File size: 4,797 Bytes
e26e560
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
import os.path as osp

import mmcv
import pytest
import torch

from mmdet import digit_version
from mmdet.models.necks import FPN, YOLOV3Neck
from .utils import ort_validate

if digit_version(torch.__version__) <= digit_version('1.5.0'):
    pytest.skip(
        'ort backend does not support version below 1.5.0',
        allow_module_level=True)

# Control the returned model of neck_config()
test_step_names = {
    'normal': 0,
    'wo_extra_convs': 1,
    'lateral_bns': 2,
    'bilinear_upsample': 3,
    'scale_factor': 4,
    'extra_convs_inputs': 5,
    'extra_convs_laterals': 6,
    'extra_convs_outputs': 7,
}

data_path = osp.join(osp.dirname(__file__), 'data')


def fpn_config(test_step_name):
    """Return the class containing the corresponding attributes according to
    the test_step_names."""

    s = 64
    in_channels = [8, 16, 32, 64]
    feat_sizes = [s // 2**i for i in range(4)]  # [64, 32, 16, 8]
    out_channels = 8

    feats = [
        torch.rand(1, in_channels[i], feat_sizes[i], feat_sizes[i])
        for i in range(len(in_channels))
    ]

    if (test_step_names[test_step_name] == 0):
        fpn_model = FPN(
            in_channels=in_channels,
            out_channels=out_channels,
            add_extra_convs=True,
            num_outs=5)
        return fpn_model, feats
    elif (test_step_names[test_step_name] == 1):
        # Tests for fpn with no extra convs (pooling is used instead)
        fpn_model = FPN(
            in_channels=in_channels,
            out_channels=out_channels,
            add_extra_convs=False,
            num_outs=5)
        return fpn_model, feats
    elif (test_step_names[test_step_name] == 2):
        fpn_model = FPN(
            in_channels=in_channels,
            out_channels=out_channels,
            add_extra_convs=True,
            no_norm_on_lateral=False,
            norm_cfg=dict(type='BN', requires_grad=True),
            num_outs=5)
        return fpn_model, feats
    elif (test_step_names[test_step_name] == 3):
        fpn_model = FPN(
            in_channels=in_channels,
            out_channels=out_channels,
            add_extra_convs=True,
            upsample_cfg=dict(mode='bilinear', align_corners=True),
            num_outs=5)
        return fpn_model, feats
    elif (test_step_names[test_step_name] == 4):
        fpn_model = FPN(
            in_channels=in_channels,
            out_channels=out_channels,
            add_extra_convs=True,
            upsample_cfg=dict(scale_factor=2),
            num_outs=5)
        return fpn_model, feats
    elif (test_step_names[test_step_name] == 5):
        fpn_model = FPN(
            in_channels=in_channels,
            out_channels=out_channels,
            add_extra_convs='on_input',
            num_outs=5)
        return fpn_model, feats
    elif (test_step_names[test_step_name] == 6):
        fpn_model = FPN(
            in_channels=in_channels,
            out_channels=out_channels,
            add_extra_convs='on_lateral',
            num_outs=5)
        return fpn_model, feats
    elif (test_step_names[test_step_name] == 7):
        fpn_model = FPN(
            in_channels=in_channels,
            out_channels=out_channels,
            add_extra_convs='on_output',
            num_outs=5)
        return fpn_model, feats


def yolo_config(test_step_name):
    """Config yolov3 Neck."""

    in_channels = [16, 8, 4]
    out_channels = [8, 4, 2]

    # The data of yolov3_neck.pkl contains a list of
    # torch.Tensor, where each torch.Tensor is generated by
    # torch.rand and each tensor size is:
    # (1, 4, 64, 64), (1, 8, 32, 32), (1, 16, 16, 16).
    yolov3_neck_data = 'yolov3_neck.pkl'
    feats = mmcv.load(osp.join(data_path, yolov3_neck_data))

    if (test_step_names[test_step_name] == 0):
        yolo_model = YOLOV3Neck(
            in_channels=in_channels, out_channels=out_channels, num_scales=3)
        return yolo_model, feats


def test_fpn_normal():
    outs = fpn_config('normal')
    ort_validate(*outs)


def test_fpn_wo_extra_convs():
    outs = fpn_config('wo_extra_convs')
    ort_validate(*outs)


def test_fpn_lateral_bns():
    outs = fpn_config('lateral_bns')
    ort_validate(*outs)


def test_fpn_bilinear_upsample():
    outs = fpn_config('bilinear_upsample')
    ort_validate(*outs)


def test_fpn_scale_factor():
    outs = fpn_config('scale_factor')
    ort_validate(*outs)


def test_fpn_extra_convs_inputs():
    outs = fpn_config('extra_convs_inputs')
    ort_validate(*outs)


def test_fpn_extra_convs_laterals():
    outs = fpn_config('extra_convs_laterals')
    ort_validate(*outs)


def test_fpn_extra_convs_outputs():
    outs = fpn_config('extra_convs_outputs')
    ort_validate(*outs)


def test_yolo_normal():
    outs = yolo_config('normal')
    ort_validate(*outs)