File size: 4,890 Bytes
4c710ed |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 |
import argparse
import os
import os.path as osp
import matplotlib.patches as mpatches
import matplotlib.pyplot as plt
import mmcv
import numpy as np
try:
import imageio
except ImportError:
imageio = None
def parse_args():
parser = argparse.ArgumentParser(description='Create GIF for demo')
parser.add_argument(
'image_dir',
help='directory where result '
'images save path generated by ‘analyze_results.py’')
parser.add_argument(
'--out',
type=str,
default='result.gif',
help='gif path where will be saved')
args = parser.parse_args()
return args
def _generate_batch_data(sampler, batch_size):
batch = []
for idx in sampler:
batch.append(idx)
if len(batch) == batch_size:
yield batch
batch = []
if len(batch) > 0:
yield batch
def create_gif(frames, gif_name, duration=2):
"""Create gif through imageio.
Args:
frames (list[ndarray]): Image frames
gif_name (str): Saved gif name
duration (int): Display interval (s),
Default: 2
"""
if imageio is None:
raise RuntimeError('imageio is not installed,'
'Please use “pip install imageio” to install')
imageio.mimsave(gif_name, frames, 'GIF', duration=duration)
def create_frame_by_matplotlib(image_dir,
nrows=1,
fig_size=(300, 300),
font_size=15):
"""Create gif frame image through matplotlib.
Args:
image_dir (str): Root directory of result images
nrows (int): Number of rows displayed, Default: 1
fig_size (tuple): Figure size of the pyplot figure.
Default: (300, 300)
font_size (int): Font size of texts. Default: 15
Returns:
list[ndarray]: image frames
"""
result_dir_names = os.listdir(image_dir)
assert len(result_dir_names) == 2
# Longer length has higher priority
result_dir_names.reverse()
images_list = []
for dir_names in result_dir_names:
images_list.append(mmcv.scandir(osp.join(image_dir, dir_names)))
frames = []
for paths in _generate_batch_data(zip(*images_list), nrows):
fig, axes = plt.subplots(nrows=nrows, ncols=2)
fig.suptitle('Good/bad case selected according '
'to the COCO mAP of the single image')
det_patch = mpatches.Patch(color='salmon', label='prediction')
gt_patch = mpatches.Patch(color='royalblue', label='ground truth')
# bbox_to_anchor may need to be finetuned
plt.legend(
handles=[det_patch, gt_patch],
bbox_to_anchor=(1, -0.18),
loc='lower right',
borderaxespad=0.)
if nrows == 1:
axes = [axes]
dpi = fig.get_dpi()
# set fig size and margin
fig.set_size_inches(
(fig_size[0] * 2 + fig_size[0] // 20) / dpi,
(fig_size[1] * nrows + fig_size[1] // 3) / dpi,
)
fig.tight_layout()
# set subplot margin
plt.subplots_adjust(
hspace=.05,
wspace=0.05,
left=0.02,
right=0.98,
bottom=0.02,
top=0.98)
for i, (path_tuple, ax_tuple) in enumerate(zip(paths, axes)):
image_path_left = osp.join(
osp.join(image_dir, result_dir_names[0], path_tuple[0]))
image_path_right = osp.join(
osp.join(image_dir, result_dir_names[1], path_tuple[1]))
image_left = mmcv.imread(image_path_left)
image_left = mmcv.rgb2bgr(image_left)
image_right = mmcv.imread(image_path_right)
image_right = mmcv.rgb2bgr(image_right)
if i == 0:
ax_tuple[0].set_title(
result_dir_names[0], fontdict={'size': font_size})
ax_tuple[1].set_title(
result_dir_names[1], fontdict={'size': font_size})
ax_tuple[0].imshow(
image_left, extent=(0, *fig_size, 0), interpolation='bilinear')
ax_tuple[0].axis('off')
ax_tuple[1].imshow(
image_right,
extent=(0, *fig_size, 0),
interpolation='bilinear')
ax_tuple[1].axis('off')
canvas = fig.canvas
s, (width, height) = canvas.print_to_buffer()
buffer = np.frombuffer(s, dtype='uint8')
img_rgba = buffer.reshape(height, width, 4)
rgb, alpha = np.split(img_rgba, [3], axis=2)
img = rgb.astype('uint8')
frames.append(img)
return frames
def main():
args = parse_args()
frames = create_frame_by_matplotlib(args.image_dir)
create_gif(frames, args.out)
if __name__ == '__main__':
main()
|