File size: 4,919 Bytes
e26e560
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
# Tutorial 3: Customize Data Pipelines

## Design of Data pipelines

Following typical conventions, we use `Dataset` and `DataLoader` for data loading
with multiple workers. `Dataset` returns a dict of data items corresponding
the arguments of models' forward method.
Since the data in object detection may not be the same size (image size, gt bbox size, etc.),
we introduce a new `DataContainer` type in MMCV to help collect and distribute
data of different size.
See [here](https://github.com/open-mmlab/mmcv/blob/master/mmcv/parallel/data_container.py) for more details.

The data preparation pipeline and the dataset is decomposed. Usually a dataset
defines how to process the annotations and a data pipeline defines all the steps to prepare a data dict.
A pipeline consists of a sequence of operations. Each operation takes a dict as input and also output a dict for the next transform.

We present a classical pipeline in the following figure. The blue blocks are pipeline operations. With the pipeline going on, each operator can add new keys (marked as green) to the result dict or update the existing keys (marked as orange).
![pipeline figure](../../resources/data_pipeline.png)

The operations are categorized into data loading, pre-processing, formatting and test-time augmentation.

Here is a pipeline example for Faster R-CNN.

```python
img_norm_cfg = dict(
    mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True)
train_pipeline = [
    dict(type='LoadImageFromFile'),
    dict(type='LoadAnnotations', with_bbox=True),
    dict(type='Resize', img_scale=(1333, 800), keep_ratio=True),
    dict(type='RandomFlip', flip_ratio=0.5),
    dict(type='Normalize', **img_norm_cfg),
    dict(type='Pad', size_divisor=32),
    dict(type='DefaultFormatBundle'),
    dict(type='Collect', keys=['img', 'gt_bboxes', 'gt_labels']),
]
test_pipeline = [
    dict(type='LoadImageFromFile'),
    dict(
        type='MultiScaleFlipAug',
        img_scale=(1333, 800),
        flip=False,
        transforms=[
            dict(type='Resize', keep_ratio=True),
            dict(type='RandomFlip'),
            dict(type='Normalize', **img_norm_cfg),
            dict(type='Pad', size_divisor=32),
            dict(type='ImageToTensor', keys=['img']),
            dict(type='Collect', keys=['img']),
        ])
]
```

For each operation, we list the related dict fields that are added/updated/removed.

### Data loading

`LoadImageFromFile`

- add: img, img_shape, ori_shape

`LoadAnnotations`

- add: gt_bboxes, gt_bboxes_ignore, gt_labels, gt_masks, gt_semantic_seg, bbox_fields, mask_fields

`LoadProposals`

- add: proposals

### Pre-processing

`Resize`

- add: scale, scale_idx, pad_shape, scale_factor, keep_ratio
- update: img, img_shape, *bbox_fields, *mask_fields, *seg_fields

`RandomFlip`

- add: flip
- update: img, *bbox_fields, *mask_fields, *seg_fields

`Pad`

- add: pad_fixed_size, pad_size_divisor
- update: img, pad_shape, *mask_fields, *seg_fields

`RandomCrop`

- update: img, pad_shape, gt_bboxes, gt_labels, gt_masks, *bbox_fields

`Normalize`

- add: img_norm_cfg
- update: img

`SegRescale`

- update: gt_semantic_seg

`PhotoMetricDistortion`

- update: img

`Expand`

- update: img, gt_bboxes

`MinIoURandomCrop`

- update: img, gt_bboxes, gt_labels

`Corrupt`

- update: img

### Formatting

`ToTensor`

- update: specified by `keys`.

`ImageToTensor`

- update: specified by `keys`.

`Transpose`

- update: specified by `keys`.

`ToDataContainer`

- update: specified by `fields`.

`DefaultFormatBundle`

- update: img, proposals, gt_bboxes, gt_bboxes_ignore, gt_labels, gt_masks, gt_semantic_seg

`Collect`

- add: img_meta (the keys of img_meta is specified by `meta_keys`)
- remove: all other keys except for those specified by `keys`

### Test time augmentation

`MultiScaleFlipAug`

## Extend and use custom pipelines

1. Write a new pipeline in any file, e.g., `my_pipeline.py`. It takes a dict as input and return a dict.

    ```python
    from mmdet.datasets import PIPELINES

    @PIPELINES.register_module()
    class MyTransform:

        def __call__(self, results):
            results['dummy'] = True
            return results
    ```

2. Import the new class.

    ```python
    from .my_pipeline import MyTransform
    ```

3. Use it in config files.

    ```python
    img_norm_cfg = dict(
        mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True)
    train_pipeline = [
        dict(type='LoadImageFromFile'),
        dict(type='LoadAnnotations', with_bbox=True),
        dict(type='Resize', img_scale=(1333, 800), keep_ratio=True),
        dict(type='RandomFlip', flip_ratio=0.5),
        dict(type='Normalize', **img_norm_cfg),
        dict(type='Pad', size_divisor=32),
        dict(type='MyTransform'),
        dict(type='DefaultFormatBundle'),
        dict(type='Collect', keys=['img', 'gt_bboxes', 'gt_labels']),
    ]
    ```