|
import copy |
|
|
|
import torch.nn as nn |
|
from mmcv.cnn import (ConvModule, Scale, bias_init_with_prob, |
|
caffe2_xavier_init, normal_init) |
|
|
|
from mmdet.models.dense_heads.fcos_head import FCOSHead |
|
from ..builder import HEADS |
|
|
|
|
|
@HEADS.register_module() |
|
class NASFCOSHead(FCOSHead): |
|
"""Anchor-free head used in `NASFCOS <https://arxiv.org/abs/1906.04423>`_. |
|
|
|
It is quite similar with FCOS head, except for the searched structure of |
|
classification branch and bbox regression branch, where a structure of |
|
"dconv3x3, conv3x3, dconv3x3, conv1x1" is utilized instead. |
|
""" |
|
|
|
def _init_layers(self): |
|
"""Initialize layers of the head.""" |
|
dconv3x3_config = dict( |
|
type='DCNv2', |
|
kernel_size=3, |
|
use_bias=True, |
|
deform_groups=2, |
|
padding=1) |
|
conv3x3_config = dict(type='Conv', kernel_size=3, padding=1) |
|
conv1x1_config = dict(type='Conv', kernel_size=1) |
|
|
|
self.arch_config = [ |
|
dconv3x3_config, conv3x3_config, dconv3x3_config, conv1x1_config |
|
] |
|
self.cls_convs = nn.ModuleList() |
|
self.reg_convs = nn.ModuleList() |
|
for i, op_ in enumerate(self.arch_config): |
|
op = copy.deepcopy(op_) |
|
chn = self.in_channels if i == 0 else self.feat_channels |
|
assert isinstance(op, dict) |
|
use_bias = op.pop('use_bias', False) |
|
padding = op.pop('padding', 0) |
|
kernel_size = op.pop('kernel_size') |
|
module = ConvModule( |
|
chn, |
|
self.feat_channels, |
|
kernel_size, |
|
stride=1, |
|
padding=padding, |
|
norm_cfg=self.norm_cfg, |
|
bias=use_bias, |
|
conv_cfg=op) |
|
|
|
self.cls_convs.append(copy.deepcopy(module)) |
|
self.reg_convs.append(copy.deepcopy(module)) |
|
|
|
self.conv_cls = nn.Conv2d( |
|
self.feat_channels, self.cls_out_channels, 3, padding=1) |
|
self.conv_reg = nn.Conv2d(self.feat_channels, 4, 3, padding=1) |
|
self.conv_centerness = nn.Conv2d(self.feat_channels, 1, 3, padding=1) |
|
|
|
self.scales = nn.ModuleList([Scale(1.0) for _ in self.strides]) |
|
|
|
def init_weights(self): |
|
"""Initialize weights of the head.""" |
|
|
|
bias_cls = bias_init_with_prob(0.01) |
|
normal_init(self.conv_reg, std=0.01) |
|
normal_init(self.conv_centerness, std=0.01) |
|
normal_init(self.conv_cls, std=0.01, bias=bias_cls) |
|
|
|
for branch in [self.cls_convs, self.reg_convs]: |
|
for module in branch.modules(): |
|
if isinstance(module, ConvModule) \ |
|
and isinstance(module.conv, nn.Conv2d): |
|
caffe2_xavier_init(module.conv) |
|
|