zjy2001 commited on
Commit
038b14a
·
verified ·
1 Parent(s): 5325794

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +2 -7
README.md CHANGED
@@ -17,11 +17,9 @@ Z1-Coder
17
  <a href="#links" style="text-decoration: none; font-weight: bold;">Links</a> •
18
  <a href="#getting-started" style="text-decoration: none; font-weight: bold;">Getting Started</a> •
19
  <a href="#introduction" style="text-decoration: none; font-weight: bold;">Introduction</a> •
20
- <a href="#evaluation" style="text-decoration: none; font-weight: bold;">Evaluation</a> •
21
  <a href="#citation" style="text-decoration: none; font-weight: bold;">Citation</a>
22
  </p>
23
  </div>
24
-
25
  </div>
26
 
27
 
@@ -32,7 +30,7 @@ Z1-Coder
32
 
33
  # Links
34
 
35
-
36
  - 🤗 [Z1-Coder models](https://huggingface.co/Z1-Coder)
37
  - 🤗 [Z1-Coder data](https://huggingface.co/Z1-Coder)
38
 
@@ -52,7 +50,6 @@ We use a learning rate of 5e-5 for the two training stages.
52
  <em>Figure 1: Comparison between Z1-Coder-7B and Qwen2.5-Coder-Instruct. </em>
53
  </p>
54
  -->
55
-
56
  To train Z1-Coder, we curate reasoning trajectories on code-related datasets and propose [self-invoking](https://github.com/CodeEval-Pro/CodeEval-Pro) evolving to further refine models' reasoning behaviour in code generation.
57
  | Model | Trajectory Dataset Download | Reference |
58
  |------------------------|-----------------------------------|--------------------------------|
@@ -68,7 +65,6 @@ We fine-tune Qwen-2.5-Coder-Base (1.5B and 7B) for two stages with two trajector
68
  <em>Figure 2: The pipeline of Z1-Coder training. </em>
69
  </p>
70
  -->
71
-
72
  <!-- # Evaluation
73
  Z1-Coder significantly outperforms other open-source models on different code generation benchmarks at a similar parameter size. Notably, Z1-Coder-7B surpasses the best 7B code LLMs Qwen2.5-Coder-7B-Instruct, with only its 1% post-training data. Z1-Coder-7B also achieves 20% pass@1 on LiveCodeBench and 51.4% on BigCodeBench, which performs comparable performance level compared to DeepseekCoder-33B-Instruct (21.5% and 51.1%) and LLaMA3.1-70B-Instruct (19.3% and 54.8 %).
74
  -->
@@ -78,7 +74,6 @@ in blue, the second-best results are underlined. </em>
78
  <br>
79
  <img src="./assets/res1.png" width="700">
80
  </p> -->
81
-
82
  Z1-Coder-7B surpasses the best 7B code LLMs Qwen2.5-Coder-7B-Instruct, with only 1% its post-training data.
83
 
84
  | Model | Z1-Coder-7B | Qwen2.5-Coder-7B-Ins |
@@ -103,4 +98,4 @@ The code in this repository is mostly described in the post below. Please consid
103
  note = {Accessed: 2025-01-17},
104
  year = {2025}
105
  }
106
- ```
 
17
  <a href="#links" style="text-decoration: none; font-weight: bold;">Links</a> •
18
  <a href="#getting-started" style="text-decoration: none; font-weight: bold;">Getting Started</a> •
19
  <a href="#introduction" style="text-decoration: none; font-weight: bold;">Introduction</a> •
 
20
  <a href="#citation" style="text-decoration: none; font-weight: bold;">Citation</a>
21
  </p>
22
  </div>
 
23
  </div>
24
 
25
 
 
30
 
31
  # Links
32
 
33
+ - [GitHub](https://github.com/Z1-Coder/Z1-Coder)
34
  - 🤗 [Z1-Coder models](https://huggingface.co/Z1-Coder)
35
  - 🤗 [Z1-Coder data](https://huggingface.co/Z1-Coder)
36
 
 
50
  <em>Figure 1: Comparison between Z1-Coder-7B and Qwen2.5-Coder-Instruct. </em>
51
  </p>
52
  -->
 
53
  To train Z1-Coder, we curate reasoning trajectories on code-related datasets and propose [self-invoking](https://github.com/CodeEval-Pro/CodeEval-Pro) evolving to further refine models' reasoning behaviour in code generation.
54
  | Model | Trajectory Dataset Download | Reference |
55
  |------------------------|-----------------------------------|--------------------------------|
 
65
  <em>Figure 2: The pipeline of Z1-Coder training. </em>
66
  </p>
67
  -->
 
68
  <!-- # Evaluation
69
  Z1-Coder significantly outperforms other open-source models on different code generation benchmarks at a similar parameter size. Notably, Z1-Coder-7B surpasses the best 7B code LLMs Qwen2.5-Coder-7B-Instruct, with only its 1% post-training data. Z1-Coder-7B also achieves 20% pass@1 on LiveCodeBench and 51.4% on BigCodeBench, which performs comparable performance level compared to DeepseekCoder-33B-Instruct (21.5% and 51.1%) and LLaMA3.1-70B-Instruct (19.3% and 54.8 %).
70
  -->
 
74
  <br>
75
  <img src="./assets/res1.png" width="700">
76
  </p> -->
 
77
  Z1-Coder-7B surpasses the best 7B code LLMs Qwen2.5-Coder-7B-Instruct, with only 1% its post-training data.
78
 
79
  | Model | Z1-Coder-7B | Qwen2.5-Coder-7B-Ins |
 
98
  note = {Accessed: 2025-01-17},
99
  year = {2025}
100
  }
101
+ ```