|
import torch |
|
|
|
from mmdet.core import build_assigner, build_sampler |
|
|
|
|
|
def _dummy_bbox_sampling(proposal_list, gt_bboxes, gt_labels): |
|
"""Create sample results that can be passed to BBoxHead.get_targets.""" |
|
num_imgs = 1 |
|
feat = torch.rand(1, 1, 3, 3) |
|
assign_config = dict( |
|
type='MaxIoUAssigner', |
|
pos_iou_thr=0.5, |
|
neg_iou_thr=0.5, |
|
min_pos_iou=0.5, |
|
ignore_iof_thr=-1) |
|
sampler_config = dict( |
|
type='RandomSampler', |
|
num=512, |
|
pos_fraction=0.25, |
|
neg_pos_ub=-1, |
|
add_gt_as_proposals=True) |
|
bbox_assigner = build_assigner(assign_config) |
|
bbox_sampler = build_sampler(sampler_config) |
|
gt_bboxes_ignore = [None for _ in range(num_imgs)] |
|
sampling_results = [] |
|
for i in range(num_imgs): |
|
assign_result = bbox_assigner.assign(proposal_list[i], gt_bboxes[i], |
|
gt_bboxes_ignore[i], gt_labels[i]) |
|
sampling_result = bbox_sampler.sample( |
|
assign_result, |
|
proposal_list[i], |
|
gt_bboxes[i], |
|
gt_labels[i], |
|
feats=feat) |
|
sampling_results.append(sampling_result) |
|
|
|
return sampling_results |
|
|