|
import torch |
|
import torch.nn as nn |
|
|
|
from mmdet.core import (bbox2result, bbox2roi, bbox_mapping, build_assigner, |
|
build_sampler, merge_aug_bboxes, merge_aug_masks, |
|
multiclass_nms) |
|
from ..builder import HEADS, build_head, build_roi_extractor |
|
from .base_roi_head import BaseRoIHead |
|
from .test_mixins import BBoxTestMixin, MaskTestMixin |
|
|
|
|
|
@HEADS.register_module() |
|
class CascadeRoIHead(BaseRoIHead, BBoxTestMixin, MaskTestMixin): |
|
"""Cascade roi head including one bbox head and one mask head. |
|
|
|
https://arxiv.org/abs/1712.00726 |
|
""" |
|
|
|
def __init__(self, |
|
num_stages, |
|
stage_loss_weights, |
|
bbox_roi_extractor=None, |
|
bbox_head=None, |
|
mask_roi_extractor=None, |
|
mask_head=None, |
|
shared_head=None, |
|
train_cfg=None, |
|
test_cfg=None): |
|
assert bbox_roi_extractor is not None |
|
assert bbox_head is not None |
|
assert shared_head is None, \ |
|
'Shared head is not supported in Cascade RCNN anymore' |
|
self.num_stages = num_stages |
|
self.stage_loss_weights = stage_loss_weights |
|
super(CascadeRoIHead, self).__init__( |
|
bbox_roi_extractor=bbox_roi_extractor, |
|
bbox_head=bbox_head, |
|
mask_roi_extractor=mask_roi_extractor, |
|
mask_head=mask_head, |
|
shared_head=shared_head, |
|
train_cfg=train_cfg, |
|
test_cfg=test_cfg) |
|
|
|
def init_bbox_head(self, bbox_roi_extractor, bbox_head): |
|
"""Initialize box head and box roi extractor. |
|
|
|
Args: |
|
bbox_roi_extractor (dict): Config of box roi extractor. |
|
bbox_head (dict): Config of box in box head. |
|
""" |
|
self.bbox_roi_extractor = nn.ModuleList() |
|
self.bbox_head = nn.ModuleList() |
|
if not isinstance(bbox_roi_extractor, list): |
|
bbox_roi_extractor = [ |
|
bbox_roi_extractor for _ in range(self.num_stages) |
|
] |
|
if not isinstance(bbox_head, list): |
|
bbox_head = [bbox_head for _ in range(self.num_stages)] |
|
assert len(bbox_roi_extractor) == len(bbox_head) == self.num_stages |
|
for roi_extractor, head in zip(bbox_roi_extractor, bbox_head): |
|
self.bbox_roi_extractor.append(build_roi_extractor(roi_extractor)) |
|
self.bbox_head.append(build_head(head)) |
|
|
|
def init_mask_head(self, mask_roi_extractor, mask_head): |
|
"""Initialize mask head and mask roi extractor. |
|
|
|
Args: |
|
mask_roi_extractor (dict): Config of mask roi extractor. |
|
mask_head (dict): Config of mask in mask head. |
|
""" |
|
self.mask_head = nn.ModuleList() |
|
if not isinstance(mask_head, list): |
|
mask_head = [mask_head for _ in range(self.num_stages)] |
|
assert len(mask_head) == self.num_stages |
|
for head in mask_head: |
|
self.mask_head.append(build_head(head)) |
|
if mask_roi_extractor is not None: |
|
self.share_roi_extractor = False |
|
self.mask_roi_extractor = nn.ModuleList() |
|
if not isinstance(mask_roi_extractor, list): |
|
mask_roi_extractor = [ |
|
mask_roi_extractor for _ in range(self.num_stages) |
|
] |
|
assert len(mask_roi_extractor) == self.num_stages |
|
for roi_extractor in mask_roi_extractor: |
|
self.mask_roi_extractor.append( |
|
build_roi_extractor(roi_extractor)) |
|
else: |
|
self.share_roi_extractor = True |
|
self.mask_roi_extractor = self.bbox_roi_extractor |
|
|
|
def init_assigner_sampler(self): |
|
"""Initialize assigner and sampler for each stage.""" |
|
self.bbox_assigner = [] |
|
self.bbox_sampler = [] |
|
if self.train_cfg is not None: |
|
for idx, rcnn_train_cfg in enumerate(self.train_cfg): |
|
self.bbox_assigner.append( |
|
build_assigner(rcnn_train_cfg.assigner)) |
|
self.current_stage = idx |
|
self.bbox_sampler.append( |
|
build_sampler(rcnn_train_cfg.sampler, context=self)) |
|
|
|
def init_weights(self, pretrained): |
|
"""Initialize the weights in head. |
|
|
|
Args: |
|
pretrained (str, optional): Path to pre-trained weights. |
|
Defaults to None. |
|
""" |
|
if self.with_shared_head: |
|
self.shared_head.init_weights(pretrained=pretrained) |
|
for i in range(self.num_stages): |
|
if self.with_bbox: |
|
self.bbox_roi_extractor[i].init_weights() |
|
self.bbox_head[i].init_weights() |
|
if self.with_mask: |
|
if not self.share_roi_extractor: |
|
self.mask_roi_extractor[i].init_weights() |
|
self.mask_head[i].init_weights() |
|
|
|
def forward_dummy(self, x, proposals): |
|
"""Dummy forward function.""" |
|
|
|
outs = () |
|
rois = bbox2roi([proposals]) |
|
if self.with_bbox: |
|
for i in range(self.num_stages): |
|
bbox_results = self._bbox_forward(i, x, rois) |
|
outs = outs + (bbox_results['cls_score'], |
|
bbox_results['bbox_pred']) |
|
|
|
if self.with_mask: |
|
mask_rois = rois[:100] |
|
for i in range(self.num_stages): |
|
mask_results = self._mask_forward(i, x, mask_rois) |
|
outs = outs + (mask_results['mask_pred'], ) |
|
return outs |
|
|
|
def _bbox_forward(self, stage, x, rois): |
|
"""Box head forward function used in both training and testing.""" |
|
bbox_roi_extractor = self.bbox_roi_extractor[stage] |
|
bbox_head = self.bbox_head[stage] |
|
bbox_feats = bbox_roi_extractor(x[:bbox_roi_extractor.num_inputs], |
|
rois) |
|
|
|
cls_score, bbox_pred = bbox_head(bbox_feats) |
|
|
|
bbox_results = dict( |
|
cls_score=cls_score, bbox_pred=bbox_pred, bbox_feats=bbox_feats) |
|
return bbox_results |
|
|
|
def _bbox_forward_train(self, stage, x, sampling_results, gt_bboxes, |
|
gt_labels, rcnn_train_cfg): |
|
"""Run forward function and calculate loss for box head in training.""" |
|
rois = bbox2roi([res.bboxes for res in sampling_results]) |
|
bbox_results = self._bbox_forward(stage, x, rois) |
|
bbox_targets = self.bbox_head[stage].get_targets( |
|
sampling_results, gt_bboxes, gt_labels, rcnn_train_cfg) |
|
loss_bbox = self.bbox_head[stage].loss(bbox_results['cls_score'], |
|
bbox_results['bbox_pred'], rois, |
|
*bbox_targets) |
|
|
|
bbox_results.update( |
|
loss_bbox=loss_bbox, rois=rois, bbox_targets=bbox_targets) |
|
return bbox_results |
|
|
|
def _mask_forward(self, stage, x, rois): |
|
"""Mask head forward function used in both training and testing.""" |
|
mask_roi_extractor = self.mask_roi_extractor[stage] |
|
mask_head = self.mask_head[stage] |
|
mask_feats = mask_roi_extractor(x[:mask_roi_extractor.num_inputs], |
|
rois) |
|
|
|
mask_pred = mask_head(mask_feats) |
|
|
|
mask_results = dict(mask_pred=mask_pred) |
|
return mask_results |
|
|
|
def _mask_forward_train(self, |
|
stage, |
|
x, |
|
sampling_results, |
|
gt_masks, |
|
rcnn_train_cfg, |
|
bbox_feats=None): |
|
"""Run forward function and calculate loss for mask head in |
|
training.""" |
|
pos_rois = bbox2roi([res.pos_bboxes for res in sampling_results]) |
|
mask_results = self._mask_forward(stage, x, pos_rois) |
|
|
|
mask_targets = self.mask_head[stage].get_targets( |
|
sampling_results, gt_masks, rcnn_train_cfg) |
|
pos_labels = torch.cat([res.pos_gt_labels for res in sampling_results]) |
|
loss_mask = self.mask_head[stage].loss(mask_results['mask_pred'], |
|
mask_targets, pos_labels) |
|
|
|
mask_results.update(loss_mask=loss_mask) |
|
return mask_results |
|
|
|
def forward_train(self, |
|
x, |
|
img_metas, |
|
proposal_list, |
|
gt_bboxes, |
|
gt_labels, |
|
gt_bboxes_ignore=None, |
|
gt_masks=None): |
|
""" |
|
Args: |
|
x (list[Tensor]): list of multi-level img features. |
|
img_metas (list[dict]): list of image info dict where each dict |
|
has: 'img_shape', 'scale_factor', 'flip', and may also contain |
|
'filename', 'ori_shape', 'pad_shape', and 'img_norm_cfg'. |
|
For details on the values of these keys see |
|
`mmdet/datasets/pipelines/formatting.py:Collect`. |
|
proposals (list[Tensors]): list of region proposals. |
|
gt_bboxes (list[Tensor]): Ground truth bboxes for each image with |
|
shape (num_gts, 4) in [tl_x, tl_y, br_x, br_y] format. |
|
gt_labels (list[Tensor]): class indices corresponding to each box |
|
gt_bboxes_ignore (None | list[Tensor]): specify which bounding |
|
boxes can be ignored when computing the loss. |
|
gt_masks (None | Tensor) : true segmentation masks for each box |
|
used if the architecture supports a segmentation task. |
|
|
|
Returns: |
|
dict[str, Tensor]: a dictionary of loss components |
|
""" |
|
losses = dict() |
|
for i in range(self.num_stages): |
|
self.current_stage = i |
|
rcnn_train_cfg = self.train_cfg[i] |
|
lw = self.stage_loss_weights[i] |
|
|
|
|
|
sampling_results = [] |
|
if self.with_bbox or self.with_mask: |
|
bbox_assigner = self.bbox_assigner[i] |
|
bbox_sampler = self.bbox_sampler[i] |
|
num_imgs = len(img_metas) |
|
if gt_bboxes_ignore is None: |
|
gt_bboxes_ignore = [None for _ in range(num_imgs)] |
|
|
|
for j in range(num_imgs): |
|
assign_result = bbox_assigner.assign( |
|
proposal_list[j], gt_bboxes[j], gt_bboxes_ignore[j], |
|
gt_labels[j]) |
|
sampling_result = bbox_sampler.sample( |
|
assign_result, |
|
proposal_list[j], |
|
gt_bboxes[j], |
|
gt_labels[j], |
|
feats=[lvl_feat[j][None] for lvl_feat in x]) |
|
sampling_results.append(sampling_result) |
|
|
|
|
|
bbox_results = self._bbox_forward_train(i, x, sampling_results, |
|
gt_bboxes, gt_labels, |
|
rcnn_train_cfg) |
|
|
|
for name, value in bbox_results['loss_bbox'].items(): |
|
losses[f's{i}.{name}'] = ( |
|
value * lw if 'loss' in name else value) |
|
|
|
|
|
if self.with_mask: |
|
mask_results = self._mask_forward_train( |
|
i, x, sampling_results, gt_masks, rcnn_train_cfg, |
|
bbox_results['bbox_feats']) |
|
for name, value in mask_results['loss_mask'].items(): |
|
losses[f's{i}.{name}'] = ( |
|
value * lw if 'loss' in name else value) |
|
|
|
|
|
if i < self.num_stages - 1: |
|
pos_is_gts = [res.pos_is_gt for res in sampling_results] |
|
|
|
roi_labels = bbox_results['bbox_targets'][0] |
|
with torch.no_grad(): |
|
roi_labels = torch.where( |
|
roi_labels == self.bbox_head[i].num_classes, |
|
bbox_results['cls_score'][:, :-1].argmax(1), |
|
roi_labels) |
|
proposal_list = self.bbox_head[i].refine_bboxes( |
|
bbox_results['rois'], roi_labels, |
|
bbox_results['bbox_pred'], pos_is_gts, img_metas) |
|
|
|
return losses |
|
|
|
def simple_test(self, x, proposal_list, img_metas, rescale=False): |
|
"""Test without augmentation.""" |
|
assert self.with_bbox, 'Bbox head must be implemented.' |
|
num_imgs = len(proposal_list) |
|
img_shapes = tuple(meta['img_shape'] for meta in img_metas) |
|
ori_shapes = tuple(meta['ori_shape'] for meta in img_metas) |
|
scale_factors = tuple(meta['scale_factor'] for meta in img_metas) |
|
|
|
|
|
ms_bbox_result = {} |
|
ms_segm_result = {} |
|
ms_scores = [] |
|
rcnn_test_cfg = self.test_cfg |
|
|
|
rois = bbox2roi(proposal_list) |
|
for i in range(self.num_stages): |
|
bbox_results = self._bbox_forward(i, x, rois) |
|
|
|
|
|
cls_score = bbox_results['cls_score'] |
|
bbox_pred = bbox_results['bbox_pred'] |
|
num_proposals_per_img = tuple( |
|
len(proposals) for proposals in proposal_list) |
|
rois = rois.split(num_proposals_per_img, 0) |
|
cls_score = cls_score.split(num_proposals_per_img, 0) |
|
if isinstance(bbox_pred, torch.Tensor): |
|
bbox_pred = bbox_pred.split(num_proposals_per_img, 0) |
|
else: |
|
bbox_pred = self.bbox_head[i].bbox_pred_split( |
|
bbox_pred, num_proposals_per_img) |
|
ms_scores.append(cls_score) |
|
|
|
if i < self.num_stages - 1: |
|
bbox_label = [s[:, :-1].argmax(dim=1) for s in cls_score] |
|
rois = torch.cat([ |
|
self.bbox_head[i].regress_by_class(rois[j], bbox_label[j], |
|
bbox_pred[j], |
|
img_metas[j]) |
|
for j in range(num_imgs) |
|
]) |
|
|
|
|
|
cls_score = [ |
|
sum([score[i] for score in ms_scores]) / float(len(ms_scores)) |
|
for i in range(num_imgs) |
|
] |
|
|
|
|
|
det_bboxes = [] |
|
det_labels = [] |
|
for i in range(num_imgs): |
|
det_bbox, det_label = self.bbox_head[-1].get_bboxes( |
|
rois[i], |
|
cls_score[i], |
|
bbox_pred[i], |
|
img_shapes[i], |
|
scale_factors[i], |
|
rescale=rescale, |
|
cfg=rcnn_test_cfg) |
|
det_bboxes.append(det_bbox) |
|
det_labels.append(det_label) |
|
|
|
if torch.onnx.is_in_onnx_export(): |
|
return det_bboxes, det_labels |
|
bbox_results = [ |
|
bbox2result(det_bboxes[i], det_labels[i], |
|
self.bbox_head[-1].num_classes) |
|
for i in range(num_imgs) |
|
] |
|
ms_bbox_result['ensemble'] = bbox_results |
|
|
|
if self.with_mask: |
|
if all(det_bbox.shape[0] == 0 for det_bbox in det_bboxes): |
|
mask_classes = self.mask_head[-1].num_classes |
|
segm_results = [[[] for _ in range(mask_classes)] |
|
for _ in range(num_imgs)] |
|
else: |
|
if rescale and not isinstance(scale_factors[0], float): |
|
scale_factors = [ |
|
torch.from_numpy(scale_factor).to(det_bboxes[0].device) |
|
for scale_factor in scale_factors |
|
] |
|
_bboxes = [ |
|
det_bboxes[i][:, :4] * |
|
scale_factors[i] if rescale else det_bboxes[i][:, :4] |
|
for i in range(len(det_bboxes)) |
|
] |
|
mask_rois = bbox2roi(_bboxes) |
|
num_mask_rois_per_img = tuple( |
|
_bbox.size(0) for _bbox in _bboxes) |
|
aug_masks = [] |
|
for i in range(self.num_stages): |
|
mask_results = self._mask_forward(i, x, mask_rois) |
|
mask_pred = mask_results['mask_pred'] |
|
|
|
mask_pred = mask_pred.split(num_mask_rois_per_img, 0) |
|
aug_masks.append( |
|
[m.sigmoid().cpu().numpy() for m in mask_pred]) |
|
|
|
|
|
segm_results = [] |
|
for i in range(num_imgs): |
|
if det_bboxes[i].shape[0] == 0: |
|
segm_results.append( |
|
[[] |
|
for _ in range(self.mask_head[-1].num_classes)]) |
|
else: |
|
aug_mask = [mask[i] for mask in aug_masks] |
|
merged_masks = merge_aug_masks( |
|
aug_mask, [[img_metas[i]]] * self.num_stages, |
|
rcnn_test_cfg) |
|
segm_result = self.mask_head[-1].get_seg_masks( |
|
merged_masks, _bboxes[i], det_labels[i], |
|
rcnn_test_cfg, ori_shapes[i], scale_factors[i], |
|
rescale) |
|
segm_results.append(segm_result) |
|
ms_segm_result['ensemble'] = segm_results |
|
|
|
if self.with_mask: |
|
results = list( |
|
zip(ms_bbox_result['ensemble'], ms_segm_result['ensemble'])) |
|
else: |
|
results = ms_bbox_result['ensemble'] |
|
|
|
return results |
|
|
|
def aug_test(self, features, proposal_list, img_metas, rescale=False): |
|
"""Test with augmentations. |
|
|
|
If rescale is False, then returned bboxes and masks will fit the scale |
|
of imgs[0]. |
|
""" |
|
rcnn_test_cfg = self.test_cfg |
|
aug_bboxes = [] |
|
aug_scores = [] |
|
for x, img_meta in zip(features, img_metas): |
|
|
|
img_shape = img_meta[0]['img_shape'] |
|
scale_factor = img_meta[0]['scale_factor'] |
|
flip = img_meta[0]['flip'] |
|
flip_direction = img_meta[0]['flip_direction'] |
|
|
|
proposals = bbox_mapping(proposal_list[0][:, :4], img_shape, |
|
scale_factor, flip, flip_direction) |
|
|
|
ms_scores = [] |
|
|
|
rois = bbox2roi([proposals]) |
|
for i in range(self.num_stages): |
|
bbox_results = self._bbox_forward(i, x, rois) |
|
ms_scores.append(bbox_results['cls_score']) |
|
|
|
if i < self.num_stages - 1: |
|
bbox_label = bbox_results['cls_score'][:, :-1].argmax( |
|
dim=1) |
|
rois = self.bbox_head[i].regress_by_class( |
|
rois, bbox_label, bbox_results['bbox_pred'], |
|
img_meta[0]) |
|
|
|
cls_score = sum(ms_scores) / float(len(ms_scores)) |
|
bboxes, scores = self.bbox_head[-1].get_bboxes( |
|
rois, |
|
cls_score, |
|
bbox_results['bbox_pred'], |
|
img_shape, |
|
scale_factor, |
|
rescale=False, |
|
cfg=None) |
|
aug_bboxes.append(bboxes) |
|
aug_scores.append(scores) |
|
|
|
|
|
merged_bboxes, merged_scores = merge_aug_bboxes( |
|
aug_bboxes, aug_scores, img_metas, rcnn_test_cfg) |
|
det_bboxes, det_labels = multiclass_nms(merged_bboxes, merged_scores, |
|
rcnn_test_cfg.score_thr, |
|
rcnn_test_cfg.nms, |
|
rcnn_test_cfg.max_per_img) |
|
|
|
bbox_result = bbox2result(det_bboxes, det_labels, |
|
self.bbox_head[-1].num_classes) |
|
|
|
if self.with_mask: |
|
if det_bboxes.shape[0] == 0: |
|
segm_result = [[[] |
|
for _ in range(self.mask_head[-1].num_classes)] |
|
] |
|
else: |
|
aug_masks = [] |
|
aug_img_metas = [] |
|
for x, img_meta in zip(features, img_metas): |
|
img_shape = img_meta[0]['img_shape'] |
|
scale_factor = img_meta[0]['scale_factor'] |
|
flip = img_meta[0]['flip'] |
|
flip_direction = img_meta[0]['flip_direction'] |
|
_bboxes = bbox_mapping(det_bboxes[:, :4], img_shape, |
|
scale_factor, flip, flip_direction) |
|
mask_rois = bbox2roi([_bboxes]) |
|
for i in range(self.num_stages): |
|
mask_results = self._mask_forward(i, x, mask_rois) |
|
aug_masks.append( |
|
mask_results['mask_pred'].sigmoid().cpu().numpy()) |
|
aug_img_metas.append(img_meta) |
|
merged_masks = merge_aug_masks(aug_masks, aug_img_metas, |
|
self.test_cfg) |
|
|
|
ori_shape = img_metas[0][0]['ori_shape'] |
|
segm_result = self.mask_head[-1].get_seg_masks( |
|
merged_masks, |
|
det_bboxes, |
|
det_labels, |
|
rcnn_test_cfg, |
|
ori_shape, |
|
scale_factor=1.0, |
|
rescale=False) |
|
return [(bbox_result, segm_result)] |
|
else: |
|
return [bbox_result] |
|
|