File size: 7,590 Bytes
75081b1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
from transformers import Pipeline, AutoTokenizer, AutoModelForCausalLM
import torch
import re
from contextlib import nullcontext
from neurons.miners.model.prompts import (
    RELEVANCY_PROMPT, 
    HALLUCINATION_PROMPT, 
    HALLUCINATION_MISTAKES_PROMPT,
    ATTRIBUTION_PROMPT, 
    ATTRIBUTION_MISTAKES_PROMPT,
    SUMMARY_COMPLETENESS_PROMPT,
    SUMMARY_MISTAKES_PROMPT
)
import time

class DeValPipeline(Pipeline):

    def __init__(self, model=None, tokenizer=None, model_dir = None, **kwargs):
        self.max_tokens = 250
        self.temperature = 0.5
        self.top_p = 0.95
        self.top_k = 0

        self.system_prompt = "You are an evaluation LLM. Your job is generate a score demonstrating how well the LLM you are evaluating responded and to identify its mistakes."

        # init tokenizer and model then attach
        self.device = "cuda" if torch.cuda.is_available() else "cpu"
        tokenizer = AutoTokenizer.from_pretrained(model_dir)
        model = AutoModelForCausalLM.from_pretrained(
            model_dir, 
            device_map=self.device,
            torch_dtype=torch.float16 if self.device == "cuda" else torch.float32
        )
        print(f"putting model to {self.device}")
        super().__init__(model=model, tokenizer=tokenizer, **kwargs)

    def _sanitize_parameters(self, **kwargs):
        preprocess_kwargs = {}
        for k, v in kwargs.items():
            preprocess_kwargs[k] = kwargs[k]
        return preprocess_kwargs, {}, {}

    def _gen_input_ids(self, prompt: str) -> str:
        messages = [
            {"role": "system", "content": self.system_prompt},
            {"role": "user", "content": prompt},
        ]

        input_ids = self.tokenizer.apply_chat_template(
            messages,
            add_generation_prompt=True,
            return_tensors="pt"
        ).to(self.device)

        return input_ids

       
    def _get_prompt(
        self, 
        task: str, 
    ) -> str:
        if task == "attribution":
            return {
                "score": ATTRIBUTION_PROMPT,
                "mistakes": ATTRIBUTION_MISTAKES_PROMPT,
            }
        elif task == 'summary_completeness':
            return {
                "score": SUMMARY_COMPLETENESS_PROMPT,
                "mistakes": SUMMARY_MISTAKES_PROMPT,
            }
        elif task == "hallucination":
            return {
                "score": HALLUCINATION_PROMPT,
                "mistakes": HALLUCINATION_MISTAKES_PROMPT,
            }
        elif task == "relevancy":
            return {"score": RELEVANCY_PROMPT}
        else:
            raise ValueError(f"Unable to find the correct task: {task}")

    def _parse_score_response(self, response: str) -> float:
        float_regex = "((0\.\d+?|1\.0+?|0|1|\.\d+))"
        match = re.search(f"response: {float_regex}", response.lower())
        if match:
            score = match.group(1)
            print("score ", score)
            return float(score.strip()) if score != "" else -1.0
        else:
            print("Unable to parse eval score using regex")
            return -1.0

    def _parse_mistakes_response(self, response: str) -> list[str]:
        response = response.split("\n")   
        response = [r.strip() for r in response]
        return [r for r in response if r != '']

       
    def preprocess(
        self, 
        inputs,
        tasks: list[str],
        rag_context: str,
        query: str | None,
        llm_response: str,
    ):
        # generate our prompts
        prompts = self._get_prompt(
            task=tasks[0],
        )

        # prep score evaluation 
        score_prompt = prompts.get("score")
        score_prompt = score_prompt.format(rag_context = rag_context, query = query, llm_response = llm_response)
        score_input_ids =self._gen_input_ids(score_prompt)

        # prep mistake identification 
        mistakes_prompt = prompts.get("mistakes", None)
                
        # we do not evaluate for all tasks
        if mistakes_prompt:
            mistakes_prompt = mistakes_prompt.format(rag_context = rag_context, llm_response = llm_response)
            mistakes_input_ids =self._gen_input_ids(mistakes_prompt)
        else:
            mistakes_input_ids = None

       
        return {
            "score_input_ids": score_input_ids,
            "mistakes_input_ids": mistakes_input_ids,
        }

    def _forward(self, model_inputs):
        score_input_ids = model_inputs['score_input_ids']
        mistake_input_ids = model_inputs.get('mistakes_input_ids', None)

        terminators = [
            self.tokenizer.eos_token_id,
            self.tokenizer.convert_tokens_to_ids("<|eot_id|>")
        ]
        with torch.cuda.amp.autocast() if self.device == "cuda" else nullcontext():

            start_score_time = time.time()
            # run eval score
            score_outputs = self.model.generate(
                input_ids=score_input_ids,
                max_new_tokens=self.max_tokens,
                eos_token_id=terminators,
                do_sample=True,
                temperature=self.temperature,
                top_p=self.top_p,
            )
            score_response = score_outputs[0][score_input_ids.shape[-1]:]
            print(f"Score generation time: {time.time()-start_score_time}")

            # run mistakes eval score
            start_mistakes_time = time.time()
            mistakes_response = None
            if mistake_input_ids is not None:
                mistakes_outputs = self.model.generate(
                    input_ids=mistake_input_ids,
                    max_new_tokens=self.max_tokens,
                    eos_token_id=terminators,
                    do_sample=True,
                    temperature=self.temperature,
                    top_p=self.top_p,
                )
                mistakes_response = mistakes_outputs[0][score_input_ids.shape[-1]:]
                print(f"Mistakes generation time: {time.time()-start_mistakes_time}")


        return {
            "score_response": score_response,
            "mistakes_response": mistakes_response
        }

    def postprocess(self, response):
        score_response = response.get('score_response')
        mistakes_response = response.get('mistakes_response', None)

        # decode and parse score
        score_decoded = self.tokenizer.decode(score_response, skip_special_tokens=True)
        score_completion = self._parse_score_response(score_decoded)

        # decode and parse mistakes
        mistakes_completion = None
        if mistakes_response is not None:
            mistakes_decoded = self.tokenizer.decode(mistakes_response, skip_special_tokens = True)
            mistakes_completion = self._parse_mistakes_response(mistakes_decoded)

        return {
            'score_completion': score_completion,
            'mistakes_completion': mistakes_completion
        }



if __name__ == "__main__":
    from transformers.pipelines import PIPELINE_REGISTRY

    PIPELINE_REGISTRY.register_pipeline("de_val", pipeline_class=DeValPipeline)

    model_dir = "../model"

    tasks = ['relevancy']
#    rag_context = "The earth is round. The sky is Blue."
#    llm_response = "The earth is flat."
#    query = "What color is the sky"
    rag_context = "water is liquid. Tree leaves are green in summer."
    llm_response = "water is solid."
    query = "what color are tree leaves in summer"

    pipe = DeValPipeline("de_val", model_dir = model_dir)
    print(pipe("", tasks=tasks, rag_context=rag_context, query=query, llm_response=llm_response))