, k, cos, sin, position_ids, unsqueeze_dim=1):
|
340 |
+
"""Applies Rotary Position Embedding to the query and key tensors.
|
341 |
+
|
342 |
+
Args:
|
343 |
+
q (`torch.Tensor`): The query tensor.
|
344 |
+
k (`torch.Tensor`): The key tensor.
|
345 |
+
cos (`torch.Tensor`): The cosine part of the rotary embedding.
|
346 |
+
sin (`torch.Tensor`): The sine part of the rotary embedding.
|
347 |
+
position_ids (`torch.Tensor`):
|
348 |
+
The position indices of the tokens corresponding to the query and key tensors. For example, this can be
|
349 |
+
used to pass offsetted position ids when working with a KV-cache.
|
350 |
+
unsqueeze_dim (`int`, *optional*, defaults to 1):
|
351 |
+
The 'unsqueeze_dim' argument specifies the dimension along which to unsqueeze cos[position_ids] and
|
352 |
+
sin[position_ids] so that they can be properly broadcasted to the dimensions of q and k. For example, note
|
353 |
+
that cos[position_ids] and sin[position_ids] have the shape [batch_size, seq_len, head_dim]. Then, if q and
|
354 |
+
k have the shape [batch_size, heads, seq_len, head_dim], then setting unsqueeze_dim=1 makes
|
355 |
+
cos[position_ids] and sin[position_ids] broadcastable to the shapes of q and k. Similarly, if q and k have
|
356 |
+
the shape [batch_size, seq_len, heads, head_dim], then set unsqueeze_dim=2.
|
357 |
+
Returns:
|
358 |
+
`tuple(torch.Tensor)` comprising of the query and key tensors rotated using the Rotary Position Embedding.
|
359 |
+
"""
|
360 |
+
cos = cos[position_ids].unsqueeze(unsqueeze_dim)
|
361 |
+
sin = sin[position_ids].unsqueeze(unsqueeze_dim)
|
362 |
+
|
363 |
+
b, h, s, d = q.shape
|
364 |
+
q = q.view(b, h, s, d // 2, 2).transpose(4, 3).reshape(b, h, s, d)
|
365 |
+
|
366 |
+
b, h, s, d = k.shape
|
367 |
+
k = k.view(b, h, s, d // 2, 2).transpose(4, 3).reshape(b, h, s, d)
|
368 |
+
|
369 |
+
q_embed = (q * cos) + (rotate_half(q) * sin)
|
370 |
+
k_embed = (k * cos) + (rotate_half(k) * sin)
|
371 |
+
return q_embed, k_embed
|
372 |
+
|
373 |
+
|
374 |
+
class DeepseekV2MLP(nn.Module):
|
375 |
+
def __init__(self, config, hidden_size=None, intermediate_size=None):
|
376 |
+
super().__init__()
|
377 |
+
self.config = config
|
378 |
+
self.hidden_size = config.hidden_size if hidden_size is None else hidden_size
|
379 |
+
self.intermediate_size = (
|
380 |
+
config.intermediate_size if intermediate_size is None else intermediate_size
|
381 |
+
)
|
382 |
+
|
383 |
+
self.gate_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False)
|
384 |
+
self.up_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False)
|
385 |
+
self.down_proj = nn.Linear(self.intermediate_size, self.hidden_size, bias=False)
|
386 |
+
self.act_fn = ACT2FN[config.hidden_act]
|
387 |
+
|
388 |
+
def forward(self, x):
|
389 |
+
down_proj = self.down_proj(self.act_fn(self.gate_proj(x)) * self.up_proj(x))
|
390 |
+
return down_proj
|
391 |
+
|
392 |
+
|
393 |
+
class MoEGate(nn.Module):
|
394 |
+
def __init__(self, config):
|
395 |
+
super().__init__()
|
396 |
+
self.config = config
|
397 |
+
self.top_k = config.num_experts_per_tok
|
398 |
+
self.n_routed_experts = config.n_routed_experts
|
399 |
+
self.routed_scaling_factor = config.routed_scaling_factor
|
400 |
+
self.scoring_func = config.scoring_func
|
401 |
+
self.alpha = config.aux_loss_alpha
|
402 |
+
self.seq_aux = config.seq_aux
|
403 |
+
self.topk_method = config.topk_method
|
404 |
+
self.n_group = config.n_group
|
405 |
+
self.topk_group = config.topk_group
|
406 |
+
|
407 |
+
# topk selection algorithm
|
408 |
+
self.norm_topk_prob = config.norm_topk_prob
|
409 |
+
self.gating_dim = config.hidden_size
|
410 |
+
self.weight = nn.Parameter(
|
411 |
+
torch.empty((self.n_routed_experts, self.gating_dim))
|
412 |
+
)
|
413 |
+
self.reset_parameters()
|
414 |
+
|
415 |
+
def reset_parameters(self) -> None:
|
416 |
+
import torch.nn.init as init
|
417 |
+
|
418 |
+
init.kaiming_uniform_(self.weight, a=math.sqrt(5))
|
419 |
+
|
420 |
+
def forward(self, hidden_states):
|
421 |
+
bsz, seq_len, h = hidden_states.shape
|
422 |
+
### compute gating score
|
423 |
+
hidden_states = hidden_states.view(-1, h)
|
424 |
+
logits = F.linear(
|
425 |
+
hidden_states.type(torch.float32), self.weight.type(torch.float32), None
|
426 |
+
)
|
427 |
+
if self.scoring_func == "softmax":
|
428 |
+
scores = logits.softmax(dim=-1, dtype=torch.float32)
|
429 |
+
else:
|
430 |
+
raise NotImplementedError(
|
431 |
+
f"insupportable scoring function for MoE gating: {self.scoring_func}"
|
432 |
+
)
|
433 |
+
|
434 |
+
### select top-k experts
|
435 |
+
if self.topk_method == "greedy":
|
436 |
+
topk_weight, topk_idx = torch.topk(
|
437 |
+
scores, k=self.top_k, dim=-1, sorted=False
|
438 |
+
)
|
439 |
+
elif self.topk_method == "group_limited_greedy":
|
440 |
+
group_scores = (
|
441 |
+
scores.view(bsz * seq_len, self.n_group, -1).max(dim=-1).values
|
442 |
+
) # [n, n_group]
|
443 |
+
group_idx = torch.topk(
|
444 |
+
group_scores, k=self.topk_group, dim=-1, sorted=False
|
445 |
+
)[
|
446 |
+
1
|
447 |
+
] # [n, top_k_group]
|
448 |
+
group_mask = torch.zeros_like(group_scores) # [n, n_group]
|
449 |
+
group_mask.scatter_(1, group_idx, 1) # [n, n_group]
|
450 |
+
score_mask = (
|
451 |
+
group_mask.unsqueeze(-1)
|
452 |
+
.expand(
|
453 |
+
bsz * seq_len, self.n_group, self.n_routed_experts // self.n_group
|
454 |
+
)
|
455 |
+
.reshape(bsz * seq_len, -1)
|
456 |
+
) # [n, e]
|
457 |
+
tmp_scores = scores.masked_fill(~score_mask.bool(), 0.0) # [n, e]
|
458 |
+
topk_weight, topk_idx = torch.topk(
|
459 |
+
tmp_scores, k=self.top_k, dim=-1, sorted=False
|
460 |
+
)
|
461 |
+
|
462 |
+
### norm gate to sum 1
|
463 |
+
if self.top_k > 1 and self.norm_topk_prob:
|
464 |
+
denominator = topk_weight.sum(dim=-1, keepdim=True) + 1e-20
|
465 |
+
topk_weight = topk_weight / denominator
|
466 |
+
else:
|
467 |
+
topk_weight = topk_weight * self.routed_scaling_factor
|
468 |
+
### expert-level computation auxiliary loss
|
469 |
+
if self.training and self.alpha > 0.0:
|
470 |
+
scores_for_aux = scores
|
471 |
+
aux_topk = self.top_k
|
472 |
+
# always compute aux loss based on the naive greedy topk method
|
473 |
+
topk_idx_for_aux_loss = topk_idx.view(bsz, -1)
|
474 |
+
if self.seq_aux:
|
475 |
+
scores_for_seq_aux = scores_for_aux.view(bsz, seq_len, -1)
|
476 |
+
ce = torch.zeros(
|
477 |
+
bsz, self.n_routed_experts, device=hidden_states.device
|
478 |
+
)
|
479 |
+
ce.scatter_add_(
|
480 |
+
1,
|
481 |
+
topk_idx_for_aux_loss,
|
482 |
+
torch.ones(bsz, seq_len * aux_topk, device=hidden_states.device),
|
483 |
+
).div_(seq_len * aux_topk / self.n_routed_experts)
|
484 |
+
aux_loss = (ce * scores_for_seq_aux.mean(dim=1)).sum(
|
485 |
+
dim=1
|
486 |
+
).mean() * self.alpha
|
487 |
+
else:
|
488 |
+
mask_ce = F.one_hot(
|
489 |
+
topk_idx_for_aux_loss.view(-1), num_classes=self.n_routed_experts
|
490 |
+
)
|
491 |
+
ce = mask_ce.float().mean(0)
|
492 |
+
Pi = scores_for_aux.mean(0)
|
493 |
+
fi = ce * self.n_routed_experts
|
494 |
+
aux_loss = (Pi * fi).sum() * self.alpha
|
495 |
+
else:
|
496 |
+
aux_loss = None
|
497 |
+
return topk_idx, topk_weight, aux_loss
|
498 |
+
|
499 |
+
|
500 |
+
class AddAuxiliaryLoss(torch.autograd.Function):
|
501 |
+
"""
|
502 |
+
The trick function of adding auxiliary (aux) loss,
|
503 |
+
which includes the gradient of the aux loss during backpropagation.
|
504 |
+
"""
|
505 |
+
|
506 |
+
@staticmethod
|
507 |
+
def forward(ctx, x, loss):
|
508 |
+
assert loss.numel() == 1
|
509 |
+
ctx.dtype = loss.dtype
|
510 |
+
ctx.required_aux_loss = loss.requires_grad
|
511 |
+
return x
|
512 |
+
|
513 |
+
@staticmethod
|
514 |
+
def backward(ctx, grad_output):
|
515 |
+
grad_loss = None
|
516 |
+
if ctx.required_aux_loss:
|
517 |
+
grad_loss = torch.ones(1, dtype=ctx.dtype, device=grad_output.device)
|
518 |
+
return grad_output, grad_loss
|
519 |
+
|
520 |
+
|
521 |
+
class DeepseekV2MoE(nn.Module):
|
522 |
+
"""
|
523 |
+
A mixed expert module containing shared experts.
|
524 |
+
"""
|
525 |
+
|
526 |
+
def __init__(self, config):
|
527 |
+
super().__init__()
|
528 |
+
self.config = config
|
529 |
+
self.num_experts_per_tok = config.num_experts_per_tok
|
530 |
+
|
531 |
+
if hasattr(config, "ep_size") and config.ep_size > 1:
|
532 |
+
assert config.ep_size == dist.get_world_size()
|
533 |
+
self.ep_size = config.ep_size
|
534 |
+
self.experts_per_rank = config.n_routed_experts // config.ep_size
|
535 |
+
self.ep_rank = dist.get_rank()
|
536 |
+
self.experts = nn.ModuleList(
|
537 |
+
[
|
538 |
+
(
|
539 |
+
DeepseekV2MLP(
|
540 |
+
config, intermediate_size=config.moe_intermediate_size
|
541 |
+
)
|
542 |
+
if i >= self.ep_rank * self.experts_per_rank
|
543 |
+
and i < (self.ep_rank + 1) * self.experts_per_rank
|
544 |
+
else None
|
545 |
+
)
|
546 |
+
for i in range(config.n_routed_experts)
|
547 |
+
]
|
548 |
+
)
|
549 |
+
else:
|
550 |
+
self.ep_size = 1
|
551 |
+
self.experts_per_rank = config.n_routed_experts
|
552 |
+
self.ep_rank = 0
|
553 |
+
self.experts = nn.ModuleList(
|
554 |
+
[
|
555 |
+
DeepseekV2MLP(config, intermediate_size=config.moe_intermediate_size)
|
556 |
+
for i in range(config.n_routed_experts)
|
557 |
+
]
|
558 |
+
)
|
559 |
+
self.gate = MoEGate(config)
|
560 |
+
if config.n_shared_experts is not None:
|
561 |
+
intermediate_size = config.moe_intermediate_size * config.n_shared_experts
|
562 |
+
self.shared_experts = DeepseekV2MLP(
|
563 |
+
config=config, intermediate_size=intermediate_size
|
564 |
+
)
|
565 |
+
|
566 |
+
def forward(self, hidden_states):
|
567 |
+
identity = hidden_states
|
568 |
+
orig_shape = hidden_states.shape
|
569 |
+
topk_idx, topk_weight, aux_loss = self.gate(hidden_states)
|
570 |
+
hidden_states = hidden_states.view(-1, hidden_states.shape[-1])
|
571 |
+
flat_topk_idx = topk_idx.view(-1)
|
572 |
+
if self.training:
|
573 |
+
hidden_states = hidden_states.repeat_interleave(
|
574 |
+
self.num_experts_per_tok, dim=0
|
575 |
+
)
|
576 |
+
y = torch.empty_like(hidden_states)
|
577 |
+
for i, expert in enumerate(self.experts):
|
578 |
+
y[flat_topk_idx == i] = expert(hidden_states[flat_topk_idx == i])
|
579 |
+
y = (y.view(*topk_weight.shape, -1) * topk_weight.unsqueeze(-1)).sum(dim=1)
|
580 |
+
y = y.view(*orig_shape)
|
581 |
+
y = AddAuxiliaryLoss.apply(y, aux_loss)
|
582 |
+
else:
|
583 |
+
y = self.moe_infer(hidden_states, topk_idx, topk_weight).view(*orig_shape)
|
584 |
+
if self.config.n_shared_experts is not None:
|
585 |
+
y = y + self.shared_experts(identity)
|
586 |
+
return y
|
587 |
+
|
588 |
+
@torch.no_grad()
|
589 |
+
def moe_infer(self, x, topk_ids, topk_weight):
|
590 |
+
cnts = topk_ids.new_zeros((topk_ids.shape[0], len(self.experts)))
|
591 |
+
cnts.scatter_(1, topk_ids, 1)
|
592 |
+
tokens_per_expert = cnts.sum(dim=0)
|
593 |
+
idxs = topk_ids.view(-1).argsort()
|
594 |
+
sorted_tokens = x[idxs // topk_ids.shape[1]]
|
595 |
+
sorted_tokens_shape = sorted_tokens.shape
|
596 |
+
if self.ep_size > 1:
|
597 |
+
tokens_per_ep_rank = tokens_per_expert.view(self.ep_size, -1).sum(dim=1)
|
598 |
+
tokens_per_expert_group = tokens_per_expert.new_empty(
|
599 |
+
tokens_per_expert.shape[0]
|
600 |
+
)
|
601 |
+
dist.all_to_all_single(tokens_per_expert_group, tokens_per_expert)
|
602 |
+
output_splits = (
|
603 |
+
tokens_per_expert_group.view(self.ep_size, -1)
|
604 |
+
.sum(1)
|
605 |
+
.cpu()
|
606 |
+
.numpy()
|
607 |
+
.tolist()
|
608 |
+
)
|
609 |
+
gathered_tokens = sorted_tokens.new_empty(
|
610 |
+
tokens_per_expert_group.sum(dim=0).cpu().item(), sorted_tokens.shape[1]
|
611 |
+
)
|
612 |
+
input_split_sizes = tokens_per_ep_rank.cpu().numpy().tolist()
|
613 |
+
dist.all_to_all(
|
614 |
+
list(gathered_tokens.split(output_splits)),
|
615 |
+
list(sorted_tokens.split(input_split_sizes)),
|
616 |
+
)
|
617 |
+
tokens_per_expert_post_gather = tokens_per_expert_group.view(
|
618 |
+
self.ep_size, self.experts_per_rank
|
619 |
+
).sum(dim=0)
|
620 |
+
gatherd_idxs = np.zeros(shape=(gathered_tokens.shape[0],), dtype=np.int32)
|
621 |
+
s = 0
|
622 |
+
for i, k in enumerate(tokens_per_expert_group.cpu().numpy()):
|
623 |
+
gatherd_idxs[s : s + k] = i % self.experts_per_rank
|
624 |
+
s += k
|
625 |
+
gatherd_idxs = gatherd_idxs.argsort()
|
626 |
+
sorted_tokens = gathered_tokens[gatherd_idxs]
|
627 |
+
tokens_per_expert = tokens_per_expert_post_gather
|
628 |
+
tokens_per_expert = tokens_per_expert.cpu().numpy()
|
629 |
+
|
630 |
+
outputs = []
|
631 |
+
start_idx = 0
|
632 |
+
for i, num_tokens in enumerate(tokens_per_expert):
|
633 |
+
end_idx = start_idx + num_tokens
|
634 |
+
if num_tokens == 0:
|
635 |
+
continue
|
636 |
+
expert = self.experts[i + self.ep_rank * self.experts_per_rank]
|
637 |
+
tokens_for_this_expert = sorted_tokens[start_idx:end_idx]
|
638 |
+
expert_out = expert(tokens_for_this_expert)
|
639 |
+
outputs.append(expert_out)
|
640 |
+
start_idx = end_idx
|
641 |
+
|
642 |
+
outs = torch.cat(outputs, dim=0) if len(outputs) else sorted_tokens.new_empty(0)
|
643 |
+
if self.ep_size > 1:
|
644 |
+
new_x = torch.empty_like(outs)
|
645 |
+
new_x[gatherd_idxs] = outs
|
646 |
+
gathered_tokens = new_x.new_empty(*sorted_tokens_shape)
|
647 |
+
dist.all_to_all(
|
648 |
+
list(gathered_tokens.split(input_split_sizes)),
|
649 |
+
list(new_x.split(output_splits)),
|
650 |
+
)
|
651 |
+
outs = gathered_tokens
|
652 |
+
|
653 |
+
new_x = torch.empty_like(outs)
|
654 |
+
new_x[idxs] = outs
|
655 |
+
final_out = (
|
656 |
+
new_x.view(*topk_ids.shape, -1)
|
657 |
+
.type(topk_weight.dtype)
|
658 |
+
.mul_(topk_weight.unsqueeze(dim=-1))
|
659 |
+
.sum(dim=1)
|
660 |
+
.type(new_x.dtype)
|
661 |
+
)
|
662 |
+
return final_out
|
663 |
+
|
664 |
+
|
665 |
+
# Copied from transformers.models.llama.modeling_llama.repeat_kv
|
666 |
+
def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor:
|
667 |
+
"""
|
668 |
+
This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch,
|
669 |
+
num_key_value_heads, seqlen, head_dim) to (batch, num_attention_heads, seqlen, head_dim)
|
670 |
+
"""
|
671 |
+
batch, num_key_value_heads, slen, head_dim = hidden_states.shape
|
672 |
+
if n_rep == 1:
|
673 |
+
return hidden_states
|
674 |
+
hidden_states = hidden_states[:, :, None, :, :].expand(
|
675 |
+
batch, num_key_value_heads, n_rep, slen, head_dim
|
676 |
+
)
|
677 |
+
return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim)
|
678 |
+
|
679 |
+
|
680 |
+
# Copied from transformers.models.llama.modeling_llama.LlamaAttention with Llama->DeepseekV2
|
681 |
+
class DeepseekV2Attention(nn.Module):
|
682 |
+
"""Multi-headed attention from 'Attention Is All You Need' paper"""
|
683 |
+
|
684 |
+
def __init__(self, config: DeepseekV2Config, layer_idx: Optional[int] = None):
|
685 |
+
super().__init__()
|
686 |
+
self.config = config
|
687 |
+
self.layer_idx = layer_idx
|
688 |
+
if layer_idx is None:
|
689 |
+
logger.warning_once(
|
690 |
+
f"Instantiating {self.__class__.__name__} without passing `layer_idx` is not recommended and will "
|
691 |
+
"to errors during the forward call, if caching is used. Please make sure to provide a `layer_idx` "
|
692 |
+
"when creating this class."
|
693 |
+
)
|
694 |
+
|
695 |
+
self.attention_dropout = config.attention_dropout
|
696 |
+
self.hidden_size = config.hidden_size
|
697 |
+
self.num_heads = config.num_attention_heads
|
698 |
+
|
699 |
+
self.max_position_embeddings = config.max_position_embeddings
|
700 |
+
self.rope_theta = config.rope_theta
|
701 |
+
self.q_lora_rank = config.q_lora_rank
|
702 |
+
self.qk_rope_head_dim = config.qk_rope_head_dim
|
703 |
+
self.kv_lora_rank = config.kv_lora_rank
|
704 |
+
self.v_head_dim = config.v_head_dim
|
705 |
+
self.qk_nope_head_dim = config.qk_nope_head_dim
|
706 |
+
self.q_head_dim = config.qk_nope_head_dim + config.qk_rope_head_dim
|
707 |
+
|
708 |
+
self.is_causal = True
|
709 |
+
|
710 |
+
if self.q_lora_rank is None:
|
711 |
+
self.q_proj = nn.Linear(
|
712 |
+
self.hidden_size, self.num_heads * self.q_head_dim, bias=False
|
713 |
+
)
|
714 |
+
else:
|
715 |
+
self.q_a_proj = nn.Linear(
|
716 |
+
self.hidden_size, config.q_lora_rank, bias=config.attention_bias
|
717 |
+
)
|
718 |
+
self.q_a_layernorm = DeepseekV2RMSNorm(config.q_lora_rank)
|
719 |
+
self.q_b_proj = nn.Linear(
|
720 |
+
config.q_lora_rank, self.num_heads * self.q_head_dim, bias=False
|
721 |
+
)
|
722 |
+
|
723 |
+
self.kv_a_proj_with_mqa = nn.Linear(
|
724 |
+
self.hidden_size,
|
725 |
+
config.kv_lora_rank + config.qk_rope_head_dim,
|
726 |
+
bias=config.attention_bias,
|
727 |
+
)
|
728 |
+
self.kv_a_layernorm = DeepseekV2RMSNorm(config.kv_lora_rank)
|
729 |
+
self.kv_b_proj = nn.Linear(
|
730 |
+
config.kv_lora_rank,
|
731 |
+
self.num_heads
|
732 |
+
* (self.q_head_dim - self.qk_rope_head_dim + self.v_head_dim),
|
733 |
+
bias=False,
|
734 |
+
)
|
735 |
+
|
736 |
+
self.o_proj = nn.Linear(
|
737 |
+
self.num_heads * self.v_head_dim,
|
738 |
+
self.hidden_size,
|
739 |
+
bias=config.attention_bias,
|
740 |
+
)
|
741 |
+
self._init_rope()
|
742 |
+
|
743 |
+
self.softmax_scale = self.q_head_dim ** (-0.5)
|
744 |
+
if self.config.rope_scaling is not None:
|
745 |
+
mscale_all_dim = self.config.rope_scaling.get("mscale_all_dim", 0)
|
746 |
+
scaling_factor = self.config.rope_scaling["factor"]
|
747 |
+
if mscale_all_dim:
|
748 |
+
mscale = yarn_get_mscale(scaling_factor, mscale_all_dim)
|
749 |
+
self.softmax_scale = self.softmax_scale * mscale * mscale
|
750 |
+
|
751 |
+
def _init_rope(self):
|
752 |
+
if self.config.rope_scaling is None:
|
753 |
+
self.rotary_emb = DeepseekV2RotaryEmbedding(
|
754 |
+
self.qk_rope_head_dim,
|
755 |
+
max_position_embeddings=self.max_position_embeddings,
|
756 |
+
base=self.rope_theta,
|
757 |
+
)
|
758 |
+
else:
|
759 |
+
scaling_type = self.config.rope_scaling["type"]
|
760 |
+
scaling_factor = self.config.rope_scaling["factor"]
|
761 |
+
if scaling_type == "linear":
|
762 |
+
self.rotary_emb = DeepseekV2LinearScalingRotaryEmbedding(
|
763 |
+
self.qk_rope_head_dim,
|
764 |
+
max_position_embeddings=self.max_position_embeddings,
|
765 |
+
scaling_factor=scaling_factor,
|
766 |
+
base=self.rope_theta,
|
767 |
+
)
|
768 |
+
elif scaling_type == "dynamic":
|
769 |
+
self.rotary_emb = DeepseekV2DynamicNTKScalingRotaryEmbedding(
|
770 |
+
self.qk_rope_head_dim,
|
771 |
+
max_position_embeddings=self.max_position_embeddings,
|
772 |
+
scaling_factor=scaling_factor,
|
773 |
+
base=self.rope_theta,
|
774 |
+
)
|
775 |
+
elif scaling_type == "yarn":
|
776 |
+
kwargs = {
|
777 |
+
key: self.config.rope_scaling[key]
|
778 |
+
for key in [
|
779 |
+
"original_max_position_embeddings",
|
780 |
+
"beta_fast",
|
781 |
+
"beta_slow",
|
782 |
+
"mscale",
|
783 |
+
"mscale_all_dim",
|
784 |
+
]
|
785 |
+
if key in self.config.rope_scaling
|
786 |
+
}
|
787 |
+
self.rotary_emb = DeepseekV2YarnRotaryEmbedding(
|
788 |
+
self.qk_rope_head_dim,
|
789 |
+
max_position_embeddings=self.max_position_embeddings,
|
790 |
+
scaling_factor=scaling_factor,
|
791 |
+
base=self.rope_theta,
|
792 |
+
**kwargs,
|
793 |
+
)
|
794 |
+
else:
|
795 |
+
raise ValueError(f"Unknown RoPE scaling type {scaling_type}")
|
796 |
+
|
797 |
+
def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int):
|
798 |
+
return (
|
799 |
+
tensor.view(bsz, seq_len, self.num_heads, self.v_head_dim)
|
800 |
+
.transpose(1, 2)
|
801 |
+
.contiguous()
|
802 |
+
)
|
803 |
+
|
804 |
+
def forward(
|
805 |
+
self,
|
806 |
+
hidden_states: torch.Tensor,
|
807 |
+
attention_mask: Optional[torch.Tensor] = None,
|
808 |
+
position_ids: Optional[torch.LongTensor] = None,
|
809 |
+
past_key_value: Optional[Cache] = None,
|
810 |
+
output_attentions: bool = False,
|
811 |
+
use_cache: bool = False,
|
812 |
+
**kwargs,
|
813 |
+
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
|
814 |
+
if "padding_mask" in kwargs:
|
815 |
+
warnings.warn(
|
816 |
+
"Passing `padding_mask` is deprecated and will be removed in v4.37. Please make sure use `attention_mask` instead.`"
|
817 |
+
)
|
818 |
+
bsz, q_len, _ = hidden_states.size()
|
819 |
+
|
820 |
+
if self.q_lora_rank is None:
|
821 |
+
q = self.q_proj(hidden_states)
|
822 |
+
else:
|
823 |
+
q = self.q_b_proj(self.q_a_layernorm(self.q_a_proj(hidden_states)))
|
824 |
+
q = q.view(bsz, q_len, self.num_heads, self.q_head_dim).transpose(1, 2)
|
825 |
+
q_nope, q_pe = torch.split(
|
826 |
+
q, [self.qk_nope_head_dim, self.qk_rope_head_dim], dim=-1
|
827 |
+
)
|
828 |
+
|
829 |
+
compressed_kv = self.kv_a_proj_with_mqa(hidden_states)
|
830 |
+
compressed_kv, k_pe = torch.split(
|
831 |
+
compressed_kv, [self.kv_lora_rank, self.qk_rope_head_dim], dim=-1
|
832 |
+
)
|
833 |
+
k_pe = k_pe.view(bsz, q_len, 1, self.qk_rope_head_dim).transpose(1, 2)
|
834 |
+
kv = (
|
835 |
+
self.kv_b_proj(self.kv_a_layernorm(compressed_kv))
|
836 |
+
.view(bsz, q_len, self.num_heads, self.qk_nope_head_dim + self.v_head_dim)
|
837 |
+
.transpose(1, 2)
|
838 |
+
)
|
839 |
+
|
840 |
+
k_nope, value_states = torch.split(
|
841 |
+
kv, [self.qk_nope_head_dim, self.v_head_dim], dim=-1
|
842 |
+
)
|
843 |
+
kv_seq_len = value_states.shape[-2]
|
844 |
+
if past_key_value is not None:
|
845 |
+
if self.layer_idx is None:
|
846 |
+
raise ValueError(
|
847 |
+
f"The cache structure has changed since version v4.36. If you are using {self.__class__.__name__} "
|
848 |
+
"for auto-regressive decoding with k/v caching, please make sure to initialize the attention class "
|
849 |
+
"with a layer index."
|
850 |
+
)
|
851 |
+
kv_seq_len += past_key_value.get_usable_length(kv_seq_len, self.layer_idx)
|
852 |
+
cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len)
|
853 |
+
|
854 |
+
q_pe, k_pe = apply_rotary_pos_emb(q_pe, k_pe, cos, sin, position_ids)
|
855 |
+
|
856 |
+
query_states = k_pe.new_empty(bsz, self.num_heads, q_len, self.q_head_dim)
|
857 |
+
query_states[:, :, :, : self.qk_nope_head_dim] = q_nope
|
858 |
+
query_states[:, :, :, self.qk_nope_head_dim :] = q_pe
|
859 |
+
|
860 |
+
key_states = k_pe.new_empty(bsz, self.num_heads, q_len, self.q_head_dim)
|
861 |
+
key_states[:, :, :, : self.qk_nope_head_dim] = k_nope
|
862 |
+
key_states[:, :, :, self.qk_nope_head_dim :] = k_pe
|
863 |
+
if past_key_value is not None:
|
864 |
+
cache_kwargs = {"sin": sin, "cos": cos} # Specific to RoPE models
|
865 |
+
key_states, value_states = past_key_value.update(
|
866 |
+
key_states, value_states, self.layer_idx, cache_kwargs
|
867 |
+
)
|
868 |
+
|
869 |
+
attn_weights = (
|
870 |
+
torch.matmul(query_states, key_states.transpose(2, 3)) * self.softmax_scale
|
871 |
+
)
|
872 |
+
|
873 |
+
if attn_weights.size() != (bsz, self.num_heads, q_len, kv_seq_len):
|
874 |
+
raise ValueError(
|
875 |
+
f"Attention weights should be of size {(bsz, self.num_heads, q_len, kv_seq_len)}, but is"
|
876 |
+
f" {attn_weights.size()}"
|
877 |
+
)
|
878 |
+
assert attention_mask is not None
|
879 |
+
if attention_mask is not None:
|
880 |
+
if attention_mask.size() != (bsz, 1, q_len, kv_seq_len):
|
881 |
+
raise ValueError(
|
882 |
+
f"Attention mask should be of size {(bsz, 1, q_len, kv_seq_len)}, but is {attention_mask.size()}"
|
883 |
+
)
|
884 |
+
attn_weights = attn_weights + attention_mask
|
885 |
+
|
886 |
+
# upcast attention to fp32
|
887 |
+
attn_weights = nn.functional.softmax(
|
888 |
+
attn_weights, dim=-1, dtype=torch.float32
|
889 |
+
).to(query_states.dtype)
|
890 |
+
attn_weights = nn.functional.dropout(
|
891 |
+
attn_weights, p=self.attention_dropout, training=self.training
|
892 |
+
)
|
893 |
+
attn_output = torch.matmul(attn_weights, value_states)
|
894 |
+
|
895 |
+
if attn_output.size() != (bsz, self.num_heads, q_len, self.v_head_dim):
|
896 |
+
raise ValueError(
|
897 |
+
f"`attn_output` should be of size {(bsz, self.num_heads, q_len, self.v_head_dim)}, but is"
|
898 |
+
f" {attn_output.size()}"
|
899 |
+
)
|
900 |
+
|
901 |
+
attn_output = attn_output.transpose(1, 2).contiguous()
|
902 |
+
|
903 |
+
attn_output = attn_output.reshape(bsz, q_len, self.num_heads * self.v_head_dim)
|
904 |
+
|
905 |
+
attn_output = self.o_proj(attn_output)
|
906 |
+
|
907 |
+
if not output_attentions:
|
908 |
+
attn_weights = None
|
909 |
+
|
910 |
+
return attn_output, attn_weights, past_key_value
|
911 |
+
|
912 |
+
|
913 |
+
# Copied from transformers.models.llama.modeling_llama.LlamaFlashAttention2 with Llama->DeepseekV2
|
914 |
+
class DeepseekV2FlashAttention2(DeepseekV2Attention):
|
915 |
+
"""
|
916 |
+
DeepseekV2 flash attention module. This module inherits from `DeepseekV2Attention` as the weights of the module stays
|
917 |
+
untouched. The only required change would be on the forward pass where it needs to correctly call the public API of
|
918 |
+
flash attention and deal with padding tokens in case the input contains any of them.
|
919 |
+
"""
|
920 |
+
|
921 |
+
def __init__(self, *args, **kwargs):
|
922 |
+
super().__init__(*args, **kwargs)
|
923 |
+
|
924 |
+
# TODO: Should be removed once Flash Attention for RoCm is bumped to 2.1.
|
925 |
+
# flash_attn<2.1 generates top-left aligned causal mask, while what is needed here is bottom-right alignement, that was made default for flash_attn>=2.1. This attribute is used to handle this difference. Reference: https://github.com/Dao-AILab/flash-attention/releases/tag/v2.1.0.
|
926 |
+
# Beware that with flash_attn<2.1, using q_seqlen != k_seqlen (except for the case q_seqlen == 1) produces a wrong mask (top-left).
|
927 |
+
self._flash_attn_uses_top_left_mask = not is_flash_attn_greater_or_equal_2_10()
|
928 |
+
|
929 |
+
def forward(
|
930 |
+
self,
|
931 |
+
hidden_states: torch.Tensor,
|
932 |
+
attention_mask: Optional[torch.LongTensor] = None,
|
933 |
+
position_ids: Optional[torch.LongTensor] = None,
|
934 |
+
past_key_value: Optional[Cache] = None,
|
935 |
+
output_attentions: bool = False,
|
936 |
+
use_cache: bool = False,
|
937 |
+
**kwargs,
|
938 |
+
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
|
939 |
+
# DeepseekV2FlashAttention2 attention does not support output_attentions
|
940 |
+
if "padding_mask" in kwargs:
|
941 |
+
warnings.warn(
|
942 |
+
"Passing `padding_mask` is deprecated and will be removed in v4.37. Please make sure use `attention_mask` instead.`"
|
943 |
+
)
|
944 |
+
|
945 |
+
# overwrite attention_mask with padding_mask
|
946 |
+
attention_mask = kwargs.pop("padding_mask")
|
947 |
+
|
948 |
+
output_attentions = False
|
949 |
+
|
950 |
+
bsz, q_len, _ = hidden_states.size()
|
951 |
+
|
952 |
+
if self.q_lora_rank is None:
|
953 |
+
q = self.q_proj(hidden_states)
|
954 |
+
else:
|
955 |
+
q = self.q_b_proj(self.q_a_layernorm(self.q_a_proj(hidden_states)))
|
956 |
+
q = q.view(bsz, q_len, self.num_heads, self.q_head_dim).transpose(1, 2)
|
957 |
+
q_nope, q_pe = torch.split(
|
958 |
+
q, [self.qk_nope_head_dim, self.qk_rope_head_dim], dim=-1
|
959 |
+
)
|
960 |
+
|
961 |
+
# Flash attention requires the input to have the shape
|
962 |
+
# batch_size x seq_length x head_dim x hidden_dim
|
963 |
+
# therefore we just need to keep the original shape
|
964 |
+
compressed_kv = self.kv_a_proj_with_mqa(hidden_states)
|
965 |
+
compressed_kv, k_pe = torch.split(
|
966 |
+
compressed_kv, [self.kv_lora_rank, self.qk_rope_head_dim], dim=-1
|
967 |
+
)
|
968 |
+
k_pe = k_pe.view(bsz, q_len, 1, self.qk_rope_head_dim).transpose(1, 2)
|
969 |
+
kv = (
|
970 |
+
self.kv_b_proj(self.kv_a_layernorm(compressed_kv))
|
971 |
+
.view(bsz, q_len, self.num_heads, self.qk_nope_head_dim + self.v_head_dim)
|
972 |
+
.transpose(1, 2)
|
973 |
+
)
|
974 |
+
|
975 |
+
k_nope, value_states = torch.split(
|
976 |
+
kv, [self.qk_nope_head_dim, self.v_head_dim], dim=-1
|
977 |
+
)
|
978 |
+
kv_seq_len = value_states.shape[-2]
|
979 |
+
|
980 |
+
kv_seq_len = value_states.shape[-2]
|
981 |
+
if past_key_value is not None:
|
982 |
+
kv_seq_len += past_key_value.get_usable_length(kv_seq_len, self.layer_idx)
|
983 |
+
|
984 |
+
cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len)
|
985 |
+
q_pe, k_pe = apply_rotary_pos_emb(q_pe, k_pe, cos, sin, position_ids)
|
986 |
+
|
987 |
+
query_states = k_pe.new_empty(bsz, self.num_heads, q_len, self.q_head_dim)
|
988 |
+
query_states[:, :, :, : self.qk_nope_head_dim] = q_nope
|
989 |
+
query_states[:, :, :, self.qk_nope_head_dim :] = q_pe
|
990 |
+
|
991 |
+
key_states = k_pe.new_empty(bsz, self.num_heads, q_len, self.q_head_dim)
|
992 |
+
key_states[:, :, :, : self.qk_nope_head_dim] = k_nope
|
993 |
+
key_states[:, :, :, self.qk_nope_head_dim :] = k_pe
|
994 |
+
|
995 |
+
if self.q_head_dim != self.v_head_dim:
|
996 |
+
value_states = F.pad(value_states, [0, self.q_head_dim - self.v_head_dim])
|
997 |
+
|
998 |
+
if past_key_value is not None:
|
999 |
+
cache_kwargs = {"sin": sin, "cos": cos} # Specific to RoPE models
|
1000 |
+
key_states, value_states = past_key_value.update(
|
1001 |
+
key_states, value_states, self.layer_idx, cache_kwargs
|
1002 |
+
)
|
1003 |
+
|
1004 |
+
# TODO: These transpose are quite inefficient but Flash Attention requires the layout [batch_size, sequence_length, num_heads, head_dim]. We would need to refactor the KV cache
|
1005 |
+
# to be able to avoid many of these transpose/reshape/view.
|
1006 |
+
query_states = query_states.transpose(1, 2)
|
1007 |
+
key_states = key_states.transpose(1, 2)
|
1008 |
+
value_states = value_states.transpose(1, 2)
|
1009 |
+
|
1010 |
+
dropout_rate = self.attention_dropout if self.training else 0.0
|
1011 |
+
|
1012 |
+
# In PEFT, usually we cast the layer norms in float32 for training stability reasons
|
1013 |
+
# therefore the input hidden states gets silently casted in float32. Hence, we need
|
1014 |
+
# cast them back in the correct dtype just to be sure everything works as expected.
|
1015 |
+
# This might slowdown training & inference so it is recommended to not cast the LayerNorms
|
1016 |
+
# in fp32. (DeepseekV2RMSNorm handles it correctly)
|
1017 |
+
|
1018 |
+
input_dtype = query_states.dtype
|
1019 |
+
if input_dtype == torch.float32:
|
1020 |
+
# Handle the case where the model is quantized
|
1021 |
+
if hasattr(self.config, "_pre_quantization_dtype"):
|
1022 |
+
target_dtype = self.config._pre_quantization_dtype
|
1023 |
+
elif torch.is_autocast_enabled():
|
1024 |
+
target_dtype = torch.get_autocast_gpu_dtype()
|
1025 |
+
else:
|
1026 |
+
target_dtype = self.q_proj.weight.dtype if self.q_lora_rank is None else self.q_a_proj.weight.dtype
|
1027 |
+
|
1028 |
+
logger.warning_once(
|
1029 |
+
f"The input hidden states seems to be silently casted in float32, this might be related to"
|
1030 |
+
f" the fact you have upcasted embedding or layer norm layers in float32. We will cast back the input in"
|
1031 |
+
f" {target_dtype}."
|
1032 |
+
)
|
1033 |
+
|
1034 |
+
query_states = query_states.to(target_dtype)
|
1035 |
+
key_states = key_states.to(target_dtype)
|
1036 |
+
value_states = value_states.to(target_dtype)
|
1037 |
+
|
1038 |
+
attn_output = self._flash_attention_forward(
|
1039 |
+
query_states,
|
1040 |
+
key_states,
|
1041 |
+
value_states,
|
1042 |
+
attention_mask,
|
1043 |
+
q_len,
|
1044 |
+
dropout=dropout_rate,
|
1045 |
+
softmax_scale=self.softmax_scale,
|
1046 |
+
)
|
1047 |
+
if self.q_head_dim != self.v_head_dim:
|
1048 |
+
attn_output = attn_output[:, :, :, : self.v_head_dim]
|
1049 |
+
|
1050 |
+
attn_output = attn_output.reshape(
|
1051 |
+
bsz, q_len, self.num_heads * self.v_head_dim
|
1052 |
+
).contiguous()
|
1053 |
+
attn_output = self.o_proj(attn_output)
|
1054 |
+
|
1055 |
+
if not output_attentions:
|
1056 |
+
attn_weights = None
|
1057 |
+
|
1058 |
+
return attn_output, attn_weights, past_key_value
|
1059 |
+
|
1060 |
+
def _flash_attention_forward(
|
1061 |
+
self,
|
1062 |
+
query_states,
|
1063 |
+
key_states,
|
1064 |
+
value_states,
|
1065 |
+
attention_mask,
|
1066 |
+
query_length,
|
1067 |
+
dropout=0.0,
|
1068 |
+
softmax_scale=None,
|
1069 |
+
):
|
1070 |
+
"""
|
1071 |
+
Calls the forward method of Flash Attention - if the input hidden states contain at least one padding token
|
1072 |
+
first unpad the input, then computes the attention scores and pad the final attention scores.
|
1073 |
+
|
1074 |
+
Args:
|
1075 |
+
query_states (`torch.Tensor`):
|
1076 |
+
Input query states to be passed to Flash Attention API
|
1077 |
+
key_states (`torch.Tensor`):
|
1078 |
+
Input key states to be passed to Flash Attention API
|
1079 |
+
value_states (`torch.Tensor`):
|
1080 |
+
Input value states to be passed to Flash Attention API
|
1081 |
+
attention_mask (`torch.Tensor`):
|
1082 |
+
The padding mask - corresponds to a tensor of size `(batch_size, seq_len)` where 0 stands for the
|
1083 |
+
position of padding tokens and 1 for the position of non-padding tokens.
|
1084 |
+
dropout (`int`, *optional*):
|
1085 |
+
Attention dropout
|
1086 |
+
softmax_scale (`float`, *optional*):
|
1087 |
+
The scaling of QK^T before applying softmax. Default to 1 / sqrt(head_dim)
|
1088 |
+
"""
|
1089 |
+
if not self._flash_attn_uses_top_left_mask:
|
1090 |
+
causal = self.is_causal
|
1091 |
+
else:
|
1092 |
+
# TODO: Remove the `query_length != 1` check once Flash Attention for RoCm is bumped to 2.1. For details, please see the comment in DeepseekV2FlashAttention2 __init__.
|
1093 |
+
causal = self.is_causal and query_length != 1
|
1094 |
+
|
1095 |
+
# Contains at least one padding token in the sequence
|
1096 |
+
if attention_mask is not None:
|
1097 |
+
batch_size = query_states.shape[0]
|
1098 |
+
(
|
1099 |
+
query_states,
|
1100 |
+
key_states,
|
1101 |
+
value_states,
|
1102 |
+
indices_q,
|
1103 |
+
cu_seq_lens,
|
1104 |
+
max_seq_lens,
|
1105 |
+
) = self._upad_input(
|
1106 |
+
query_states, key_states, value_states, attention_mask, query_length
|
1107 |
+
)
|
1108 |
+
|
1109 |
+
cu_seqlens_q, cu_seqlens_k = cu_seq_lens
|
1110 |
+
max_seqlen_in_batch_q, max_seqlen_in_batch_k = max_seq_lens
|
1111 |
+
|
1112 |
+
attn_output_unpad = flash_attn_varlen_func(
|
1113 |
+
query_states,
|
1114 |
+
key_states,
|
1115 |
+
value_states,
|
1116 |
+
cu_seqlens_q=cu_seqlens_q,
|
1117 |
+
cu_seqlens_k=cu_seqlens_k,
|
1118 |
+
max_seqlen_q=max_seqlen_in_batch_q,
|
1119 |
+
max_seqlen_k=max_seqlen_in_batch_k,
|
1120 |
+
dropout_p=dropout,
|
1121 |
+
softmax_scale=softmax_scale,
|
1122 |
+
causal=causal,
|
1123 |
+
)
|
1124 |
+
|
1125 |
+
attn_output = pad_input(
|
1126 |
+
attn_output_unpad, indices_q, batch_size, query_length
|
1127 |
+
)
|
1128 |
+
else:
|
1129 |
+
attn_output = flash_attn_func(
|
1130 |
+
query_states,
|
1131 |
+
key_states,
|
1132 |
+
value_states,
|
1133 |
+
dropout,
|
1134 |
+
softmax_scale=softmax_scale,
|
1135 |
+
causal=causal,
|
1136 |
+
)
|
1137 |
+
|
1138 |
+
return attn_output
|
1139 |
+
|
1140 |
+
def _upad_input(
|
1141 |
+
self, query_layer, key_layer, value_layer, attention_mask, query_length
|
1142 |
+
):
|
1143 |
+
indices_k, cu_seqlens_k, max_seqlen_in_batch_k = _get_unpad_data(attention_mask)
|
1144 |
+
batch_size, kv_seq_len, num_key_value_heads, head_dim = key_layer.shape
|
1145 |
+
|
1146 |
+
key_layer = index_first_axis(
|
1147 |
+
key_layer.reshape(batch_size * kv_seq_len, num_key_value_heads, head_dim),
|
1148 |
+
indices_k,
|
1149 |
+
)
|
1150 |
+
value_layer = index_first_axis(
|
1151 |
+
value_layer.reshape(batch_size * kv_seq_len, num_key_value_heads, head_dim),
|
1152 |
+
indices_k,
|
1153 |
+
)
|
1154 |
+
if query_length == kv_seq_len:
|
1155 |
+
query_layer = index_first_axis(
|
1156 |
+
query_layer.reshape(batch_size * kv_seq_len, self.num_heads, head_dim),
|
1157 |
+
indices_k,
|
1158 |
+
)
|
1159 |
+
cu_seqlens_q = cu_seqlens_k
|
1160 |
+
max_seqlen_in_batch_q = max_seqlen_in_batch_k
|
1161 |
+
indices_q = indices_k
|
1162 |
+
elif query_length == 1:
|
1163 |
+
max_seqlen_in_batch_q = 1
|
1164 |
+
cu_seqlens_q = torch.arange(
|
1165 |
+
batch_size + 1, dtype=torch.int32, device=query_layer.device
|
1166 |
+
) # There is a memcpy here, that is very bad.
|
1167 |
+
indices_q = cu_seqlens_q[:-1]
|
1168 |
+
query_layer = query_layer.squeeze(1)
|
1169 |
+
else:
|
1170 |
+
# The -q_len: slice assumes left padding.
|
1171 |
+
attention_mask = attention_mask[:, -query_length:]
|
1172 |
+
query_layer, indices_q, cu_seqlens_q, max_seqlen_in_batch_q = unpad_input(
|
1173 |
+
query_layer, attention_mask
|
1174 |
+
)
|
1175 |
+
|
1176 |
+
return (
|
1177 |
+
query_layer,
|
1178 |
+
key_layer,
|
1179 |
+
value_layer,
|
1180 |
+
indices_q,
|
1181 |
+
(cu_seqlens_q, cu_seqlens_k),
|
1182 |
+
(max_seqlen_in_batch_q, max_seqlen_in_batch_k),
|
1183 |
+
)
|
1184 |
+
|
1185 |
+
|
1186 |
+
ATTENTION_CLASSES = {
|
1187 |
+
"eager": DeepseekV2Attention,
|
1188 |
+
"flash_attention_2": DeepseekV2FlashAttention2,
|
1189 |
+
}
|
1190 |
+
|
1191 |
+
|
1192 |
+
class DeepseekV2DecoderLayer(nn.Module):
|
1193 |
+
def __init__(self, config: DeepseekV2Config, layer_idx: int):
|
1194 |
+
super().__init__()
|
1195 |
+
self.hidden_size = config.hidden_size
|
1196 |
+
|
1197 |
+
self.self_attn = ATTENTION_CLASSES[config._attn_implementation](
|
1198 |
+
config=config, layer_idx=layer_idx
|
1199 |
+
)
|
1200 |
+
|
1201 |
+
self.mlp = (
|
1202 |
+
DeepseekV2MoE(config)
|
1203 |
+
if (
|
1204 |
+
config.n_routed_experts is not None
|
1205 |
+
and layer_idx >= config.first_k_dense_replace
|
1206 |
+
and layer_idx % config.moe_layer_freq == 0
|
1207 |
+
)
|
1208 |
+
else DeepseekV2MLP(config)
|
1209 |
+
)
|
1210 |
+
self.input_layernorm = DeepseekV2RMSNorm(
|
1211 |
+
config.hidden_size, eps=config.rms_norm_eps
|
1212 |
+
)
|
1213 |
+
self.post_attention_layernorm = DeepseekV2RMSNorm(
|
1214 |
+
config.hidden_size, eps=config.rms_norm_eps
|
1215 |
+
)
|
1216 |
+
|
1217 |
+
def forward(
|
1218 |
+
self,
|
1219 |
+
hidden_states: torch.Tensor,
|
1220 |
+
attention_mask: Optional[torch.Tensor] = None,
|
1221 |
+
position_ids: Optional[torch.LongTensor] = None,
|
1222 |
+
past_key_value: Optional[Tuple[torch.Tensor]] = None,
|
1223 |
+
output_attentions: Optional[bool] = False,
|
1224 |
+
use_cache: Optional[bool] = False,
|
1225 |
+
**kwargs,
|
1226 |
+
) -> Tuple[
|
1227 |
+
torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]
|
1228 |
+
]:
|
1229 |
+
"""
|
1230 |
+
Args:
|
1231 |
+
hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)`
|
1232 |
+
attention_mask (`torch.FloatTensor`, *optional*):
|
1233 |
+
attention mask of size `(batch_size, sequence_length)` if flash attention is used or `(batch_size, 1,
|
1234 |
+
query_sequence_length, key_sequence_length)` if default attention is used.
|
1235 |
+
output_attentions (`bool`, *optional*):
|
1236 |
+
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
|
1237 |
+
returned tensors for more detail.
|
1238 |
+
use_cache (`bool`, *optional*):
|
1239 |
+
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding
|
1240 |
+
(see `past_key_values`).
|
1241 |
+
past_key_value (`Tuple(torch.FloatTensor)`, *optional*): cached past key and value projection states
|
1242 |
+
"""
|
1243 |
+
if "padding_mask" in kwargs:
|
1244 |
+
warnings.warn(
|
1245 |
+
"Passing `padding_mask` is deprecated and will be removed in v4.37. Please make sure use `attention_mask` instead.`"
|
1246 |
+
)
|
1247 |
+
residual = hidden_states
|
1248 |
+
|
1249 |
+
hidden_states = self.input_layernorm(hidden_states)
|
1250 |
+
|
1251 |
+
# Self Attention
|
1252 |
+
hidden_states, self_attn_weights, present_key_value = self.self_attn(
|
1253 |
+
hidden_states=hidden_states,
|
1254 |
+
attention_mask=attention_mask,
|
1255 |
+
position_ids=position_ids,
|
1256 |
+
past_key_value=past_key_value,
|
1257 |
+
output_attentions=output_attentions,
|
1258 |
+
use_cache=use_cache,
|
1259 |
+
**kwargs,
|
1260 |
+
)
|
1261 |
+
hidden_states = residual + hidden_states
|
1262 |
+
|
1263 |
+
# Fully Connected
|
1264 |
+
residual = hidden_states
|
1265 |
+
hidden_states = self.post_attention_layernorm(hidden_states)
|
1266 |
+
hidden_states = self.mlp(hidden_states)
|
1267 |
+
hidden_states = residual + hidden_states
|
1268 |
+
|
1269 |
+
outputs = (hidden_states,)
|
1270 |
+
|
1271 |
+
if output_attentions:
|
1272 |
+
outputs += (self_attn_weights,)
|
1273 |
+
|
1274 |
+
if use_cache:
|
1275 |
+
outputs += (present_key_value,)
|
1276 |
+
|
1277 |
+
return outputs
|
1278 |
+
|
1279 |
+
|
1280 |
+
DeepseekV2_START_DOCSTRING = r"""
|
1281 |
+
This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
|
1282 |
+
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
|
1283 |
+
etc.)
|
1284 |
+
|
1285 |
+
This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
|
1286 |
+
Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
|
1287 |
+
and behavior.
|
1288 |
+
|
1289 |
+
Parameters:
|
1290 |
+
config ([`DeepseekV2Config`]):
|
1291 |
+
Model configuration class with all the parameters of the model. Initializing with a config file does not
|
1292 |
+
load the weights associated with the model, only the configuration. Check out the
|
1293 |
+
[`~PreTrainedModel.from_pretrained`] method to load the model weights.
|
1294 |
+
"""
|
1295 |
+
|
1296 |
+
|
1297 |
+
@add_start_docstrings(
|
1298 |
+
"The bare DeepseekV2 Model outputting raw hidden-states without any specific head on top.",
|
1299 |
+
DeepseekV2_START_DOCSTRING,
|
1300 |
+
)
|
1301 |
+
class DeepseekV2PreTrainedModel(PreTrainedModel):
|
1302 |
+
config_class = DeepseekV2Config
|
1303 |
+
base_model_prefix = "model"
|
1304 |
+
supports_gradient_checkpointing = True
|
1305 |
+
_no_split_modules = ["DeepseekV2DecoderLayer"]
|
1306 |
+
_skip_keys_device_placement = "past_key_values"
|
1307 |
+
_supports_flash_attn_2 = True
|
1308 |
+
_supports_cache_class = True
|
1309 |
+
|
1310 |
+
def _init_weights(self, module):
|
1311 |
+
std = self.config.initializer_range
|
1312 |
+
if isinstance(module, nn.Linear):
|
1313 |
+
module.weight.data.normal_(mean=0.0, std=std)
|
1314 |
+
if module.bias is not None:
|
1315 |
+
module.bias.data.zero_()
|
1316 |
+
elif isinstance(module, nn.Embedding):
|
1317 |
+
module.weight.data.normal_(mean=0.0, std=std)
|
1318 |
+
if module.padding_idx is not None:
|
1319 |
+
module.weight.data[module.padding_idx].zero_()
|
1320 |
+
|
1321 |
+
|
1322 |
+
DeepseekV2_INPUTS_DOCSTRING = r"""
|
1323 |
+
Args:
|
1324 |
+
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
|
1325 |
+
Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide
|
1326 |
+
it.
|
1327 |
+
|
1328 |
+
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
|
1329 |
+
[`PreTrainedTokenizer.__call__`] for details.
|
1330 |
+
|
1331 |
+
[What are input IDs?](../glossary#input-ids)
|
1332 |
+
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
|
1333 |
+
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
|
1334 |
+
|
1335 |
+
- 1 for tokens that are **not masked**,
|
1336 |
+
- 0 for tokens that are **masked**.
|
1337 |
+
|
1338 |
+
[What are attention masks?](../glossary#attention-mask)
|
1339 |
+
|
1340 |
+
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
|
1341 |
+
[`PreTrainedTokenizer.__call__`] for details.
|
1342 |
+
|
1343 |
+
If `past_key_values` is used, optionally only the last `input_ids` have to be input (see
|
1344 |
+
`past_key_values`).
|
1345 |
+
|
1346 |
+
If you want to change padding behavior, you should read [`modeling_opt._prepare_decoder_attention_mask`]
|
1347 |
+
and modify to your needs. See diagram 1 in [the paper](https://arxiv.org/abs/1910.13461) for more
|
1348 |
+
information on the default strategy.
|
1349 |
+
|
1350 |
+
- 1 indicates the head is **not masked**,
|
1351 |
+
- 0 indicates the head is **masked**.
|
1352 |
+
position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
1353 |
+
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
|
1354 |
+
config.n_positions - 1]`.
|
1355 |
+
|
1356 |
+
[What are position IDs?](../glossary#position-ids)
|
1357 |
+
past_key_values (`Cache` or `tuple(tuple(torch.FloatTensor))`, *optional*):
|
1358 |
+
Pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention
|
1359 |
+
blocks) that can be used to speed up sequential decoding. This typically consists in the `past_key_values`
|
1360 |
+
returned by the model at a previous stage of decoding, when `use_cache=True` or `config.use_cache=True`.
|
1361 |
+
|
1362 |
+
Two formats are allowed:
|
1363 |
+
- a [`~cache_utils.Cache`] instance;
|
1364 |
+
- Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of
|
1365 |
+
shape `(batch_size, num_heads, sequence_length, embed_size_per_head)`). This is also known as the legacy
|
1366 |
+
cache format.
|
1367 |
+
|
1368 |
+
The model will output the same cache format that is fed as input. If no `past_key_values` are passed, the
|
1369 |
+
legacy cache format will be returned.
|
1370 |
+
|
1371 |
+
If `past_key_values` are used, the user can optionally input only the last `input_ids` (those that don't
|
1372 |
+
have their past key value states given to this model) of shape `(batch_size, 1)` instead of all `input_ids`
|
1373 |
+
of shape `(batch_size, sequence_length)`.
|
1374 |
+
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
|
1375 |
+
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
|
1376 |
+
is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
|
1377 |
+
model's internal embedding lookup matrix.
|
1378 |
+
use_cache (`bool`, *optional*):
|
1379 |
+
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
|
1380 |
+
`past_key_values`).
|
1381 |
+
output_attentions (`bool`, *optional*):
|
1382 |
+
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
|
1383 |
+
tensors for more detail.
|
1384 |
+
output_hidden_states (`bool`, *optional*):
|
1385 |
+
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
|
1386 |
+
more detail.
|
1387 |
+
return_dict (`bool`, *optional*):
|
1388 |
+
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
|
1389 |
+
"""
|
1390 |
+
|
1391 |
+
|
1392 |
+
@add_start_docstrings(
|
1393 |
+
"The bare DeepseekV2 Model outputting raw hidden-states without any specific head on top.",
|
1394 |
+
DeepseekV2_START_DOCSTRING,
|
1395 |
+
)
|
1396 |
+
class DeepseekV2Model(DeepseekV2PreTrainedModel):
|
1397 |
+
"""
|
1398 |
+
Transformer decoder consisting of *config.num_hidden_layers* layers. Each layer is a [`DeepseekV2DecoderLayer`]
|
1399 |
+
|
1400 |
+
Args:
|
1401 |
+
config: DeepseekV2Config
|
1402 |
+
"""
|
1403 |
+
|
1404 |
+
def __init__(self, config: DeepseekV2Config):
|
1405 |
+
super().__init__(config)
|
1406 |
+
self.padding_idx = config.pad_token_id
|
1407 |
+
self.vocab_size = config.vocab_size
|
1408 |
+
|
1409 |
+
self.embed_tokens = nn.Embedding(
|
1410 |
+
config.vocab_size, config.hidden_size, self.padding_idx
|
1411 |
+
)
|
1412 |
+
self.layers = nn.ModuleList(
|
1413 |
+
[
|
1414 |
+
DeepseekV2DecoderLayer(config, layer_idx)
|
1415 |
+
for layer_idx in range(config.num_hidden_layers)
|
1416 |
+
]
|
1417 |
+
)
|
1418 |
+
self._use_flash_attention_2 = config._attn_implementation == "flash_attention_2"
|
1419 |
+
self.norm = DeepseekV2RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
1420 |
+
|
1421 |
+
self.gradient_checkpointing = False
|
1422 |
+
# Initialize weights and apply final processing
|
1423 |
+
self.post_init()
|
1424 |
+
|
1425 |
+
def get_input_embeddings(self):
|
1426 |
+
return self.embed_tokens
|
1427 |
+
|
1428 |
+
def set_input_embeddings(self, value):
|
1429 |
+
self.embed_tokens = value
|
1430 |
+
|
1431 |
+
@add_start_docstrings_to_model_forward(DeepseekV2_INPUTS_DOCSTRING)
|
1432 |
+
def forward(
|
1433 |
+
self,
|
1434 |
+
input_ids: torch.LongTensor = None,
|
1435 |
+
attention_mask: Optional[torch.Tensor] = None,
|
1436 |
+
position_ids: Optional[torch.LongTensor] = None,
|
1437 |
+
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
1438 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
1439 |
+
use_cache: Optional[bool] = None,
|
1440 |
+
output_attentions: Optional[bool] = None,
|
1441 |
+
output_hidden_states: Optional[bool] = None,
|
1442 |
+
return_dict: Optional[bool] = None,
|
1443 |
+
) -> Union[Tuple, BaseModelOutputWithPast]:
|
1444 |
+
output_attentions = (
|
1445 |
+
output_attentions
|
1446 |
+
if output_attentions is not None
|
1447 |
+
else self.config.output_attentions
|
1448 |
+
)
|
1449 |
+
output_hidden_states = (
|
1450 |
+
output_hidden_states
|
1451 |
+
if output_hidden_states is not None
|
1452 |
+
else self.config.output_hidden_states
|
1453 |
+
)
|
1454 |
+
use_cache = use_cache if use_cache is not None else self.config.use_cache
|
1455 |
+
|
1456 |
+
return_dict = (
|
1457 |
+
return_dict if return_dict is not None else self.config.use_return_dict
|
1458 |
+
)
|
1459 |
+
|
1460 |
+
# retrieve input_ids and inputs_embeds
|
1461 |
+
if input_ids is not None and inputs_embeds is not None:
|
1462 |
+
raise ValueError(
|
1463 |
+
"You cannot specify both input_ids and inputs_embeds at the same time"
|
1464 |
+
)
|
1465 |
+
elif input_ids is not None:
|
1466 |
+
batch_size, seq_length = input_ids.shape[:2]
|
1467 |
+
elif inputs_embeds is not None:
|
1468 |
+
batch_size, seq_length = inputs_embeds.shape[:2]
|
1469 |
+
else:
|
1470 |
+
raise ValueError("You have to specify either input_ids or inputs_embeds")
|
1471 |
+
|
1472 |
+
if self.gradient_checkpointing and self.training:
|
1473 |
+
if use_cache:
|
1474 |
+
logger.warning_once(
|
1475 |
+
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`transformers."
|
1476 |
+
)
|
1477 |
+
use_cache = False
|
1478 |
+
|
1479 |
+
past_key_values_length = 0
|
1480 |
+
if use_cache:
|
1481 |
+
use_legacy_cache = not isinstance(past_key_values, Cache)
|
1482 |
+
if use_legacy_cache:
|
1483 |
+
past_key_values = DynamicCache.from_legacy_cache(past_key_values)
|
1484 |
+
past_key_values_length = past_key_values.get_usable_length(seq_length)
|
1485 |
+
|
1486 |
+
if position_ids is None:
|
1487 |
+
device = input_ids.device if input_ids is not None else inputs_embeds.device
|
1488 |
+
position_ids = torch.arange(
|
1489 |
+
past_key_values_length,
|
1490 |
+
seq_length + past_key_values_length,
|
1491 |
+
dtype=torch.long,
|
1492 |
+
device=device,
|
1493 |
+
)
|
1494 |
+
position_ids = position_ids.unsqueeze(0)
|
1495 |
+
|
1496 |
+
if inputs_embeds is None:
|
1497 |
+
inputs_embeds = self.embed_tokens(input_ids)
|
1498 |
+
|
1499 |
+
if self._use_flash_attention_2:
|
1500 |
+
# 2d mask is passed through the layers
|
1501 |
+
attention_mask = (
|
1502 |
+
attention_mask
|
1503 |
+
if (attention_mask is not None and 0 in attention_mask)
|
1504 |
+
else None
|
1505 |
+
)
|
1506 |
+
else:
|
1507 |
+
# 4d mask is passed through the layers
|
1508 |
+
attention_mask = _prepare_4d_causal_attention_mask(
|
1509 |
+
attention_mask,
|
1510 |
+
(batch_size, seq_length),
|
1511 |
+
inputs_embeds,
|
1512 |
+
past_key_values_length,
|
1513 |
+
)
|
1514 |
+
|
1515 |
+
# embed positions
|
1516 |
+
hidden_states = inputs_embeds
|
1517 |
+
|
1518 |
+
# decoder layers
|
1519 |
+
all_hidden_states = () if output_hidden_states else None
|
1520 |
+
all_self_attns = () if output_attentions else None
|
1521 |
+
next_decoder_cache = None
|
1522 |
+
|
1523 |
+
for decoder_layer in self.layers:
|
1524 |
+
if output_hidden_states:
|
1525 |
+
all_hidden_states += (hidden_states,)
|
1526 |
+
|
1527 |
+
if self.gradient_checkpointing and self.training:
|
1528 |
+
layer_outputs = self._gradient_checkpointing_func(
|
1529 |
+
decoder_layer.__call__,
|
1530 |
+
hidden_states,
|
1531 |
+
attention_mask,
|
1532 |
+
position_ids,
|
1533 |
+
past_key_values,
|
1534 |
+
output_attentions,
|
1535 |
+
use_cache,
|
1536 |
+
)
|
1537 |
+
else:
|
1538 |
+
layer_outputs = decoder_layer(
|
1539 |
+
hidden_states,
|
1540 |
+
attention_mask=attention_mask,
|
1541 |
+
position_ids=position_ids,
|
1542 |
+
past_key_value=past_key_values,
|
1543 |
+
output_attentions=output_attentions,
|
1544 |
+
use_cache=use_cache,
|
1545 |
+
)
|
1546 |
+
|
1547 |
+
hidden_states = layer_outputs[0]
|
1548 |
+
|
1549 |
+
if use_cache:
|
1550 |
+
next_decoder_cache = layer_outputs[2 if output_attentions else 1]
|
1551 |
+
|
1552 |
+
if output_attentions:
|
1553 |
+
all_self_attns += (layer_outputs[1],)
|
1554 |
+
|
1555 |
+
hidden_states = self.norm(hidden_states)
|
1556 |
+
|
1557 |
+
# add hidden states from the last decoder layer
|
1558 |
+
if output_hidden_states:
|
1559 |
+
all_hidden_states += (hidden_states,)
|
1560 |
+
|
1561 |
+
next_cache = None
|
1562 |
+
if use_cache:
|
1563 |
+
next_cache = (
|
1564 |
+
next_decoder_cache.to_legacy_cache()
|
1565 |
+
if use_legacy_cache
|
1566 |
+
else next_decoder_cache
|
1567 |
+
)
|
1568 |
+
if not return_dict:
|
1569 |
+
return tuple(
|
1570 |
+
v
|
1571 |
+
for v in [hidden_states, next_cache, all_hidden_states, all_self_attns]
|
1572 |
+
if v is not None
|
1573 |
+
)
|
1574 |
+
return BaseModelOutputWithPast(
|
1575 |
+
last_hidden_state=hidden_states,
|
1576 |
+
past_key_values=next_cache,
|
1577 |
+
hidden_states=all_hidden_states,
|
1578 |
+
attentions=all_self_attns,
|
1579 |
+
)
|
1580 |
+
|
1581 |
+
|
1582 |
+
class DeepseekV2ForCausalLM(DeepseekV2PreTrainedModel):
|
1583 |
+
_tied_weights_keys = ["lm_head.weight"]
|
1584 |
+
|
1585 |
+
def __init__(self, config):
|
1586 |
+
super().__init__(config)
|
1587 |
+
self.model = DeepseekV2Model(config)
|
1588 |
+
self.vocab_size = config.vocab_size
|
1589 |
+
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
|
1590 |
+
|
1591 |
+
# Initialize weights and apply final processing
|
1592 |
+
self.post_init()
|
1593 |
+
|
1594 |
+
def get_input_embeddings(self):
|
1595 |
+
return self.model.embed_tokens
|
1596 |
+
|
1597 |
+
def set_input_embeddings(self, value):
|
1598 |
+
self.model.embed_tokens = value
|
1599 |
+
|
1600 |
+
def get_output_embeddings(self):
|
1601 |
+
return self.lm_head
|
1602 |
+
|
1603 |
+
def set_output_embeddings(self, new_embeddings):
|
1604 |
+
self.lm_head = new_embeddings
|
1605 |
+
|
1606 |
+
def set_decoder(self, decoder):
|
1607 |
+
self.model = decoder
|
1608 |
+
|
1609 |
+
def get_decoder(self):
|
1610 |
+
return self.model
|
1611 |
+
|
1612 |
+
@add_start_docstrings_to_model_forward(DeepseekV2_INPUTS_DOCSTRING)
|
1613 |
+
@replace_return_docstrings(
|
1614 |
+
output_type=CausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC
|
1615 |
+
)
|
1616 |
+
def forward(
|
1617 |
+
self,
|
1618 |
+
input_ids: torch.LongTensor = None,
|
1619 |
+
attention_mask: Optional[torch.Tensor] = None,
|
1620 |
+
position_ids: Optional[torch.LongTensor] = None,
|
1621 |
+
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
1622 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
1623 |
+
labels: Optional[torch.LongTensor] = None,
|
1624 |
+
use_cache: Optional[bool] = None,
|
1625 |
+
output_attentions: Optional[bool] = None,
|
1626 |
+
output_hidden_states: Optional[bool] = None,
|
1627 |
+
return_dict: Optional[bool] = None,
|
1628 |
+
) -> Union[Tuple, CausalLMOutputWithPast]:
|
1629 |
+
r"""
|
1630 |
+
Args:
|
1631 |
+
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
1632 |
+
Labels for computing the masked language modeling loss. Indices should either be in `[0, transformers.,
|
1633 |
+
config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
|
1634 |
+
(masked), the loss is only computed for the tokens with labels in `[0, transformers., config.vocab_size]`.
|
1635 |
+
|
1636 |
+
Returns:
|
1637 |
+
|
1638 |
+
Example:
|
1639 |
+
|
1640 |
+
```python
|
1641 |
+
>>> from transformers import AutoTokenizer, DeepseekV2ForCausalLM
|
1642 |
+
|
1643 |
+
>>> model = DeepseekV2ForCausalLM.from_pretrained(PATH_TO_CONVERTED_WEIGHTS)
|
1644 |
+
>>> tokenizer = AutoTokenizer.from_pretrained(PATH_TO_CONVERTED_TOKENIZER)
|
1645 |
+
|
1646 |
+
>>> prompt = "Hey, are you conscious? Can you talk to me?"
|
1647 |
+
>>> inputs = tokenizer(prompt, return_tensors="pt")
|
1648 |
+
|
1649 |
+
>>> # Generate
|
1650 |
+
>>> generate_ids = model.generate(inputs.input_ids, max_length=30)
|
1651 |
+
>>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
|
1652 |
+
"Hey, are you conscious? Can you talk to me?\nI'm not conscious, but I can talk to you."
|
1653 |
+
```"""
|
1654 |
+
output_attentions = (
|
1655 |
+
output_attentions
|
1656 |
+
if output_attentions is not None
|
1657 |
+
else self.config.output_attentions
|
1658 |
+
)
|
1659 |
+
output_hidden_states = (
|
1660 |
+
output_hidden_states
|
1661 |
+
if output_hidden_states is not None
|
1662 |
+
else self.config.output_hidden_states
|
1663 |
+
)
|
1664 |
+
return_dict = (
|
1665 |
+
return_dict if return_dict is not None else self.config.use_return_dict
|
1666 |
+
)
|
1667 |
+
|
1668 |
+
# decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
|
1669 |
+
outputs = self.model(
|
1670 |
+
input_ids=input_ids,
|
1671 |
+
attention_mask=attention_mask,
|
1672 |
+
position_ids=position_ids,
|
1673 |
+
past_key_values=past_key_values,
|
1674 |
+
inputs_embeds=inputs_embeds,
|
1675 |
+
use_cache=use_cache,
|
1676 |
+
output_attentions=output_attentions,
|
1677 |
+
output_hidden_states=output_hidden_states,
|
1678 |
+
return_dict=return_dict,
|
1679 |
+
)
|
1680 |
+
|
1681 |
+
hidden_states = outputs[0]
|
1682 |
+
logits = self.lm_head(hidden_states)
|
1683 |
+
logits = logits.float()
|
1684 |
+
|
1685 |
+
loss = None
|
1686 |
+
if labels is not None:
|
1687 |
+
# Shift so that tokens < n predict n
|
1688 |
+
shift_logits = logits[..., :-1, :].contiguous()
|
1689 |
+
shift_labels = labels[..., 1:].contiguous()
|
1690 |
+
# Flatten the tokens
|
1691 |
+
loss_fct = CrossEntropyLoss()
|
1692 |
+
shift_logits = shift_logits.view(-1, self.config.vocab_size)
|
1693 |
+
shift_labels = shift_labels.view(-1)
|
1694 |
+
# Enable model parallelism
|
1695 |
+
shift_labels = shift_labels.to(shift_logits.device)
|
1696 |
+
loss = loss_fct(shift_logits, shift_labels)
|
1697 |
+
|
1698 |
+
if not return_dict:
|
1699 |
+
output = (logits,) + outputs[1:]
|
1700 |
+
return (loss,) + output if loss is not None else output
|
1701 |
+
|
1702 |
+
return CausalLMOutputWithPast(
|
1703 |
+
loss=loss,
|
1704 |
+
logits=logits,
|
1705 |
+
past_key_values=outputs.past_key_values,
|
1706 |
+
hidden_states=outputs.hidden_states,
|
1707 |
+
attentions=outputs.attentions,
|
1708 |
+
)
|
1709 |
+
|
1710 |
+
def prepare_inputs_for_generation(
|
1711 |
+
self,
|
1712 |
+
input_ids,
|
1713 |
+
past_key_values=None,
|
1714 |
+
attention_mask=None,
|
1715 |
+
inputs_embeds=None,
|
1716 |
+
**kwargs,
|
1717 |
+
):
|
1718 |
+
if past_key_values is not None:
|
1719 |
+
if isinstance(past_key_values, Cache):
|
1720 |
+
cache_length = past_key_values.get_seq_length()
|
1721 |
+
past_length = past_key_values.seen_tokens
|
1722 |
+
max_cache_length = past_key_values.get_max_length()
|
1723 |
+
else:
|
1724 |
+
cache_length = past_length = past_key_values[0][0].shape[2]
|
1725 |
+
max_cache_length = None
|
1726 |
+
|
1727 |
+
# Keep only the unprocessed tokens:
|
1728 |
+
# 1 - If the length of the attention_mask exceeds the length of input_ids, then we are in a setting where
|
1729 |
+
# some of the inputs are exclusivelly passed as part of the cache (e.g. when passing input_embeds as
|
1730 |
+
# input)
|
1731 |
+
if (
|
1732 |
+
attention_mask is not None
|
1733 |
+
and attention_mask.shape[1] > input_ids.shape[1]
|
1734 |
+
):
|
1735 |
+
input_ids = input_ids[:, -(attention_mask.shape[1] - past_length) :]
|
1736 |
+
# 2 - If the past_length is smaller than input_ids', then input_ids holds all input tokens. We can discard
|
1737 |
+
# input_ids based on the past_length.
|
1738 |
+
elif past_length < input_ids.shape[1]:
|
1739 |
+
input_ids = input_ids[:, past_length:]
|
1740 |
+
# 3 - Otherwise (past_length >= input_ids.shape[1]), let's assume input_ids only has unprocessed tokens.
|
1741 |
+
|
1742 |
+
# If we are about to go beyond the maximum cache length, we need to crop the input attention mask.
|
1743 |
+
if (
|
1744 |
+
max_cache_length is not None
|
1745 |
+
and attention_mask is not None
|
1746 |
+
and cache_length + input_ids.shape[1] > max_cache_length
|
1747 |
+
):
|
1748 |
+
attention_mask = attention_mask[:, -max_cache_length:]
|
1749 |
+
|
1750 |
+
position_ids = kwargs.get("position_ids", None)
|
1751 |
+
if attention_mask is not None and position_ids is None:
|
1752 |
+
# create position_ids on the fly for batch generation
|
1753 |
+
position_ids = attention_mask.long().cumsum(-1) - 1
|
1754 |
+
position_ids.masked_fill_(attention_mask == 0, 1)
|
1755 |
+
if past_key_values:
|
1756 |
+
position_ids = position_ids[:, -input_ids.shape[1] :]
|
1757 |
+
|
1758 |
+
# if `inputs_embeds` are passed, we only want to use them in the 1st generation step
|
1759 |
+
if inputs_embeds is not None and past_key_values is None:
|
1760 |
+
model_inputs = {"inputs_embeds": inputs_embeds}
|
1761 |
+
else:
|
1762 |
+
model_inputs = {"input_ids": input_ids}
|
1763 |
+
|
1764 |
+
model_inputs.update(
|
1765 |
+
{
|
1766 |
+
"position_ids": position_ids,
|
1767 |
+
"past_key_values": past_key_values,
|
1768 |
+
"use_cache": kwargs.get("use_cache"),
|
1769 |
+
"attention_mask": attention_mask,
|
1770 |
+
}
|
1771 |
+
)
|
1772 |
+
return model_inputs
|
1773 |
+
|
1774 |
+
@staticmethod
|
1775 |
+
def _reorder_cache(past_key_values, beam_idx):
|
1776 |
+
reordered_past = ()
|
1777 |
+
for layer_past in past_key_values:
|
1778 |
+
reordered_past += (
|
1779 |
+
tuple(
|
1780 |
+
past_state.index_select(0, beam_idx.to(past_state.device))
|
1781 |
+
for past_state in layer_past
|
1782 |
+
),
|
1783 |
+
)
|
1784 |
+
return reordered_past
|
1785 |
+
|
1786 |
+
|
1787 |
+
@add_start_docstrings(
|
1788 |
+
"""
|
1789 |
+
The DeepseekV2 Model transformer with a sequence classification head on top (linear layer).
|
1790 |
+
|
1791 |
+
[`DeepseekV2ForSequenceClassification`] uses the last token in order to do the classification, as other causal models
|
1792 |
+
(e.g. GPT-2) do.
|
1793 |
+
|
1794 |
+
Since it does classification on the last token, it requires to know the position of the last token. If a
|
1795 |
+
`pad_token_id` is defined in the configuration, it finds the last token that is not a padding token in each row. If
|
1796 |
+
no `pad_token_id` is defined, it simply takes the last value in each row of the batch. Since it cannot guess the
|
1797 |
+
padding tokens when `inputs_embeds` are passed instead of `input_ids`, it does the same (take the last value in
|
1798 |
+
each row of the batch).
|
1799 |
+
""",
|
1800 |
+
DeepseekV2_START_DOCSTRING,
|
1801 |
+
)
|
1802 |
+
class DeepseekV2ForSequenceClassification(DeepseekV2PreTrainedModel):
|
1803 |
+
def __init__(self, config):
|
1804 |
+
super().__init__(config)
|
1805 |
+
self.num_labels = config.num_labels
|
1806 |
+
self.model = DeepseekV2Model(config)
|
1807 |
+
self.score = nn.Linear(config.hidden_size, self.num_labels, bias=False)
|
1808 |
+
|
1809 |
+
# Initialize weights and apply final processing
|
1810 |
+
self.post_init()
|
1811 |
+
|
1812 |
+
def get_input_embeddings(self):
|
1813 |
+
return self.model.embed_tokens
|
1814 |
+
|
1815 |
+
def set_input_embeddings(self, value):
|
1816 |
+
self.model.embed_tokens = value
|
1817 |
+
|
1818 |
+
@add_start_docstrings_to_model_forward(DeepseekV2_INPUTS_DOCSTRING)
|
1819 |
+
def forward(
|
1820 |
+
self,
|
1821 |
+
input_ids: torch.LongTensor = None,
|
1822 |
+
attention_mask: Optional[torch.Tensor] = None,
|
1823 |
+
position_ids: Optional[torch.LongTensor] = None,
|
1824 |
+
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
1825 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
1826 |
+
labels: Optional[torch.LongTensor] = None,
|
1827 |
+
use_cache: Optional[bool] = None,
|
1828 |
+
output_attentions: Optional[bool] = None,
|
1829 |
+
output_hidden_states: Optional[bool] = None,
|
1830 |
+
return_dict: Optional[bool] = None,
|
1831 |
+
) -> Union[Tuple, SequenceClassifierOutputWithPast]:
|
1832 |
+
r"""
|
1833 |
+
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
|
1834 |
+
Labels for computing the sequence classification/regression loss. Indices should be in `[0, transformers.,
|
1835 |
+
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
|
1836 |
+
`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
|
1837 |
+
"""
|
1838 |
+
return_dict = (
|
1839 |
+
return_dict if return_dict is not None else self.config.use_return_dict
|
1840 |
+
)
|
1841 |
+
|
1842 |
+
transformer_outputs = self.model(
|
1843 |
+
input_ids,
|
1844 |
+
attention_mask=attention_mask,
|
1845 |
+
position_ids=position_ids,
|
1846 |
+
past_key_values=past_key_values,
|
1847 |
+
inputs_embeds=inputs_embeds,
|
1848 |
+
use_cache=use_cache,
|
1849 |
+
output_attentions=output_attentions,
|
1850 |
+
output_hidden_states=output_hidden_states,
|
1851 |
+
return_dict=return_dict,
|
1852 |
+
)
|
1853 |
+
hidden_states = transformer_outputs[0]
|
1854 |
+
logits = self.score(hidden_states)
|
1855 |
+
|
1856 |
+
if input_ids is not None:
|
1857 |
+
batch_size = input_ids.shape[0]
|
1858 |
+
else:
|
1859 |
+
batch_size = inputs_embeds.shape[0]
|
1860 |
+
|
1861 |
+
if self.config.pad_token_id is None and batch_size != 1:
|
1862 |
+
raise ValueError(
|
1863 |
+
"Cannot handle batch sizes > 1 if no padding token is defined."
|
1864 |
+
)
|
1865 |
+
if self.config.pad_token_id is None:
|
1866 |
+
sequence_lengths = -1
|
1867 |
+
else:
|
1868 |
+
if input_ids is not None:
|
1869 |
+
sequence_lengths = (
|
1870 |
+
torch.eq(input_ids, self.config.pad_token_id).int().argmax(-1) - 1
|
1871 |
+
).to(logits.device)
|
1872 |
+
else:
|
1873 |
+
sequence_lengths = -1
|
1874 |
+
|
1875 |
+
pooled_logits = logits[
|
1876 |
+
torch.arange(batch_size, device=logits.device), sequence_lengths
|
1877 |
+
]
|
1878 |
+
|
1879 |
+
loss = None
|
1880 |
+
if labels is not None:
|
1881 |
+
labels = labels.to(logits.device)
|
1882 |
+
if self.config.problem_type is None:
|
1883 |
+
if self.num_labels == 1:
|
1884 |
+
self.config.problem_type = "regression"
|
1885 |
+
elif self.num_labels > 1 and (
|
1886 |
+
labels.dtype == torch.long or labels.dtype == torch.int
|
1887 |
+
):
|
1888 |
+
self.config.problem_type = "single_label_classification"
|
1889 |
+
else:
|
1890 |
+
self.config.problem_type = "multi_label_classification"
|
1891 |
+
|
1892 |
+
if self.config.problem_type == "regression":
|
1893 |
+
loss_fct = MSELoss()
|
1894 |
+
if self.num_labels == 1:
|
1895 |
+
loss = loss_fct(pooled_logits.squeeze(), labels.squeeze())
|
1896 |
+
else:
|
1897 |
+
loss = loss_fct(pooled_logits, labels)
|
1898 |
+
elif self.config.problem_type == "single_label_classification":
|
1899 |
+
loss_fct = CrossEntropyLoss()
|
1900 |
+
loss = loss_fct(
|
1901 |
+
pooled_logits.view(-1, self.num_labels), labels.view(-1)
|
1902 |
+
)
|
1903 |
+
elif self.config.problem_type == "multi_label_classification":
|
1904 |
+
loss_fct = BCEWithLogitsLoss()
|
1905 |
+
loss = loss_fct(pooled_logits, labels)
|
1906 |
+
if not return_dict:
|
1907 |
+
output = (pooled_logits,) + transformer_outputs[1:]
|
1908 |
+
return ((loss,) + output) if loss is not None else output
|
1909 |
+
|
1910 |
+
return SequenceClassifierOutputWithPast(
|
1911 |
+
loss=loss,
|
1912 |
+
logits=pooled_logits,
|
1913 |
+
past_key_values=transformer_outputs.past_key_values,
|
1914 |
+
hidden_states=transformer_outputs.hidden_states,
|
1915 |
+
attentions=transformer_outputs.attentions,
|
1916 |
+
)
|
tokenization_deepseek_fast.py
ADDED
@@ -0,0 +1,38 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import List, Optional, Union
|
2 |
+
|
3 |
+
|
4 |
+
from transformers.models.llama import LlamaTokenizerFast
|
5 |
+
|
6 |
+
|
7 |
+
class DeepseekTokenizerFast(LlamaTokenizerFast):
|
8 |
+
|
9 |
+
def convert_ids_to_tokens(
|
10 |
+
self, ids: Union[int, List[int]], skip_special_tokens: bool = False
|
11 |
+
) -> Union[str, List[str]]:
|
12 |
+
"""
|
13 |
+
Converts a single index or a sequence of indices in a token or a sequence of tokens, using the vocabulary and
|
14 |
+
added tokens.
|
15 |
+
|
16 |
+
Args:
|
17 |
+
ids (`int` or `List[int]`):
|
18 |
+
The token id (or token ids) to convert to tokens.
|
19 |
+
skip_special_tokens (`bool`, *optional*, defaults to `False`):
|
20 |
+
Whether or not to remove special tokens in the decoding.
|
21 |
+
|
22 |
+
Returns:
|
23 |
+
`str` or `List[str]`: The decoded token(s).
|
24 |
+
"""
|
25 |
+
if isinstance(ids, int):
|
26 |
+
return self._convert_id_to_token(ids)
|
27 |
+
tokens = []
|
28 |
+
for index in ids:
|
29 |
+
index = int(index)
|
30 |
+
if skip_special_tokens and index in self.all_special_ids:
|
31 |
+
continue
|
32 |
+
token = self._tokenizer.id_to_token(index)
|
33 |
+
tokens.append(token if token is not None else "")
|
34 |
+
return tokens
|
35 |
+
|
36 |
+
def _convert_id_to_token(self, index: int) -> Optional[str]:
|
37 |
+
token = self._tokenizer.id_to_token(int(index))
|
38 |
+
return token if token is not None else ""
|
tokenizer.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
tokenizer_config.json
ADDED
@@ -0,0 +1,35 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"add_bos_token": true,
|
3 |
+
"add_eos_token": false,
|
4 |
+
"bos_token": {
|
5 |
+
"__type": "AddedToken",
|
6 |
+
"content": "<|begin▁of▁sentence|>",
|
7 |
+
"lstrip": false,
|
8 |
+
"normalized": true,
|
9 |
+
"rstrip": false,
|
10 |
+
"single_word": false
|
11 |
+
},
|
12 |
+
"clean_up_tokenization_spaces": false,
|
13 |
+
"eos_token": {
|
14 |
+
"__type": "AddedToken",
|
15 |
+
"content": "<|end▁of▁sentence|>",
|
16 |
+
"lstrip": false,
|
17 |
+
"normalized": true,
|
18 |
+
"rstrip": false,
|
19 |
+
"single_word": false
|
20 |
+
},
|
21 |
+
"legacy": true,
|
22 |
+
"model_max_length": 16384,
|
23 |
+
"pad_token": {
|
24 |
+
"__type": "AddedToken",
|
25 |
+
"content": "<|end▁of▁sentence|>",
|
26 |
+
"lstrip": false,
|
27 |
+
"normalized": true,
|
28 |
+
"rstrip": false,
|
29 |
+
"single_word": false
|
30 |
+
},
|
31 |
+
"sp_model_kwargs": {},
|
32 |
+
"unk_token": null,
|
33 |
+
"tokenizer_class": "LlamaTokenizerFast",
|
34 |
+
"chat_template": "{% if not add_generation_prompt is defined %}{% set add_generation_prompt = false %}{% endif %}{{ bos_token }}{% for message in messages %}{% if message['role'] == 'user' %}{{ 'User: ' + message['content'] + '\n\n' }}{% elif message['role'] == 'assistant' %}{{ 'Assistant: ' + message['content'] + eos_token }}{% elif message['role'] == 'system' %}{{ message['content'] + '\n\n' }}{% endif %}{% endfor %}{% if add_generation_prompt %}{{ 'Assistant:' }}{% endif %}"
|
35 |
+
}
|