ZJF-Thunder
添加文件
e26e560
import pytest
import torch
from mmdet.models.backbones import Res2Net
from mmdet.models.backbones.res2net import Bottle2neck
from .utils import is_block
def test_res2net_bottle2neck():
with pytest.raises(AssertionError):
# Style must be in ['pytorch', 'caffe']
Bottle2neck(64, 64, base_width=26, scales=4, style='tensorflow')
with pytest.raises(AssertionError):
# Scale must be larger than 1
Bottle2neck(64, 64, base_width=26, scales=1, style='pytorch')
# Test Res2Net Bottle2neck structure
block = Bottle2neck(
64, 64, base_width=26, stride=2, scales=4, style='pytorch')
assert block.scales == 4
# Test Res2Net Bottle2neck with DCN
dcn = dict(type='DCN', deform_groups=1, fallback_on_stride=False)
with pytest.raises(AssertionError):
# conv_cfg must be None if dcn is not None
Bottle2neck(
64,
64,
base_width=26,
scales=4,
dcn=dcn,
conv_cfg=dict(type='Conv'))
Bottle2neck(64, 64, dcn=dcn)
# Test Res2Net Bottle2neck forward
block = Bottle2neck(64, 16, base_width=26, scales=4)
x = torch.randn(1, 64, 56, 56)
x_out = block(x)
assert x_out.shape == torch.Size([1, 64, 56, 56])
def test_res2net_backbone():
with pytest.raises(KeyError):
# Res2Net depth should be in [50, 101, 152]
Res2Net(depth=18)
# Test Res2Net with scales 4, base_width 26
model = Res2Net(depth=50, scales=4, base_width=26)
for m in model.modules():
if is_block(m):
assert m.scales == 4
model.init_weights()
model.train()
imgs = torch.randn(1, 3, 224, 224)
feat = model(imgs)
assert len(feat) == 4
assert feat[0].shape == torch.Size([1, 256, 56, 56])
assert feat[1].shape == torch.Size([1, 512, 28, 28])
assert feat[2].shape == torch.Size([1, 1024, 14, 14])
assert feat[3].shape == torch.Size([1, 2048, 7, 7])