|
import torch |
|
|
|
from mmdet.core import bbox2result |
|
from ..builder import DETECTORS, build_head |
|
from .single_stage import SingleStageDetector |
|
|
|
|
|
@DETECTORS.register_module() |
|
class YOLACT(SingleStageDetector): |
|
"""Implementation of `YOLACT <https://arxiv.org/abs/1904.02689>`_""" |
|
|
|
def __init__(self, |
|
backbone, |
|
neck, |
|
bbox_head, |
|
segm_head, |
|
mask_head, |
|
train_cfg=None, |
|
test_cfg=None, |
|
pretrained=None): |
|
super(YOLACT, self).__init__(backbone, neck, bbox_head, train_cfg, |
|
test_cfg, pretrained) |
|
self.segm_head = build_head(segm_head) |
|
self.mask_head = build_head(mask_head) |
|
self.init_segm_mask_weights() |
|
|
|
def init_segm_mask_weights(self): |
|
"""Initialize weights of the YOLACT segm head and YOLACT mask head.""" |
|
self.segm_head.init_weights() |
|
self.mask_head.init_weights() |
|
|
|
def forward_dummy(self, img): |
|
"""Used for computing network flops. |
|
|
|
See `mmdetection/tools/analysis_tools/get_flops.py` |
|
""" |
|
raise NotImplementedError |
|
|
|
def forward_train(self, |
|
img, |
|
img_metas, |
|
gt_bboxes, |
|
gt_labels, |
|
gt_bboxes_ignore=None, |
|
gt_masks=None): |
|
""" |
|
Args: |
|
img (Tensor): of shape (N, C, H, W) encoding input images. |
|
Typically these should be mean centered and std scaled. |
|
img_metas (list[dict]): list of image info dict where each dict |
|
has: 'img_shape', 'scale_factor', 'flip', and may also contain |
|
'filename', 'ori_shape', 'pad_shape', and 'img_norm_cfg'. |
|
For details on the values of these keys see |
|
`mmdet/datasets/pipelines/formatting.py:Collect`. |
|
gt_bboxes (list[Tensor]): Ground truth bboxes for each image with |
|
shape (num_gts, 4) in [tl_x, tl_y, br_x, br_y] format. |
|
gt_labels (list[Tensor]): class indices corresponding to each box |
|
gt_bboxes_ignore (None | list[Tensor]): specify which bounding |
|
boxes can be ignored when computing the loss. |
|
gt_masks (None | Tensor) : true segmentation masks for each box |
|
used if the architecture supports a segmentation task. |
|
|
|
Returns: |
|
dict[str, Tensor]: a dictionary of loss components |
|
""" |
|
|
|
gt_masks = [ |
|
gt_mask.to_tensor(dtype=torch.uint8, device=img.device) |
|
for gt_mask in gt_masks |
|
] |
|
|
|
x = self.extract_feat(img) |
|
|
|
cls_score, bbox_pred, coeff_pred = self.bbox_head(x) |
|
bbox_head_loss_inputs = (cls_score, bbox_pred) + (gt_bboxes, gt_labels, |
|
img_metas) |
|
losses, sampling_results = self.bbox_head.loss( |
|
*bbox_head_loss_inputs, gt_bboxes_ignore=gt_bboxes_ignore) |
|
|
|
segm_head_outs = self.segm_head(x[0]) |
|
loss_segm = self.segm_head.loss(segm_head_outs, gt_masks, gt_labels) |
|
losses.update(loss_segm) |
|
|
|
mask_pred = self.mask_head(x[0], coeff_pred, gt_bboxes, img_metas, |
|
sampling_results) |
|
loss_mask = self.mask_head.loss(mask_pred, gt_masks, gt_bboxes, |
|
img_metas, sampling_results) |
|
losses.update(loss_mask) |
|
|
|
|
|
for loss_name in losses.keys(): |
|
assert torch.isfinite(torch.stack(losses[loss_name]))\ |
|
.all().item(), '{} becomes infinite or NaN!'\ |
|
.format(loss_name) |
|
|
|
return losses |
|
|
|
def simple_test(self, img, img_metas, rescale=False): |
|
"""Test function without test time augmentation.""" |
|
x = self.extract_feat(img) |
|
|
|
cls_score, bbox_pred, coeff_pred = self.bbox_head(x) |
|
|
|
bbox_inputs = (cls_score, bbox_pred, |
|
coeff_pred) + (img_metas, self.test_cfg, rescale) |
|
det_bboxes, det_labels, det_coeffs = self.bbox_head.get_bboxes( |
|
*bbox_inputs) |
|
bbox_results = [ |
|
bbox2result(det_bbox, det_label, self.bbox_head.num_classes) |
|
for det_bbox, det_label in zip(det_bboxes, det_labels) |
|
] |
|
|
|
num_imgs = len(img_metas) |
|
scale_factors = tuple(meta['scale_factor'] for meta in img_metas) |
|
if all(det_bbox.shape[0] == 0 for det_bbox in det_bboxes): |
|
segm_results = [[[] for _ in range(self.mask_head.num_classes)] |
|
for _ in range(num_imgs)] |
|
else: |
|
|
|
|
|
if rescale and not isinstance(scale_factors[0], float): |
|
scale_factors = [ |
|
torch.from_numpy(scale_factor).to(det_bboxes[0].device) |
|
for scale_factor in scale_factors |
|
] |
|
_bboxes = [ |
|
det_bboxes[i][:, :4] * |
|
scale_factors[i] if rescale else det_bboxes[i][:, :4] |
|
for i in range(len(det_bboxes)) |
|
] |
|
mask_preds = self.mask_head(x[0], det_coeffs, _bboxes, img_metas) |
|
|
|
segm_results = [] |
|
for i in range(num_imgs): |
|
if det_bboxes[i].shape[0] == 0: |
|
segm_results.append( |
|
[[] for _ in range(self.mask_head.num_classes)]) |
|
else: |
|
segm_result = self.mask_head.get_seg_masks( |
|
mask_preds[i], det_labels[i], img_metas[i], rescale) |
|
segm_results.append(segm_result) |
|
return list(zip(bbox_results, segm_results)) |
|
|
|
def aug_test(self, imgs, img_metas, rescale=False): |
|
"""Test with augmentations.""" |
|
raise NotImplementedError |
|
|