File size: 4,797 Bytes
e26e560 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 |
import os.path as osp
import mmcv
import pytest
import torch
from mmdet import digit_version
from mmdet.models.necks import FPN, YOLOV3Neck
from .utils import ort_validate
if digit_version(torch.__version__) <= digit_version('1.5.0'):
pytest.skip(
'ort backend does not support version below 1.5.0',
allow_module_level=True)
# Control the returned model of neck_config()
test_step_names = {
'normal': 0,
'wo_extra_convs': 1,
'lateral_bns': 2,
'bilinear_upsample': 3,
'scale_factor': 4,
'extra_convs_inputs': 5,
'extra_convs_laterals': 6,
'extra_convs_outputs': 7,
}
data_path = osp.join(osp.dirname(__file__), 'data')
def fpn_config(test_step_name):
"""Return the class containing the corresponding attributes according to
the test_step_names."""
s = 64
in_channels = [8, 16, 32, 64]
feat_sizes = [s // 2**i for i in range(4)] # [64, 32, 16, 8]
out_channels = 8
feats = [
torch.rand(1, in_channels[i], feat_sizes[i], feat_sizes[i])
for i in range(len(in_channels))
]
if (test_step_names[test_step_name] == 0):
fpn_model = FPN(
in_channels=in_channels,
out_channels=out_channels,
add_extra_convs=True,
num_outs=5)
return fpn_model, feats
elif (test_step_names[test_step_name] == 1):
# Tests for fpn with no extra convs (pooling is used instead)
fpn_model = FPN(
in_channels=in_channels,
out_channels=out_channels,
add_extra_convs=False,
num_outs=5)
return fpn_model, feats
elif (test_step_names[test_step_name] == 2):
fpn_model = FPN(
in_channels=in_channels,
out_channels=out_channels,
add_extra_convs=True,
no_norm_on_lateral=False,
norm_cfg=dict(type='BN', requires_grad=True),
num_outs=5)
return fpn_model, feats
elif (test_step_names[test_step_name] == 3):
fpn_model = FPN(
in_channels=in_channels,
out_channels=out_channels,
add_extra_convs=True,
upsample_cfg=dict(mode='bilinear', align_corners=True),
num_outs=5)
return fpn_model, feats
elif (test_step_names[test_step_name] == 4):
fpn_model = FPN(
in_channels=in_channels,
out_channels=out_channels,
add_extra_convs=True,
upsample_cfg=dict(scale_factor=2),
num_outs=5)
return fpn_model, feats
elif (test_step_names[test_step_name] == 5):
fpn_model = FPN(
in_channels=in_channels,
out_channels=out_channels,
add_extra_convs='on_input',
num_outs=5)
return fpn_model, feats
elif (test_step_names[test_step_name] == 6):
fpn_model = FPN(
in_channels=in_channels,
out_channels=out_channels,
add_extra_convs='on_lateral',
num_outs=5)
return fpn_model, feats
elif (test_step_names[test_step_name] == 7):
fpn_model = FPN(
in_channels=in_channels,
out_channels=out_channels,
add_extra_convs='on_output',
num_outs=5)
return fpn_model, feats
def yolo_config(test_step_name):
"""Config yolov3 Neck."""
in_channels = [16, 8, 4]
out_channels = [8, 4, 2]
# The data of yolov3_neck.pkl contains a list of
# torch.Tensor, where each torch.Tensor is generated by
# torch.rand and each tensor size is:
# (1, 4, 64, 64), (1, 8, 32, 32), (1, 16, 16, 16).
yolov3_neck_data = 'yolov3_neck.pkl'
feats = mmcv.load(osp.join(data_path, yolov3_neck_data))
if (test_step_names[test_step_name] == 0):
yolo_model = YOLOV3Neck(
in_channels=in_channels, out_channels=out_channels, num_scales=3)
return yolo_model, feats
def test_fpn_normal():
outs = fpn_config('normal')
ort_validate(*outs)
def test_fpn_wo_extra_convs():
outs = fpn_config('wo_extra_convs')
ort_validate(*outs)
def test_fpn_lateral_bns():
outs = fpn_config('lateral_bns')
ort_validate(*outs)
def test_fpn_bilinear_upsample():
outs = fpn_config('bilinear_upsample')
ort_validate(*outs)
def test_fpn_scale_factor():
outs = fpn_config('scale_factor')
ort_validate(*outs)
def test_fpn_extra_convs_inputs():
outs = fpn_config('extra_convs_inputs')
ort_validate(*outs)
def test_fpn_extra_convs_laterals():
outs = fpn_config('extra_convs_laterals')
ort_validate(*outs)
def test_fpn_extra_convs_outputs():
outs = fpn_config('extra_convs_outputs')
ort_validate(*outs)
def test_yolo_normal():
outs = yolo_config('normal')
ort_validate(*outs)
|