|
_base_ = [ |
|
'../_base_/models/fast_rcnn_r50_fpn.py', |
|
'../_base_/datasets/coco_detection.py', |
|
'../_base_/schedules/schedule_1x.py', '../_base_/default_runtime.py' |
|
] |
|
dataset_type = 'CocoDataset' |
|
data_root = 'data/coco/' |
|
img_norm_cfg = dict( |
|
mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True) |
|
train_pipeline = [ |
|
dict(type='LoadImageFromFile'), |
|
dict(type='LoadProposals', num_max_proposals=2000), |
|
dict(type='LoadAnnotations', with_bbox=True), |
|
dict(type='Resize', img_scale=(1333, 800), keep_ratio=True), |
|
dict(type='RandomFlip', flip_ratio=0.5), |
|
dict(type='Normalize', **img_norm_cfg), |
|
dict(type='Pad', size_divisor=32), |
|
dict(type='DefaultFormatBundle'), |
|
dict(type='Collect', keys=['img', 'proposals', 'gt_bboxes', 'gt_labels']), |
|
] |
|
test_pipeline = [ |
|
dict(type='LoadImageFromFile'), |
|
dict(type='LoadProposals', num_max_proposals=None), |
|
dict( |
|
type='MultiScaleFlipAug', |
|
img_scale=(1333, 800), |
|
flip=False, |
|
transforms=[ |
|
dict(type='Resize', keep_ratio=True), |
|
dict(type='RandomFlip'), |
|
dict(type='Normalize', **img_norm_cfg), |
|
dict(type='Pad', size_divisor=32), |
|
dict(type='ImageToTensor', keys=['img']), |
|
dict(type='ToTensor', keys=['proposals']), |
|
dict( |
|
type='ToDataContainer', |
|
fields=[dict(key='proposals', stack=False)]), |
|
dict(type='Collect', keys=['img', 'proposals']), |
|
]) |
|
] |
|
data = dict( |
|
samples_per_gpu=2, |
|
workers_per_gpu=2, |
|
train=dict( |
|
proposal_file=data_root + 'proposals/rpn_r50_fpn_1x_train2017.pkl', |
|
pipeline=train_pipeline), |
|
val=dict( |
|
proposal_file=data_root + 'proposals/rpn_r50_fpn_1x_val2017.pkl', |
|
pipeline=test_pipeline), |
|
test=dict( |
|
proposal_file=data_root + 'proposals/rpn_r50_fpn_1x_val2017.pkl', |
|
pipeline=test_pipeline)) |
|
|